1
|
Li Y, Abelson C, Que L, Wang D. 10 6-fold faster C-H bond hydroxylation by a Co III,IV2(µ-O) 2 complex [via a Co III2(µ-O)(µ-OH) intermediate] versus its Fe IIIFe IV analog. Proc Natl Acad Sci U S A 2023; 120:e2307950120. [PMID: 38085777 PMCID: PMC10743362 DOI: 10.1073/pnas.2307950120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
The hydroxylation of C-H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2 complex 2a supported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex 3a can be independently generated either by H-atom transfer (HAT) in the reaction of 2a with phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2 complex 1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm-1 associated with the symmetric Co-O-Co stretching mode of the Co2O2 diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for 1a and 2a by Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their "diamond core" structural assignments. The independent generation of 3a allows us to investigate HAT reactions of 2a with phenols in detail, measure the redox potential and pKa of the system, and calculate the O-H bond strength (DO-H) of 3a to shed light on the C-H bond activation reactivity of 2a. Complex 3a is found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal 2a to be 106-fold more reactive in oxidizing hydrocarbon C-H bonds than corresponding FeIII,IV2(µ-O)2 and MnIII,IV2(µ-O)2 analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2 species to oxidize alkane C-H bonds.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT59812
| | - Chase Abelson
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN55455
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN55455
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT59812
| |
Collapse
|
2
|
Liu N, Li L, Qin X, Li X, Xie Y, Chen X, Gao J. Theoretical Insights into the Generation Mechanism of the Tyr 122 Radical Catalyzed by Intermediate X in Class Ia Ribonucleotide Reductase. Inorg Chem 2023; 62:19498-19506. [PMID: 37987809 DOI: 10.1021/acs.inorgchem.3c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides in all organisms. There is an ∼35 Å long-range electron-hole transfer pathway during the catalytic process of class Ia RNR, which can be described as Tyr122β ↔ [Trp48β]? ↔ Tyr356β ↔ Tyr731α ↔ Tyr730α ↔ Cys439α. The formation of the Y122• radical initiates this long-range radical transfer process. However, the generation mechanism of Y122• is not yet clear due to confusion over the intermediate X structures. Based on the two reported X structures, we examined the possible mechanisms of Y122• generation by density functional theory (DFT) calculations. Our examinations revealed that the generation of the Y122• radical from the two different core structures of X was via a similar two-step reaction, with the first step of proton transfer for the formation of the proton receptor of Y122 and the second step of a proton-coupled long-range electron transfer reaction with the proton transfer from the Y122 hydroxyl group to the terminal hydroxide ligand of Fe1III and simultaneously electron transfer from the side chain of Y122 to Fe2IV. These findings provide an insight into the formation mechanism of Y122• catalyzed by the double-iron center of the β subunit of class Ia RNR.
Collapse
Affiliation(s)
- Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Kass D, Yao S, Krause KB, Corona T, Richter L, Braun T, Mebs S, Haumann M, Dau H, Lohmiller T, Limberg C, Drieß M, Ray K. Spectroscopic Properties of a Biologically Relevant [Fe 2 (μ-O) 2 ] Diamond Core Motif with a Short Iron-Iron Distance. Angew Chem Int Ed Engl 2023; 62:e202209437. [PMID: 36541062 DOI: 10.1002/anie.202209437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Å were attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (μ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-μ-O bonds. A ≈2.5 Å Fe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (μ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.
Collapse
Affiliation(s)
- Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Shenglai Yao
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Konstantin B Krause
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Teresa Corona
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Liza Richter
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Braun
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Matthias Drieß
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
Zhou TP, Deng WH, Wu Y, Liao RZ. QM/MM Calculations Suggested Concerted O‒O Bond Cleavage and Substrate Oxidation by Nonheme Diiron Toluene/o‐xylene Monooxygenase. Chem Asian J 2022; 17:e202200490. [DOI: 10.1002/asia.202200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tai-Ping Zhou
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Wen-Hao Deng
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and technology College of Chemistry and Chemical Engeneering Luoyulu 1037 430074 Wuhan CHINA
| |
Collapse
|
5
|
Cząstka K, Oughli AA, Rüdiger O, DeBeer S. Enzymatic X-ray absorption spectroelectrochemistry. Faraday Discuss 2022; 234:214-231. [PMID: 35142778 DOI: 10.1039/d1fd00079a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to observe the changes that occur at an enzyme active site during electrocatalysis can provide very valuable information for understanding the mechanism and ultimately aid in catalyst design. Herein, we discuss the development of X-ray absorption spectroscopy (XAS) in combination with electrochemistry for operando studies of enzymatic systems. XAS has had a long history of enabling geometric and electronic structural insights into the catalytic active sites of enzymes, however, XAS combined with electrochemistry (XA-SEC) has been exceedingly rare in bioinorganic applications. Herein, we discuss the challenges and opportunities of applying operando XAS to enzymatic electrocatalysts. The challenges due to the low concentration of the photoabsorber and the instability of the protein in the X-ray beam are discussed. Methods for immobilizing enzymes on the electrodes, while maintaining full redox control are highlighted. A case study of combined XAS and electrochemistry applied to a [NiFe] hydrogenase is presented. By entrapping the [NiFe] hydrogenase in a redox polymer, relatively high protein concentrations can be achieved on the electrode surface, while maintaining redox control. Overall, it is demonstrated that the experiments are feasible, but require precise redox control over the majority of the absorber atoms and careful controls to discriminate between electrochemically-driven changes and beam damage. Opportunities for future applications are discussed.
Collapse
Affiliation(s)
- Karolina Cząstka
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, DE, Germany.
| | - Alaa A Oughli
- Technical University Munich, Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, DE, Germany.
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, DE, Germany.
| |
Collapse
|
6
|
DeLucia AA, Kelly KA, Herrera KA, Gray DL, Olshansky L. Intramolecular Hydrogen-Bond Interactions Tune Reactivity in Biomimetic Bis(μ-hydroxo)dicobalt Complexes. Inorg Chem 2021; 60:15599-15609. [PMID: 34606250 DOI: 10.1021/acs.inorgchem.1c02210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Active site hydrogen-bond (H-bond) networks represent a key component by which metalloenzymes control the formation and deployment of high-valent transition metal-oxo intermediates. We report a series of dinuclear cobalt complexes that serve as structural models for the nonheme diiron enzyme family and feature a Co2(μ-OH)2 diamond core stabilized by intramolecular H-bond interactions. We define the conditions required for the kinetically controlled synthesis of these complexes: [Co2(μ-OH)2(μ-OAc)(κ1-OAc)2(pyR)4][PF6] (1R), where OAc = acetate and pyR = pyridine with para-substituent R, and we describe a homologous series of 1R in which the para-R substituent on pyridine is modulated. The solid state X-ray diffraction (XRD) structures of 1R are similar across the series, but in solution, their 1H NMR spectra reveal a linear free energy relationship (LFER) where, as R becomes increasingly electron-withdrawing, the intramolecular H-bond interaction between bridging μ-OH and κ1-acetate ligands results in increasingly "oxo-like" μ-OH bridges. Deprotonation of the bridging μ-OH results in the quantitative conversion to corresponding cubane complexes: [Co4(μ-O)4(μ3-OAc)4(pyR)4] (2R), which represent the thermodynamic sink of self-assembly. These reactions are unusually slow for rate-limiting deprotonation events, but rapid-mixing experiments reveal a 6000-fold rate acceleration on going from R = OMe to R = CN. These results suggest that we can tune reactivity by modulating the μ-OH pKa in the presence of intramolecular H-bond interactions to maintain stability as the octahedral d6 centers become increasingly acidic. Nature may similarly employ dynamic carboxylate-mediated H-bond interactions to control the reactivity of acidic transition metal-oxo intermediates.
Collapse
Affiliation(s)
- Alyssa A DeLucia
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Kimberly A Kelly
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Kevin A Herrera
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Danielle L Gray
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Jacobs AB, Banerjee R, Deweese DE, Braun A, Babicz JT, Gee LB, Sutherlin KD, Böttger LH, Yoda Y, Saito M, Kitao S, Kobayashi Y, Seto M, Tamasaku K, Lipscomb JD, Park K, Solomon EI. Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV) 2 Intermediate Q in Methane Monooxygenase and Its Reactivity. J Am Chem Soc 2021; 143:16007-16029. [PMID: 34570980 PMCID: PMC8631202 DOI: 10.1021/jacs.1c05436] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanotrophic bacteria utilize the nonheme diiron enzyme soluble methane monooxygenase (sMMO) to convert methane to methanol in the first step of their metabolic cycle under copper-limiting conditions. The structure of the sMMO Fe(IV)2 intermediate Q responsible for activating the inert C-H bond of methane (BDE = 104 kcal/mol) remains controversial, with recent studies suggesting both "open" and "closed" core geometries for its active site. In this study, we employ nuclear resonance vibrational spectroscopy (NRVS) to probe the geometric and electronic structure of intermediate Q at cryogenic temperatures. These data demonstrate that Q decays rapidly during the NRVS experiment. Combining data from several years of measurements, we derive the NRVS vibrational features of intermediate Q as well as its cryoreduced decay product. A library of 90 open and closed core models of intermediate Q is generated using density functional theory to analyze the NRVS data of Q and its cryoreduced product as well as prior spectroscopic data on Q. Our analysis reveals that a subset of closed core models reproduce these newly acquired NRVS data as well as prior data. The reaction coordinate with methane is also evaluated using both closed and open core models of Q. These studies show that the potent reactivity of Q toward methane resides in the "spectator oxo" of its Fe(IV)2O2 core, in contrast to nonheme mononuclear Fe(IV)═O enzyme intermediates that H atoms abstract from weaker C-H bonds.
Collapse
Affiliation(s)
- Ariel B. Jacobs
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Dory E. Deweese
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Jeffrey T. Babicz
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Leland B. Gee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Kyle D. Sutherlin
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Lars H. Böttger
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Makina Saito
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Shinji Kitao
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, 679-5148, Japan
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States,Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, 94025, United States
| |
Collapse
|
8
|
Chalupský J, Srnec M. Beyond the Classical Contributions to Exchange Coupling in Binuclear Transition Metal Complexes. J Phys Chem A 2021; 125:2276-2283. [PMID: 33724818 DOI: 10.1021/acs.jpca.0c11237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complexes with two or more magnetically coupled metal ions have attracted considerable attention as catalysts of many vital processes, single-molecule magnets, or spin-crossover compounds. Elucidation of their electronic structures is essential for understanding their catalytic and magnetic properties. Here, we provide an unprecedented insight into exchange-coupling mechanisms between the magnetic centers in six prototypical bis-μ-oxo bimetallic M2O2 complexes, including two biologically relevant models of non-heme iron enzymes. Employing multiconfigurational/multireference methods and related orbital entanglement analysis, we revealed the essential and counterintuitive role of predominantly unoccupied valence metal d orbitals in their strong antiferromagnetic coupling. We found that the participation of these orbitals is twofold. First, they enhance the superexchange between the singly occupied d orbitals. Second, they become substantially occupied and thus directly magnetically active, which we perceive as a new mechanism of the exchange interaction between the magnetic transition metal centers.
Collapse
Affiliation(s)
- Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6 16610, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| |
Collapse
|
9
|
Ansari M, Senthilnathan D, Rajaraman G. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe III-O-Fe IV[double bond, length as m-dash]O] 2+ species towards C-H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chem Sci 2020; 11:10669-10687. [PMID: 33209248 PMCID: PMC7654192 DOI: 10.1039/d0sc02624g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
High-valent metal-oxo species have been characterised as key intermediates in both heme and non-heme enzymes that are found to perform efficient aliphatic hydroxylation, epoxidation, halogenation, and dehydrogenation reactions. Several biomimetic model complexes have been synthesised over the years to mimic both the structure and function of metalloenzymes. The diamond-core [Fe2(μ-O)2] is one of the celebrated models in this context as this has been proposed as the catalytically active species in soluble methane monooxygenase enzymes (sMMO), which perform the challenging chemical conversion of methane to methanol at ease. In this context, a report of open core [HO(L)FeIII-O-FeIV(O)(L)]2+ (1) gains attention as this activates C-H bonds a million-fold faster compared to the diamond-core structure and has the dual catalytic ability to perform hydroxylation as well as desaturation with organic substrates. In this study, we have employed density functional methods to probe the origin of the very high reactivity observed for this complex and also to shed light on how this complex performs efficient hydroxylation and desaturation of alkanes. By modelling fifteen possible spin-states for 1 that could potentially participate in the reaction mechanism, our calculations reveal a doublet ground state for 1 arising from antiferromagnetic coupling between the quartet FeIV centre and the sextet FeIII centre, which regulates the reactivity of this species. The unusual stabilisation of the high-spin ground state for FeIV[double bond, length as m-dash]O is due to the strong overlap of with the orbital, reducing the antibonding interactions via spin-cooperation. The electronic structure features computed for 1 are consistent with experiments offering confidence in the methodology chosen. Further, we have probed various mechanistic pathways for the C-H bond activation as well as -OH rebound/desaturation of alkanes. An extremely small barrier height computed for the first hydrogen atom abstraction by the terminal FeIV[double bond, length as m-dash]O unit was found to be responsible for the million-fold activation observed in the experiments. The barrier height computed for -OH rebound by the FeIII-OH unit is also smaller suggesting a facile hydroxylation of organic substrates by 1. A strong spin-cooperation between the two iron centres also reduces the barrier for second hydrogen atom abstraction, thus making the desaturation pathway competitive. Both the spin-state as well as spin-coupling between the two metal centres play a crucial role in dictating the reactivity for species 1. By exploring various mechanistic pathways, our study unveils the fact that the bridged μ-oxo group is a poor electrophile for both C-H activation as well for -OH rebound. As more and more evidence is gathered in recent years for the open core geometry of sMMO enzymes, the idea of enhancing the reactivity via an open-core motif has far-reaching consequences.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| | - Dhurairajan Senthilnathan
- Center for Computational Chemistry , CRD , PRIST University , Vallam , Thanjavur , Tamilnadu 613403 , India
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| |
Collapse
|
10
|
|
11
|
Cutsail GE, Banerjee R, Zhou A, Que L, Lipscomb JD, DeBeer S. High-Resolution Extended X-ray Absorption Fine Structure Analysis Provides Evidence for a Longer Fe···Fe Distance in the Q Intermediate of Methane Monooxygenase. J Am Chem Soc 2018; 140:16807-16820. [PMID: 30398343 DOI: 10.1021/jacs.8b10313] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite decades of intense research, the core structure of the methane C-H bond breaking diiron(IV) intermediate, Q, of soluble methane monooxygenase remains controversial, with conflicting reports supporting either a "diamond" diiron core structure or an open core structure. Early extended X-ray absorption fine structure (EXAFS) data assigned a short 2.46 Å Fe-Fe distance to Q (Shu et al. Science 1997, 275, 515 ) that is inconsistent with several theoretical studies and in conflict with our recent high-resolution Fe K-edge X-ray absorption spectroscopy (XAS) studies (Castillo et al. J. Am. Chem. Soc. 2017, 139, 18024 ). Herein, we revisit the EXAFS of Q using high-energy resolution fluorescence-detected extended X-ray absorption fine structure (HERFD-EXAFS) studies. The present data show no evidence for a short Fe-Fe distance, but rather a long 3.4 Å diiron distance, as observed in open core synthetic model complexes. The previously reported 2.46 Å feature plausibly arises from a background metallic iron contribution from the experimental setup, which is eliminated in HERFD-EXAFS due to the increased selectivity. Herein, we explore the origin of the short diiron feature in partial-fluorescent yield EXAFS measurements and discuss the diagnostic features of background metallic scattering contribution to the EXAFS of dilute biological samples. Lastly, differences in sample preparation and resultant sample inhomogeneity in rapid-freeze quenched samples for EXAFS analysis are discussed. The presented approaches have broad implications for EXAFS studies of all dilute iron-containing samples.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ang Zhou
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lawrence Que
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
12
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. J Am Chem Soc 2017; 139:18024-18033. [PMID: 29136468 PMCID: PMC5729100 DOI: 10.1021/jacs.7b09560] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kα high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) provides a powerful tool for overcoming the limitations of conventional XAS to identify the electronic structure and coordination environment of metalloprotein active sites. Herein, Fe Kα HERFD XAS is applied to the diiron active site of soluble methane monooxygenase (sMMO) and to a series of high-valent diiron model complexes, including diamond-core [FeIV2(μ-O)2(L)2](ClO4)4] (3) and open-core [(O═FeIV-O-FeIV(OH)(L)2](ClO4)3 (4) models (where, L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) (TPA*)). Pronounced differences in the HERFD XAS pre-edge energies and intensities are observed for the open versus closed Fe2O2 cores in the model compounds. These differences are reproduced by time-dependent density functional theory (TDDFT) calculations and allow for the pre-edge energies and intensity to be directly correlated with the local active site geometric and electronic structure. A comparison of the model complex HERFD XAS data to that of MMOHQ (the key intermediate in methane oxidation) is supportive of an open-core structure. Specifically, the large pre-edge area observed for MMOHQ may be rationalized by invoking an open-core structure with a terminal FeIV═O motif, though further modulations of the core structure due to the protein environment cannot be ruled out. The present study thus motivates the need for additional experimental and theoretical studies to unambiguously assess the active site conformation of MMOHQ.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Caleb J. Allpress
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Gregory T. Rohde
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Komor AJ, Rivard BS, Fan R, Guo Y, Que L, Lipscomb JD. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates. Biochemistry 2017; 56:4940-4950. [PMID: 28823151 PMCID: PMC5605456 DOI: 10.1021/acs.biochem.7b00695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CmlI catalyzes the six-electron oxidation of an aryl-amine precursor (NH2-CAM) to the aryl-nitro group of chloramphenicol (CAM). The active site of CmlI contains a (hydr)oxo- and carboxylate-bridged dinuclear iron cluster. During catalysis, a novel diferric-peroxo intermediate P is formed and is thought to directly effect oxygenase chemistry. Peroxo intermediates can facilitate at most two-electron oxidations, so the biosynthetic pathway of CmlI must involve at least three steps. Here, kinetic techniques are used to characterize the rate and/or dissociation constants for each step by taking advantage of the remarkable stability of P in the absence of substrates (decay t1/2 = 3 h at 4 °C) and the visible chromophore of the diiron cluster. It is found that diferrous CmlI (CmlIred) can react with NH2-CAM and O2 in either order to form a P-NH2-CAM intermediate. P-NH2-CAM undergoes rapid oxygen transfer to form a diferric CmlI (CmlIox) complex with the aryl-hydroxylamine [NH(OH)-CAM] pathway intermediate. CmlIox-NH(OH)-CAM undergoes a rapid internal redox reaction to form a CmlIred-nitroso-CAM (NO-CAM) complex. O2 binding results in formation of P-NO-CAM that converts to CmlIox-CAM by enzyme-mediated oxygen atom transfer. The kinetic analysis indicates that there is little dissociation of pathway intermediates as the reaction progresses. Reactions initiated by adding pathway intermediates from solution occur much more slowly than those in which the intermediate is generated in the active site as part of the catalytic process. Thus, CmlI is able to preserve efficiency and specificity while avoiding adventitious chemistry by performing the entire six-electron oxidation in one active site.
Collapse
Affiliation(s)
- Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brent S. Rivard
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J Am Chem Soc 2017; 139:10472-10485. [PMID: 28673082 PMCID: PMC5568637 DOI: 10.1021/jacs.7b05389] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Ansari A, Ansari M, Singha A, Rajaraman G. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C−H and O−H Bond Activation. Chemistry 2017; 23:10110-10125. [DOI: 10.1002/chem.201701059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Azaj Ansari
- Department of Chemistry; CUH Haryana; Haryana 123031 India
| | | | - Asmita Singha
- Department of Chemistry; IIT Bombay; Mumbai 400076 India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai, Maharashtra 400076 India
| |
Collapse
|
17
|
Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. J Am Chem Soc 2017; 139:1950-1957. [PMID: 28075562 DOI: 10.1021/jacs.6b11563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent iron and manganese complexes effect some of the most challenging biochemical reactions known, including hydrocarbon and water oxidations associated with the global carbon cycle and oxygenic photosynthesis, respectively. Their extreme reactivity presents an impediment to structural characterization, but their biological importance and potential chemical utility have, nevertheless, motivated extensive efforts toward that end. Several such intermediates accumulate during activation of class I ribonucleotide reductase (RNR) β subunits, which self-assemble dimetal cofactors with stable one-electron oxidants that serve to initiate the enzyme's free-radical mechanism. In the class I-c β subunit from Chlamydia trachomatis, a heterodinuclear Mn(II)/Fe(II) complex reacts with dioxygen to form a Mn(IV)/Fe(IV) intermediate, which undergoes reduction of the iron site to produce the active Mn(IV)/Fe(III) cofactor. Herein, we assess the structure of the Mn(IV)/Fe(IV) activation intermediate using Fe- and Mn-edge extended X-ray absorption fine structure (EXAFS) analysis and multifrequency pulse electron paramagnetic resonance (EPR) spectroscopy. The EXAFS results reveal a metal-metal vector of 2.74-2.75 Å and an intense light-atom (C/N/O) scattering interaction 1.8 Å from the Fe. Pulse EPR data reveal an exchangeable deuterium hyperfine coupling of strength |T| = 0.7 MHz, but no stronger couplings. The results suggest that the intermediate possesses a di-μ-oxo diamond core structure with a terminal hydroxide ligand to the Mn(IV).
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Elizabeth J Blaesi
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher J Pollock
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Sproviero EM. Geometrical properties of the manganese(iv)/iron(iii) cofactor of Chlamydia trachomatis ribonucleotide reductase unveiled by simulations of XAS spectra. Dalton Trans 2017; 46:4724-4736. [DOI: 10.1039/c6dt03893j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A combination of EXAFS simulations and DFT calculations, including a novel protocol to evaluate Debye–Waller factors, provide insights into the structure of the Mn(iv)/Fe(iii) cofactor ofCtR2.
Collapse
Affiliation(s)
- Eduardo M. Sproviero
- Department of Chemistry and Biochemistry
- University of the Sciences in Philadelphia
- Philadelphia
- USA
| |
Collapse
|
19
|
Khan FST, Pandey AK, Rath SP. Remarkable Anion-Dependent Spin-State Switching in Diiron(III) μ-Hydroxo Bisporphyrins: What Role do Counterions Play? Chemistry 2016; 22:16124-16137. [PMID: 27682429 DOI: 10.1002/chem.201603163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Addition of 2,4,6-trinitrophenol (HTNP) to an ethene-bridged diiron(III) μ-oxo bisporphyrin (1) in CH2 Cl2 initially leads to the formation of diiron(III) μ-hydroxo bisporphyrin (2⋅TNP) with a phenolate counterion that, after further addition of HTNP or dissolution in a nonpolar solvent, converts to a diiron(III) complex with axial phenoxide coordination (3⋅(TNP)2 ). The progress of the reaction from μ-oxo to μ-hydroxo to axially ligated complex has been monitored in solution by using 1 H NMR spectroscopy because their signals appear in three different and distinct spectral regions. The X-ray structure of 2⋅TNP revealed that the nearly planar TNP counterion fits perfectly within the bisporphyrin cavity to form a strong hydrogen bond with the μ-hydroxo group, which thus stabilizes the two equivalent iron centers. In contrast, such counterions as I5 , I3 , BF4 , SbF6 , and PF6 are found to be tightly associated with one of the porphyrin rings and, therefore, stabilize two different spin states of iron in one molecule. A spectroscopic investigation of 2⋅TNP has revealed the presence of two equivalent iron centers with a high-spin state (S=5/2) in the solid state that converts to intermediate spin (S=3/2) in solution. An extensive computational study by using a range of DFT methods was performed on 2⋅TNP and 2+ , and clearly supports the experimentally observed spin flip triggered by hydrogen-bonding interactions. The counterion is shown to perturb the spin-state ordering through, for example, hydrogen-bonding interactions, switched positions between counterion and axial ligand, ion-pair interactions, and charge polarization. The present investigation thus provides a clear rationalization of the unusual counterion-specific spin states observed in the μ-hydroxo bisporphyrins that have so far remained the most outstanding issue.
Collapse
Affiliation(s)
| | - Anjani Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
20
|
Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 2016; 21:605-18. [PMID: 27380180 PMCID: PMC4990465 DOI: 10.1007/s00775-016-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Lisa M Engstrom
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Van V Vu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Solomon EI, Park K. Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem 2016; 21:575-88. [PMID: 27369780 PMCID: PMC5010389 DOI: 10.1007/s00775-016-1372-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
22
|
Sil D, Khan FST, Rath SP. Effect of Inter-Porphyrin Distance on Spin-State in Diiron(III) μ-Hydroxo Bisporphyrins. Chemistry 2016; 22:14585-97. [DOI: 10.1002/chem.201602018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Debangsu Sil
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | | | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
23
|
Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT. Proc Natl Acad Sci U S A 2016; 113:10049-54. [PMID: 27555591 DOI: 10.1073/pnas.1606294113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe(4+)-oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C-H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe(4+)-OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon-carbon scission reaction catalyzed by OleT.
Collapse
|
24
|
A Practical Guide to High-resolution X-ray Spectroscopic Measurements and their Applications in Bioinorganic Chemistry. Isr J Chem 2016. [DOI: 10.1002/ijch.201600037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Doan PE, Shanmugam M, Stubbe J, Hoffman BM. Composition and Structure of the Inorganic Core of Relaxed Intermediate X(Y122F) of Escherichia coli Ribonucleotide Reductase. J Am Chem Soc 2015; 137:15558-66. [PMID: 26636616 PMCID: PMC4732524 DOI: 10.1021/jacs.5b10763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of the diferrous center of the β2 (R2) subunit of the class 1a Escherichia coli ribonucleotide reductases by reaction with O2 followed by one-electron reduction yields a spin-coupled, paramagnetic Fe(III)/Fe(IV) intermediate, denoted X, whose identity has been sought by multiple investigators for over a quarter of a century. To determine the composition and structure of X, the present study has applied (57)Fe, (14,15)N, (17)O, and (1)H electron nuclear double resonance (ENDOR) measurements combined with quantitative measurements of (17)O and (1)H electron paramagnetic resonance line-broadening studies to wild-type X, which is very short-lived, and to X prepared with the Y122F mutant, which has a lifetime of many seconds. Previous studies have established that over several seconds the as-formed X(Y122F) relaxes to an equilibrium structure. The present study focuses on the relaxed structure. It establishes that the inorganic core of relaxed X has the composition [(OH(-))Fe(III)-O-Fe(IV)]: there is no second inorganic oxygenic bridge, neither oxo nor hydroxo. Geometric analysis of the (14)N ENDOR data, together with recent extended X-ray absorption fine structure measurements of the Fe-Fe distance (Dassama, L. M.; et al. J. Am. Chem. Soc. 2013, 135, 16758), supports the view that X contains a "diamond-core" Fe(III)/Fe(IV) center, with the irons bridged by two ligands. One bridging ligand is the oxo bridge (OBr) derived from O2 gas. Given the absence of a second inorganic oxygenic bridge, the second bridging ligand must be protein derived, and is most plausibly assigned as a carboxyl oxygen from E238.
Collapse
Affiliation(s)
- Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - JoAnne Stubbe
- Department of Chemistry, MIT, Cambridge, MA, 02139-4307
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113
| |
Collapse
|
26
|
Griese JJ, Kositzki R, Schrapers P, Branca RMM, Nordström A, Lehtiö J, Haumann M, Högbom M. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor. J Biol Chem 2015; 290:25254-72. [PMID: 26324712 PMCID: PMC4646176 DOI: 10.1074/jbc.m115.675223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn(II) and Fe(II) in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189-17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.
Collapse
Affiliation(s)
- Julia J Griese
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Kositzki
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Peer Schrapers
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Rui M M Branca
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Anders Nordström
- the Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Janne Lehtiö
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Michael Haumann
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Martin Högbom
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden,
| |
Collapse
|
27
|
Dong X, Liu L, Zhou Y, Liu J, Zhang Y, Chen Y, Qu J. Synthesis of carboxylate-bridged iron-thiolate clusters from alcohols/aldehydes or carboxylate salts. Dalton Trans 2015; 44:14952-8. [PMID: 26228059 DOI: 10.1039/c5dt01445j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of novel carboxylate-bridged cyclopentadienyl diiron complexes [Cp*Fe(μ-SEt)2(μ-η(2)-OOCR)FeCp*][PF6] (, R = H; , R = Me; , R = Et; , R = Pr-n; , R = Ph; , R = p-Me-C6H4; , R = PhCH[double bond, length as m-dash]CH; , CH[triple bond, length as m-dash]C) were obtained from alcohols/aldehydes or sodium carboxylates at room temperature. These eight complexes were fully characterized by spectroscopy, and some of them (, , and ) were further studied by X-ray crystallography. In addition, the electrochemical properties of clusters and are also discussed.
Collapse
Affiliation(s)
- Xiaoliang Dong
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
![]()
2003 marked a banner year in the bioinorganic chemistry of mononuclear
non-heme iron enzymes. The first non-heme oxoiron(IV) intermediate
(called J) was trapped and characterized
by Bollinger and Krebs in the catalytic cycle of taurine dioxygenase
(TauD), and the first crystal structure of a synthetic non-heme oxoiron(IV)
complex was reported by Münck, Nam, and Que. These results
stimulated inorganic chemists to synthesize related oxoiron(IV) complexes
to shed light on the electronic structures and spectroscopic properties
of these novel intermediates and gain mechanistic insights into their
function in biology. All of the biological oxoiron(IV) intermediates
discovered since 2003 have an S = 2 ground spin state,
while over 90% of the 60 or so synthetic oxoiron(IV) complexes reported
to date have an S = 1 ground spin state. This difference
in electronic structure has fueled an interest to more accurately
model these enzymatic intermediates and synthesize S = 2 oxoiron(IV) complexes. This Account follows up on a previous
Account (Acc. Chem.
Res. 2007, 40, 493) that provided
a perspective on the early developments in this field up to 2007 and
details our group’s efforts in the development of synthetic
strategies to obtain oxoiron(IV) complexes with an S = 2 ground state. Upon inspection of a qualitative d-orbital splitting
diagram for a d4 metal–oxo center, it becomes evident
that the key to achieving an S = 2 ground state is
to decrease the energy gap between the dx2–y2 and
dxy orbitals. Described below are two
different synthetic strategies we used to accomplish this goal. The first strategy took advantage of the realization that the dx2–y2 and dxy orbitals become
degenerate in a C3-symmetric ligand environment.
Thus, by employing bulky tripodal ligands, trigonal-bipyramidal S = 2 oxoiron(IV) complexes were obtained. However, substrate
access to the oxoiron(IV) center was hindered by the bulky ligands,
and the complexes showed limited ability to cleave substrate C–H
bonds. The second strategy entailed introducing weaker-field equatorial
ligands in six-coordinate oxoiron(IV) complexes to decrease the dx2–y2/dxy energy gap to
the point where the S = 2 ground state is favored.
These pseudo-octahedral S = 2 oxoiron(IV) complexes
exhibit high H-atom transfer reactivity relative to their S = 1 counterparts and shed light on the role that the spin
state may play in these reactions. Among these complexes is a highly
reactive species that to date represents the closest electronic and
functional model of the enzymatic intermediate, TauD-J.
Collapse
Affiliation(s)
- Mayank Puri
- Department
of Chemistry and
Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department
of Chemistry and
Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Sainna MA, Sil D, Sahoo D, Martin B, Rath SP, Comba P, de Visser SP. Spin-State Ordering in Hydroxo-Bridged Diiron(III)bisporphyrin Complexes. Inorg Chem 2015; 54:1919-30. [DOI: 10.1021/ic502803b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mala A. Sainna
- Manchester Institute
of Biotechnology and School of Chemical Engineering and Analytical
Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dipankar Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bodo Martin
- Anorganisch-Chemisches Institüt and Interdisciplinary
Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Peter Comba
- Anorganisch-Chemisches Institüt and Interdisciplinary
Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Sam P. de Visser
- Manchester Institute
of Biotechnology and School of Chemical Engineering and Analytical
Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
30
|
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O₂binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O₂coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O₂activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O₂is activated at Fe and Cu sites.
Collapse
|
31
|
Pollock CJ, Lancaster KM, Finkelstein KD, DeBeer S. Study of iron dimers reveals angular dependence of valence-to-core X-ray emission spectra. Inorg Chem 2014; 53:10378-85. [PMID: 25211540 PMCID: PMC4186667 DOI: 10.1021/ic501462y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transition-metal Kβ X-ray emission spectroscopy (XES) is a developing technique that probes the occupied molecular orbitals of a metal complex. As an element-specific probe of metal centers, Kβ XES is finding increasing applications in catalytic and, in particular, bioinorganic systems. For the continued development of XES as a probe of these complex systems, however, the full range of factors which contribute to XES spectral modulations must be explored. In this report, an investigation of a series of oxo-bridged iron dimers reveals that the intensity of valence-to-core features is sensitive to the Fe-O-Fe bond angle. The intensity of these features has a well-known dependence on metal-ligand bond distance, but a dependence upon bond angle has not previously been documented. Herein, we explore the angular dependence of valence-to-core XES features both experimentally and computationally. Taken together, these results show that, as the Fe-O-Fe angle decreases, the intensity of the Kβ″ feature increases and that this effect is modulated by increasing amounts of Fe np mixing into the O 2s orbital at smaller bond angles. The relevance of these findings to the identification of oxygenated intermediates in bioinorganic systems is highlighted, with special emphasis given to the case of soluble methane monooxygenase.
Collapse
Affiliation(s)
- Christopher J Pollock
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
32
|
Griese JJ, Srinivas V, Högbom M. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. J Biol Inorg Chem 2014; 19:759-74. [PMID: 24771036 PMCID: PMC4118035 DOI: 10.1007/s00775-014-1140-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 11/23/2022]
Abstract
The ferritin superfamily contains several protein groups that share a common fold and metal coordinating ligands. The different groups utilize different dinuclear cofactors to perform a diverse set of reactions. Several groups use an oxygen-activating di-iron cluster, while others use di-manganese or heterodinuclear Mn/Fe cofactors. Given the similar primary ligand preferences of Mn and Fe as well as the similarities between the binding sites, the basis for metal specificity in these systems remains enigmatic. Recent data for the heterodinuclear cluster show that the protein scaffold per se is capable of discriminating between Mn and Fe and can assemble the Mn/Fe center in the absence of any potential assembly machineries or metal chaperones. Here we review the current understanding of the assembly of the heterodinuclear cofactor in the two different protein groups in which it has been identified, ribonucleotide reductase R2c proteins and R2-like ligand-binding oxidases. Interestingly, although the two groups form the same metal cluster they appear to employ partly different mechanisms to assemble it. In addition, it seems that both the thermodynamics of metal binding and the kinetics of oxygen activation play a role in achieving metal specificity.
Collapse
Affiliation(s)
- Julia J. Griese
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Vivek Srinivas
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Martin Högbom
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
33
|
Kwak Y, Jiang W, Dassama LMK, Park K, Bell CB, Liu LV, Wong SD, Saito M, Kobayashi Y, Kitao S, Seto M, Yoda Y, Alp EE, Zhao J, Bollinger JM, Krebs C, Solomon EI. Geometric and electronic structure of the Mn(IV)Fe(III) cofactor in class Ic ribonucleotide reductase: correlation to the class Ia binuclear non-heme iron enzyme. J Am Chem Soc 2013; 135:17573-84. [PMID: 24131208 DOI: 10.1021/ja409510d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe heterobinuclear cofactor, rather than the Fe/Fe cofactor found in the β (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable Mn(IV)Fe(III) cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the Mn(IV)Fe(III) cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs)/circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the Fe(III), whereas MCD reflects the spin-allowed transitions mostly on the Mn(IV). We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with Mn(IV) at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d and oxo and OH(-) to metal charge-transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the Mn(IV)Fe(III) cofactor as having a μ-oxo, μ-hydroxo core and a terminal hydroxo ligand on the Mn(IV). From DFT calculations, the Mn(IV) at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH(-) terminal ligand on this Mn(IV) provides a high proton affinity that could gate radical translocation to the α (R1) subunit.
Collapse
Affiliation(s)
- Yeonju Kwak
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|