1
|
Asao H, Shimasaki Y, Sasaki A, Katayama S, Ida K, Kotake M, Sato E, Sato Y, Ishimoto T, Izumi M, Vavricka CJ, Kuwahara S, Kiyota H. Synthesis of the A/D/E-ring Core Compounds of Maoecrystal V†. Biosci Biotechnol Biochem 2024; 88:733-741. [PMID: 38653727 DOI: 10.1093/bbb/zbae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Synthesis of the A/D/E-ring core compounds of maoecrystal V was achieved. The key Diels-Alder reactions between tricyclic α-methylene lactones and Kitahara-Danishefsky dienes afforded the spirocyclic core compounds in a regioselective and stereoselective manner.
Collapse
Affiliation(s)
- Hiroki Asao
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Yasuharu Shimasaki
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Ayaka Sasaki
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Shunki Katayama
- Laboratory of Applied Natural Product Chemistry, Course of Agricultural Bioscience, Okayama University, Kita, Okayama, Japan
| | - Kousuke Ida
- Laboratory of Applied Natural Product Chemistry, Course of Agricultural Bioscience, Okayama University, Kita, Okayama, Japan
| | - Masaaki Kotake
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Eriko Sato
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Yuki Sato
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
- Laboratory of Applied Natural Product Chemistry, Course of Agricultural Bioscience, Okayama University, Kita, Okayama, Japan
| | - Taiki Ishimoto
- Laboratory of Applied Natural Product Chemistry, Course of Agricultural Bioscience, Okayama University, Kita, Okayama, Japan
| | - Minoru Izumi
- Laboratory of Applied Natural Product Chemistry, Course of Agricultural Bioscience, Okayama University, Kita, Okayama, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shigefumi Kuwahara
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Hiromasa Kiyota
- Laboratory of Applied Natural Product Chemistry, Course of Agricultural Bioscience, Okayama University, Kita, Okayama, Japan
| |
Collapse
|
2
|
Abstract
Covering: 2011 to 2022The natural world is a prolific source of some of the most interesting, rare, and complex molecules known, harnessing sophisticated biosynthetic machinery evolved over billions of years for their production. Many of these natural products represent high-value targets of total synthesis, either for their desirable biological activities or for their beautiful structures outright; yet, the high sp3-character often present in nature's molecules imparts significant topological complexity that pushes the limits of contemporary synthetic technology. Dearomatization is a foundational strategy for generating such intricacy from simple materials that has undergone considerable maturation in recent years. This review highlights the recent achievements in the field of dearomative methodology, with a focus on natural product total synthesis and retrosynthetic analysis. Disconnection guidelines and a three-phase dearomative logic are described, and a spotlight is given to nature's use of dearomatization in the biosynthesis of various classes of natural products. Synthetic studies from 2011 to 2021 are reviewed, and 425 references are cited.
Collapse
Affiliation(s)
| | - Yaroslav D Boyko
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
| | - David Sarlah
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Wang Q, Shih JL, Tsui KY, Laconsay CJ, Tantillo DJ, May JA. Experimental and Computational Mechanistic Study of Carbonazidate-Initiated Cascade Reactions. J Org Chem 2022; 87:8983-9000. [PMID: 35758036 DOI: 10.1021/acs.joc.2c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of Huisgen cyclization or nitrene/carbene alkyne cascade reactions with different types of termination were investigated. Accessible nitrene precursors were assessed, and carbonazidates were found to be the only effective initiators. Solvents, terminal alkynyl substituents, and catalysts can all impact the reaction outcome. Study of the mechanism both computationally (by density functional theory) and experimentally revealed relevant intermediates and plausible reaction pathways.
Collapse
Affiliation(s)
- Qinxuan Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Jiun-Le Shih
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Ka Yi Tsui
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
4
|
Nambu H, Amano R, Tamura T, Yakura T. Rhodium(II)‐Catalyzed Site‐Selective Intramolecular Insertion of Aryldiazoacetates into Unactivated Primary C−H Bond: A Direct Route to 2‐Unsubstituted Indanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hisanori Nambu
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Ryoya Amano
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Takafumi Tamura
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| |
Collapse
|
5
|
Ao J, Sun C, Chen B, Yu N, Liang G. Total Synthesis of Isorosthin L and Isoadenolin I. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junli Ao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Chao Sun
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Bolin Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Na Yu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Guangxin Liang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
6
|
Ma W, Zhu L, Zhang M, Lee C. Asymmetric Synthesis of AB Rings in ent-Kaurene Carbon Framework. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ao J, Sun C, Chen B, Yu N, Liang G. Total Synthesis of Isorosthin L and Isoadenolin I. Angew Chem Int Ed Engl 2021; 61:e202114489. [PMID: 34773349 DOI: 10.1002/anie.202114489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/05/2022]
Abstract
Total syntheses of two Isodon diterpenes, isorosthin L and isoadenolin I, are reported. The synthetic strategy features a quick assembly of two simple building blocks through a diastereoselective intermolecular aldol reaction and a subsequent radical cyclization for efficient construction of a rather complex advanced intermediate bearing a quaternary stereocenter present in all Isodon diterpenes. Oxidative cleavage of the C-C bond in the cyclopentane enabled the conversion to a lactone moiety which is desired for the construction of the molecular skeleton through reductive coupling with an aldehyde carbonyl group.
Collapse
Affiliation(s)
- Junli Ao
- Nankai University, College of Chemistry, 300071, Tianjin, CHINA
| | - Chao Sun
- ShanghaiTech University, School of Physical Science and Technology, 201210, Shanghai, CHINA
| | - Bolin Chen
- Nankai University, College of Chemistry, 300071, CHINA
| | - Na Yu
- ShanghaiTech University, School of Physical Science and Technology, 201210, Shanghai, CHINA
| | - Guangxin Liang
- ShanghaiTech University, School of Physical Science and Technology, 94 Weijin Road, Nankai District, 300071, Tianjin, CHINA
| |
Collapse
|
8
|
Zhao X, Cacherat B, Hu Q, Ma D. Recent advances in the synthesis of ent-kaurane diterpenoids. Nat Prod Rep 2021; 39:119-138. [PMID: 34263890 DOI: 10.1039/d1np00028d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2020The ent-kaurane diterpenoids are integral parts of tetracyclic natural products that are widely distributed in terrestrial plants. These compounds have been found to possess interesting bioactivities, ranging from antitumor, antifungal and antibacterial to anti-inflammatory activities. Structurally, the different tetracyclic moieties of ent-kauranes can be seen as the results of intramolecular cyclizations, oxidations, C-C bond cleavages, degradation, or rearrangements, starting from their parent skeleton. During the past decade, great efforts have been made to develop novel strategies for synthesizing these natural products. The purpose of this review is to describe the recent advances in the total synthesis of ent-kaurane diterpenoids covering the period from 2015 to date.
Collapse
Affiliation(s)
- Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Bastien Cacherat
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Qifei Hu
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
9
|
Peters DS, Pitts CR, McClymont KS, Stratton TP, Bi C, Baran PS. Ideality in Context: Motivations for Total Synthesis. Acc Chem Res 2021; 54:605-617. [PMID: 33476518 DOI: 10.1021/acs.accounts.0c00821] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Total synthesis-the ultimate proving ground for the invention and field-testing of new methods, exploration of disruptive strategies, final structure confirmation, and empowerment of medicinal chemistry on natural products-is one of the oldest and most enduring subfields of organic chemistry. In the early days of this field, its sole emphasis focused on debunking the concept of vitalism, that living organisms could create forms of matter accessible only to them. Emphasis then turned to the use of synthesis to degrade and reconstitute natural products to establish structure and answer questions about biosynthesis. It then evolved to not only an intricate science but also a celebrated form of art. As the field progressed, a more orderly and logical approach emerged that served to standardize the process. These developments even opened up the possibility of computer-aided design using retrosynthetic analysis. Finally, the elevation of this field to even higher levels of sophistication showed that it was feasible to synthesize any natural product, regardless of complexity, in a laboratory. During this remarkable evolution, as has been reviewed elsewhere, many of the principles and methods of organic synthesis were refined and galvanized. In the modern era, students and practitioners are still magnetically attracted to this field due to the excitement of the journey, the exhilaration of creation, and the opportunity to invent solutions to challenges that still persist. Contemporary total synthesis is less concerned with demonstrating a proof of concept or a feasible approach but rather aims for increased efficiency, scalability, and even "ideality." In general, the molecules of Nature are created biosynthetically with levels of practicality that are still unimaginable using the tools of modern synthesis. Thus, as the community strives to do more with less (i.e., innovation), total synthesis is now focused on a pursuit for simplicity rather than a competition for maximal complexity. In doing so, the practitioner must devise outside-the-box strategies supplemented with forgotten or newly invented methods to reduce step count and increase the overall economy of the approach. The downstream applications of this pursuit not only empower students who often go on to apply these skills in the private sector but also lead to new discoveries that can impact numerous disciplines of societal importance. This account traces some select case studies from our laboratory over the past five years that vividly demonstrate our own motivation for dedicating so much effort to this classic field. In aiming for simplicity, we focus on the elusive goal of achieving ideality, a term that, when taken in the proper context, can serve as a guiding light to point the way to furthering progress in organic synthesis.
Collapse
Affiliation(s)
- David S. Peters
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cody Ross Pitts
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kyle S. McClymont
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas P. Stratton
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cheng Bi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
11
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
12
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
13
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020; 59:19919-19923. [PMID: 32696611 DOI: 10.1002/anie.202009128] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
14
|
|
15
|
Wang Q, May JA. Synthesis of Bridged Azacycles and Propellanes via Nitrene/Alkyne Cascades. Org Lett 2020; 22:3039-3044. [PMID: 32243170 DOI: 10.1021/acs.orglett.0c00798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A nitrene/alkyne cascade reaction terminating in C-H bond insertion to form functionalized bridged azacycles from carbonazidates is presented. Due to an initial Huisgen cyclization, all carbonazidates reacted with the alkyne in an exo mode in contrast to the use of sulfamate esters, which react predominately in an endo mode. Substrates with different ring sizes as well as different aryl and heteroaryl groups were also explored. Variation of the nitrene tether showed that 7-membered rings were the maximum ring size to be formed by nitrene attack on the alkyne. Examples incorporating stereocenters on the carbonazidate's tether induced diasteroselectivity in the formation of the bridged ring and two new stereocenters. Additionally, propellanes containing aminals, hemiaminals, and thioaminals formed from the bridged azacycles in the same reaction via an acid-promoted rearrangement.
Collapse
Affiliation(s)
- Qinxuan Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building Room 112, Houston, Texas 77204-5003, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
16
|
Zhang QY, Yan BC, Hu K, Li XN, Sun HD, Puno PT. Isorugosiformins A–F, six ent-kaurane diterpenoids from Isodon rugosiformis. Fitoterapia 2020; 142:104529. [DOI: 10.1016/j.fitote.2020.104529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
|
17
|
Que Y, Shao H, He H, Gao S. Total Synthesis of Farnesin through an Excited‐State Nazarov Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001350] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yonglei Que
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Hao Shao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
18
|
Que Y, Shao H, He H, Gao S. Total Synthesis of Farnesin through an Excited‐State Nazarov Reaction. Angew Chem Int Ed Engl 2020; 59:7444-7449. [DOI: 10.1002/anie.202001350] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Yonglei Que
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Hao Shao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
19
|
Wang J, Hong B, Hu D, Kadonaga Y, Tang R, Lei X. Protecting-Group-Free Syntheses of ent-Kaurane Diterpenoids: [3+2+1] Cycloaddition/Cycloalkenylation Approach. J Am Chem Soc 2020; 142:2238-2243. [DOI: 10.1021/jacs.9b13722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Benke Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Dachao Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Ruyao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Kong L, Su F, Yu H, Jiang Z, Lu Y, Luo T. Total Synthesis of (−)-Oridonin: An Interrupted Nazarov Approach. J Am Chem Soc 2019; 141:20048-20052. [DOI: 10.1021/jacs.9b12034] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Su
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Jiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yandong Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Xiao X, Greenwood NS, Wengryniuk SE. Dearomatization of Electron-Deficient Phenols to ortho-Quinones: Bidentate Nitrogen-Ligated Iodine(V) Reagents. Angew Chem Int Ed Engl 2019; 58:16181-16187. [PMID: 31430009 PMCID: PMC6814494 DOI: 10.1002/anie.201909868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Indexed: 01/13/2023]
Abstract
Despite their broad utility, the synthesis of ortho-quinones remains a significant challenge, in particular, access to electron-deficient derivatives remains an unsolved problem. Reported here is the first general method for the synthesis of electron-deficient ortho-quinones by direct oxidation of phenols. The reaction is enabled by a novel bidentate nitrogen-ligated iodine(V) reagent, a previously unexplored class of compounds which we have termed Bi(N)-HVIs. The reaction is extremely general and proceeds with excellent regioselectivity for the ortho over para isomer. Functionalization of the ortho-quinone products was examined, resulting in a facile one-pot synthesis of catechols, as well as the incorporation of a variety of heteroatom nucleophiles. This method represents the first synthetic application of Bi(N)-HVIs and demonstrates their potential as a platform for the further development of highly reactive, but also highly tunable, I(V) reagents.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Nathaniel S Greenwood
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Present address: Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06520, USA
| | - Sarah E Wengryniuk
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| |
Collapse
|
22
|
Xiao X, Greenwood NS, Wengryniuk SE. Dearomatization of Electron‐Deficient Phenols to
ortho
‐Quinones: Bidentate Nitrogen‐Ligated Iodine(V) Reagents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Xiao
- Department of ChemistryTemple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Nathaniel S. Greenwood
- Department of ChemistryTemple University 1901 N. 13th St. Philadelphia PA 19122 USA
- Present address: Department of ChemistryYale University 225 Prospect St. New Haven CT 06520 USA
| | - Sarah E. Wengryniuk
- Department of ChemistryTemple University 1901 N. 13th St. Philadelphia PA 19122 USA
| |
Collapse
|
23
|
Wu J, Kadonaga Y, Hong B, Wang J, Lei X. Enantioselective Total Synthesis of (+)‐Jungermatrobrunin A. Angew Chem Int Ed Engl 2019; 58:10879-10883. [DOI: 10.1002/anie.201903682] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Jinbao Wu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Benke Hong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Jin Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| |
Collapse
|
24
|
Zhu K, Ohtani T, Tripathi CB, Uraguchi D, Ooi T. Formal Hydroformylation of α,β-Unsaturated Carboxylic Acids under Photoexcited Ketone Catalysis. CHEM LETT 2019. [DOI: 10.1246/cl.190197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kailong Zhu
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tsuyoshi Ohtani
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Chandra Bhushan Tripathi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Daisuke Uraguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8601, Japan
- CREST, Japan Science and Technology Agency (JST), Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
25
|
Wu J, Kadonaga Y, Hong B, Wang J, Lei X. Enantioselective Total Synthesis of (+)‐Jungermatrobrunin A. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinbao Wu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Benke Hong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Jin Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| |
Collapse
|
26
|
Yu K, Yang Z, Liu C, Wu S, Hong X, Zhao X, Ding H. Total Syntheses of Rhodomolleins XX and XXII: A Reductive Epoxide‐Opening/Beckwith–Dowd Approach. Angew Chem Int Ed Engl 2019; 58:8556-8560. [DOI: 10.1002/anie.201903349] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Kuan Yu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Zhen‐Ning Yang
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Chun‐Hui Liu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xiao‐Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistryEast China Normal University Shanghai 200062 China
| | - Hanfeng Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
27
|
Turlik A, Chen Y, Scruse AC, Newhouse TR. Convergent Total Synthesis of Principinol D, a Rearranged Kaurane Diterpenoid. J Am Chem Soc 2019; 141:8088-8092. [PMID: 31042866 PMCID: PMC7192013 DOI: 10.1021/jacs.9b03751] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product is constructed via a convergent fragment coupling approach, wherein the central seven-membered ring is synthesized at a late stage. The bicyclo[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction. Strategic reductions include a diastereoselective SmI2-mediated ketone reduction with PhSH and a new protocol for selective ester reduction in the presence of ketones. The convergent strategy reported herein may be an entry point to the larger class of kaurane diterpenoids.
Collapse
Affiliation(s)
- Aneta Turlik
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yifeng Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Anthony C. Scruse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
28
|
Yu K, Yang Z, Liu C, Wu S, Hong X, Zhao X, Ding H. Total Syntheses of Rhodomolleins XX and XXII: A Reductive Epoxide‐Opening/Beckwith–Dowd Approach. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kuan Yu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Zhen‐Ning Yang
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Chun‐Hui Liu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xiao‐Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistryEast China Normal University Shanghai 200062 China
| | - Hanfeng Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
29
|
Zhang J, Li Z, Zhuo J, Cui Y, Han T, Li C. Tandem Decarboxylative Cyclization/Alkenylation Strategy for Total Syntheses of (+)-Longirabdiol, (−)-Longirabdolactone, and (−)-Effusin. J Am Chem Soc 2019; 141:8372-8380. [DOI: 10.1021/jacs.9b03978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianpeng Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Zijian Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Junming Zhuo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Cui
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Ting Han
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chao Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
30
|
Dong C, Wu L, Yao J, Wei K. Palladium-Catalyzed β-C–H Arylation of Aliphatic Aldehydes and Ketones Using Amino Amide as a Transient Directing Group. Org Lett 2019; 21:2085-2089. [DOI: 10.1021/acs.orglett.9b00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cong Dong
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| | - Liangfei Wu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| | - Jianwei Yao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming 650091 People’s Republic of China
| |
Collapse
|
31
|
Yang Q, Hu K, Yan BC, Liu M, Li XN, Sun HD, Puno PT. Maoeriocalysins A–D, four novelent-kaurane diterpenoids fromIsodon eriocalyxand their structure determination utilizing quantum chemical calculation in conjunction with quantitative interproton distance analysis. Org Chem Front 2019. [DOI: 10.1039/c8qo01007b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Maoeriocalysin A, an unprecedented 4,5-seco-3,5-cyclo-7,20-epoxy-ent-kauranoid, together with three rare 9,10-seco-ent-kauranoids, maoeriocalysins B–D, were isolated.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- People's Republic of China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- People's Republic of China
| | - Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- People's Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- People's Republic of China
| |
Collapse
|
32
|
Abrams DJ, Provencher PA, Sorensen EJ. Recent applications of C-H functionalization in complex natural product synthesis. Chem Soc Rev 2018; 47:8925-8967. [PMID: 30426998 DOI: 10.1039/c8cs00716k] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, recent examples featuring C-H functionalization in the synthesis of complex natural products are discussed. A focus is given to the way in which C-H functionalization can influence the logical process of retrosynthesis, and the review is organized by the type and method of C-H functionalization.
Collapse
Affiliation(s)
- Dylan J Abrams
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | | | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
33
|
Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Thirty Years of (TMS)3SiH: A Milestone in Radical-Based Synthetic Chemistry. Chem Rev 2018; 118:6516-6572. [DOI: 10.1021/acs.chemrev.8b00109] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Yannick Landais
- University of Bordeaux, Institute of Molecular Sciences, UMR-CNRS 5255, 351 cours de la libération, 33405 Talence Cedex, France
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Avenue, Madison, Wisconsin 53726, United States
| |
Collapse
|
34
|
Pan S, Chen S, Dong G. Divergent Total Syntheses of Enmein‐Type Natural Products: (−)‐Enmein, (−)‐Isodocarpin, and (−)‐Sculponin R. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saiyong Pan
- Department of Chemistry University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
- Department of Chemistry University of Texas at Austin 2506 Speedway STOP A5300 TX 78712 USA
| | - Sicong Chen
- Department of Chemistry University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
- Department of Chemistry University of Texas at Austin 2506 Speedway STOP A5300 TX 78712 USA
| |
Collapse
|
35
|
Pan S, Chen S, Dong G. Divergent Total Syntheses of Enmein‐Type Natural Products: (−)‐Enmein, (−)‐Isodocarpin, and (−)‐Sculponin R. Angew Chem Int Ed Engl 2018; 57:6333-6336. [DOI: 10.1002/anie.201803709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Saiyong Pan
- Department of Chemistry University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
- Department of Chemistry University of Texas at Austin 2506 Speedway STOP A5300 TX 78712 USA
| | - Sicong Chen
- Department of Chemistry University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
- Department of Chemistry University of Texas at Austin 2506 Speedway STOP A5300 TX 78712 USA
| |
Collapse
|
36
|
Scalable synthesis enabling multilevel bio-evaluations of natural products for discovery of lead compounds. Nat Commun 2018; 9:1283. [PMID: 29599469 PMCID: PMC5876371 DOI: 10.1038/s41467-018-03546-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/20/2018] [Indexed: 01/18/2023] Open
Abstract
Challenges in the development of anti-cancer chemotherapeutics continue to exist, particularly with respect to adverse effects and development of resistance, underlining the need for novel drugs with good safety profiles. Natural products have proven to be a fertile ground for exploitation, and development of anti-cancer drugs from structurally complex natural products holds promise. Unfortunately, this approach is often hindered by low isolation yields and limited information from preliminary cell-based assays. Here we report a concise and scalable synthesis of a series of low-abundance Isodon diterpenoids (a large class of natural products with over 1000 members isolated from the herbs of genus Isodon, which are well-known folk medicines for the treatment of inflammation and cancer), including eriocalyxin B, neolaxiflorin L and xerophilusin I. These scalable syntheses enable multilevel bio-evaluation of the natural products, in which we identify neolaxiflorin L as a promising anti-cancer drug candidate.
Collapse
|
37
|
Hung K, Hu X, Maimone TJ. Total synthesis of complex terpenoids employing radical cascade processes. Nat Prod Rep 2018; 35:174-202. [PMID: 29417970 PMCID: PMC5858714 DOI: 10.1039/c7np00065k] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: 2011-2017Radical cyclizations have a rich history in organic chemistry and have been particularly generous to the field of natural product synthesis. Owing to their ability to operate in highly congested molecular quarters, and with significant functional group compatibility, these transformations have enabled the synthesis of numerous polycyclic terpenoid natural products over the past several decades. Moreover, when programmed accordingly into a synthetic plan, radical cascade processes can be used to rapidly assemble molecular complexity, much in the same way nature rapidly constructs terpene frameworks through cationic cyclization pathways. This review highlights recent total syntheses of complex terpenoids (from 2011-2017) employing C-C bond-forming radical cascade sequences.
Collapse
Affiliation(s)
- Kevin Hung
- Department of Chemistry, University of California - Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
38
|
Su F, Lu Y, Kong L, Liu J, Luo T. Total Synthesis of Maoecrystal P: Application of a Strained Bicyclic Synthon. Angew Chem Int Ed Engl 2018; 57:760-764. [DOI: 10.1002/anie.201711084] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Fan Su
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Yandong Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Jingjing Liu
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| |
Collapse
|
39
|
Yakura T, Nambu H. Recent topics in application of selective Rh(II)-catalyzed C H functionalization toward natural product synthesis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Liu X, Hu YJ, Fan JH, Zhao J, Li S, Li CC. Recent synthetic studies towards natural products via [5 + 2] cycloaddition reactions. Org Chem Front 2018. [DOI: 10.1039/c7qo01123g] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this review, we provide a summary of recent progress regarding synthetic studies towards natural products via [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
- Department of Chemistry
| | - Ya-Jian Hu
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
- Department of Chemistry
| | - Jian-Hong Fan
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
- Department of Chemistry
| | - Jing Zhao
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Shaoping Li
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chuang-Chuang Li
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| |
Collapse
|
41
|
Shen Y, Wang C, Chen W, Cui S. Cascade reaction involving Diels–Alder cascade: modular synthesis of amino α-pyrones, indolines and anilines. Org Chem Front 2018. [DOI: 10.1039/c8qo00939b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cascade reaction involving Diels–Alder reaction for modular synthesis of amino α-pyrones, indolines and anilines is reported.
Collapse
Affiliation(s)
- Yangyong Shen
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Chaorong Wang
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Wei Chen
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou 310058
- China
| | - Sunliang Cui
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
42
|
Smith BR, Njardarson JT. Review of synthetic approaches toward maoecrystal V. Org Biomol Chem 2018; 16:4210-4222. [DOI: 10.1039/c8ob00909k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic approaches toward the complex natural product diterpenoid maoecrystal V are reviewed, including successful total syntheses, published synthetic efforts, and efforts compiled from dissertations.
Collapse
Affiliation(s)
- Brandon R. Smith
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
| | - Jon T. Njardarson
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
| |
Collapse
|
43
|
Su F, Lu Y, Kong L, Liu J, Luo T. Total Synthesis of Maoecrystal P: Application of a Strained Bicyclic Synthon. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Su
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Yandong Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Jingjing Liu
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| |
Collapse
|
44
|
Shih JL, Jansone-Popova S, Huynh C, May JA. Synthesis of azasilacyclopentenes and silanols via Huisgen cycloaddition-initiated C-H bond insertion cascades. Chem Sci 2017; 8:7132-7137. [PMID: 29147544 PMCID: PMC5637360 DOI: 10.1039/c7sc03130k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
An unusual transition metal-free cascade reaction of alkynyl carbonazidates was discovered to form azasilacyclopentenes. Mild thermolysis afforded the products via a series of cyclizations, rearrangements, and an α-silyl C-H bond insertion (rather than the more common Wolff rearrangement, 1,2-shift, or β-silyl C-H insertion) to form silacyclopropanes. A mechanistic proposal for the sequence was informed by control experiments and the characterization of reaction intermediates. The substrate scope and post-cascade transformations were also explored.
Collapse
Affiliation(s)
- Jiun-Le Shih
- Department of Chemistry , University of Houston , Fleming Building Room 112, 3585 Cullen Blvd , Houston , TX 77204-5003 , USA .
| | - Santa Jansone-Popova
- Department of Chemistry , University of Houston , Fleming Building Room 112, 3585 Cullen Blvd , Houston , TX 77204-5003 , USA .
| | - Christopher Huynh
- Department of Chemistry , University of Houston , Fleming Building Room 112, 3585 Cullen Blvd , Houston , TX 77204-5003 , USA .
| | - Jeremy A May
- Department of Chemistry , University of Houston , Fleming Building Room 112, 3585 Cullen Blvd , Houston , TX 77204-5003 , USA .
| |
Collapse
|
45
|
Abstract
Covering: December 2005 to June 2016. Previous review: Nat. Prod. Rep., 2006, 23, 673-698Over the last decade, great efforts have been made to conduct phytochemistry research on the genus Isodon, which have led to the isolation and identification of a number of diterpenoids. At the same time, these newly reported diterpenoids with diverse structures have led to new findings on their biological functions and chemical synthesis research. In this update, we review more than 600 new diterpenoids, including their structures, classifications, biogenetic pathways, bioactivities, and chemical synthesis.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China.
| | | | | | | |
Collapse
|
46
|
Smith BR, Njardarson JT. Double-Diels–Alder Approach to Maoecrystal V. Unexpected C–C Bond-Forming Fragmentations of the [2.2.2]-Bicyclic Core. Org Lett 2017; 19:5316-5319. [DOI: 10.1021/acs.orglett.7b02606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon R. Smith
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T. Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
47
|
Brady PB, Bhat V. Recent Applications of Rh- and Pd-Catalyzed C(sp3)-H Functionalization in Natural Product Total Synthesis. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700641] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Patrick B. Brady
- Oncology Discovery; AbbVie, Inc.; 1 N Waukegan Road 60064 North Chicago IL USA
| | - Vikram Bhat
- Oncology Discovery; AbbVie, Inc.; 1 N Waukegan Road 60064 North Chicago IL USA
| |
Collapse
|
48
|
Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis. Molecules 2017; 22:molecules22071069. [PMID: 28672881 PMCID: PMC6152324 DOI: 10.3390/molecules22071069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/21/2017] [Indexed: 02/03/2023] Open
Abstract
Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.
Collapse
|
49
|
Abstract
The formal total synthesis of (±)-lycojaponicumin C has been accomplished. Key transformations include a Rh-catalyzed formal [3 + 2] cycloaddition reaction to construct the bicyclic [3.3.0] scaffold bearing two vicinal quaternary carbon centers, a stereoselective γ-hydroxyl directed Michael addition to introduce the vinyl group at a bulky position, and a late-stage ring-closing metathesis reaction to form the cyclohexanone ring.
Collapse
Affiliation(s)
- Nan Zheng
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Lijie Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Jianxian Gong
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
50
|
He C, Hu J, Wu Y, Ding H. Total Syntheses of Highly Oxidized ent-Kaurenoids Pharicin A, Pharicinin B, 7-O-Acetylpseurata C, and Pseurata C: A [5+2] Cascade Approach. J Am Chem Soc 2017; 139:6098-6101. [DOI: 10.1021/jacs.7b02746] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chi He
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yubing Wu
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|