1
|
Serafim LF, Jayasinghe-Arachchige VM, Wang L, Rathee P, Yang J, Moorkkannur N S, Prabhakar R. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chem Commun (Camb) 2023. [PMID: 37366367 DOI: 10.1039/d3cc01380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The selective hydrolysis of the extremely stable phosphoester, peptide and ester bonds of molecules by bio-inspired metal-based catalysts (metallohydrolases) is required in a wide range of biological, biotechnological and industrial applications. Despite the impressive advances made in the field, the ultimate goal of designing efficient enzyme mimics for these reactions is still elusive. Its realization will require a deeper understanding of the diverse chemical factors that influence the activities of both natural and synthetic catalysts. They include catalyst-substrate complexation, non-covalent interactions and the electronic nature of the metal ion, ligand environment and nucleophile. Based on our computational studies, their roles are discussed for several mono- and binuclear metallohydrolases and their synthetic analogues. Hydrolysis by natural metallohydrolases is found to be promoted by a ligand environment with low basicity, a metal bound water and a heterobinuclear metal center (in binuclear enzymes). Additionally, peptide and phosphoester hydrolysis is dominated by two competing effects, i.e. nucleophilicity and Lewis acid activation, respectively. In synthetic analogues, hydrolysis is facilitated by the inclusion of a second metal center, hydrophobic effects, a biological metal (Zn, Cu and Co) and a terminal hydroxyl nucleophile. Due to the absence of the protein environment, hydrolysis by these small molecules is exclusively influenced by nucleophile activation. The results gleaned from these studies will enhance the understanding of fundamental principles of multiple hydrolytic reactions. They will also advance the development of computational methods as a predictive tool to design more efficient catalysts for hydrolysis, Diels-Alder reaction, Michael addition, epoxide opening and aldol condensation.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiawen Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
2
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
3
|
A New Piano-Stool Ruthenium(II) P-Cymene-Based Complex: Crystallographic, Hirshfeld Surface, DFT, and Luminescent Studies. CRYSTALS 2020. [DOI: 10.3390/cryst11010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.
Collapse
|
4
|
Zhou X, Zhang XP, Li W, Phillips DL, Ke Z, Zhao C. Electronic Effect on Bimetallic Catalysts: Cleavage of Phosphodiester Mediated by Fe(III)-Zn(II) Purple Acid Phosphatase Mimics. Inorg Chem 2020; 59:12065-12074. [PMID: 32805999 DOI: 10.1021/acs.inorgchem.0c01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bimetallic system is an important strategy for the catalytic hydrolysis of phosphodiester. The purple acid phosphatase (PAPs) enzyme is a typical bimetallic catalyst in this field. Mechanistic details for the hydrolysis cleavage of the DNA dinucleotide analogue BNPP- (BNPP- = bis(p-nitrophenyl) phosphate) by hetero-binuclear [FeIII(μ-OH)ZnIIL]2+ complexes (L = 2-[N-bis(2-pyridylmethyl)-aminomethyl]-4-methyl-6-[N'-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl] phenol) were investigated using density functional theory calculations. The catalysts with single-bridged hydroxyl and double-bridged hydroxyl groups were compared. The calculation results show that the doubly hydroxide-bridged complex could better bind to substrates. For the BNPP- hydrolysis, the doubly hydroxide-bridged reactant isomerizes into a single hydroxide-bridged complex, and then the attack is initiated by the hydroxyl group on the iron center. In addition, the catalyst with the electron-donating group (Me) was determined to take precedence over electron-withdrawing groups (Br and NO2 groups) in the hydrolysis reaction. This is because the substituents affect the high-lying occupied molecular orbitals, tuning the Lewis acidity of iron and pKa values of the metal-bonded water. These factors influence the hydroxyl nucleophilicity, leading to changes in catalytic activity. To further examine substituent effects, the occupied orbital energies were calculated with several different substituent groups (-CF3, -OMe, -OH, -NH2, and -N(Me)2). It was found that the HOMO or HOMO-1 energy decreases with the increase of the σp value. Further, the catalyst activity of the [FeIII(μ-OH)ZnIIL]2+ complexes was found to be mainly affected by the phenolate ligand (B) coordinated to the iron and zinc centers. These fundamental aspects of the hydrolysis reactions of BNPP- catalyzed by [FeIII(μ-OH)ZnIIL]2+ complexes should contribute to improved understanding of the mechanism and to catalyst design involving hetero-binuclear metals complexes.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xue-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Weikang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
5
|
Kumar Pal C, Mahato S, Joshi M, Paul S, Roy Choudhury A, Biswas B. Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Liu M, Song XQ, Wu YD, Qian J, Xu JY. Cu(ii)-TACN complexes selectively induce antitumor activity in HepG-2 cells via DNA damage and mitochondrial-ROS-mediated apoptosis. Dalton Trans 2020; 49:114-123. [DOI: 10.1039/c9dt03641e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel 1,4,7-triazacyclononane derivative (btacn), and its related copper complexes, Cu(btacn)Cl2 and [Cu(btacn)2]·(ClO4)2, exhibit potent anti-proliferation activity towards HepG-2 and HeLa cells, but low cytotoxicity towards normal cell lines.
Collapse
Affiliation(s)
- Ming Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- China
| | - Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yuan-Di Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- China
| | - Jing Qian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|
7
|
Nath BD, Takaishi K, Ema T. Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01894h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in homogeneous catalysis with macrocyclic multinuclear metal complexes (categories A–C) is overviewed.
Collapse
Affiliation(s)
- Bikash Dev Nath
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Tadashi Ema
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
8
|
Zhou X, Zhang XP, Li W, Jiang J, Xu H, Ke Z, Phillips DL, Zhao C. Unraveling mechanisms of the uncoordinated nucleophiles: theoretical elucidations of the cleavage of bis( p-nitrophenyl) phosphate mediated by zinc-complexes with apical nucleophiles. RSC Adv 2019; 9:37696-37704. [PMID: 35541823 PMCID: PMC9075727 DOI: 10.1039/c9ra06737j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/01/2019] [Indexed: 02/01/2023] Open
Abstract
A theoretical approach was used to investigate the hydrolytic cleavage mechanisms of the bis(p-nitrophenyl) phosphate (BNPP-) catalyzed by Zn(ii)-complexes featuring uncoordinated nucleophiles. Ligand-based and alternative solvent-based nucleophilic attack reaction models are proposed. The pK a values of the Zn(ii)-bound water molecules or ligands in the [Zn(L n H)(η-H2O)(H2O)]2+ (n = 1, 2 and 3) complexes, as well as the dimerization tendency of the mononuclear Zn(ii)-complexes, were found to significantly influence the reaction mechanisms. The Zn(ii)-L3 complexes were found to be more favorable for the hydrolytic cleavage of the BNPP- via a ligand-based nucleophilic attack pathway. This was due to the lower pK a value for the deprotonation of the oxime ligand, the hard dimerization of the mononuclear Zn(ii)-L3 species, and the presence of an uncoordinated nucleophile. The origins of the uncoordinated reactions were systematically elucidated. The theoretical results reported here are in good agreement with experimental observations and more importantly, help to elucidate the factors that influence intermolecular nucleophilic attack reactions with coordinated/uncoordinated nucleophiles.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue-Peng Zhang
- School of Chemisty and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Weikang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jingxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Huiying Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - David Lee Phillips
- Department of Chemistry, University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
9
|
Erxleben A. Mechanistic Studies of Homo- and Heterodinuclear Zinc Phosphoesterase Mimics: What Has Been Learned? Front Chem 2019; 7:82. [PMID: 30847339 PMCID: PMC6393734 DOI: 10.3389/fchem.2019.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Phosphoesterases hydrolyze the phosphorus oxygen bond of phosphomono-, di- or triesters and are involved in various important biological processes. Carboxylate and/or hydroxido-bridged dizinc(II) sites are a widespread structural motif in this enzyme class. Much effort has been invested to unravel the mechanistic features that provide the enormous rate accelerations observed for enzymatic phosphate ester hydrolysis and much has been learned by using simple low-molecular-weight model systems for the biological dizinc(II) sites. This review summarizes the knowledge and mechanistic understanding of phosphoesterases that has been gained from biomimetic dizinc(II) complexes, showing the power as well as the limitations of model studies.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
10
|
Salvio R, Casnati A. Guanidinium Promoted Cleavage of Phosphoric Diesters: Kinetic Investigations and Calculations Provide Indications on the Operating Mechanism. J Org Chem 2017; 82:10461-10469. [DOI: 10.1021/acs.joc.7b01925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Riccardo Salvio
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Università La Sapienza, 00185 Roma, Italy
| | - Alessandro Casnati
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
11
|
Barman SK, Mondal T, Koley D, Lloret F, Mukherjee R. A phenoxo-bridged dicopper(ii) complex as a model for phosphatase activity: mechanistic insights from a combined experimental and computational study. Dalton Trans 2017; 46:4038-4054. [PMID: 28271106 DOI: 10.1039/c6dt03514k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A μ-phenoxo-bis(μ2-1,3-acetato)-bridged dicopper(ii) complex [Cu(L1)(μ-O2CMe)2][NO3] (1) has been synthesized from the perspective of modeling phosphodiesterase activity. Structural characterization was done initially with 1·3Et2O (vapour diffusion of Et2O into MeOH solution of 1; poor crystal quality) and finally with its perchlorate salt [Cu(L1)(μ-O2CMe)2][ClO4]·1.375MeCN·0.25H2O, crystallized from vapour diffusion of n-pentane into a MeCN-MeOH mixture (comparatively better crystal quality). An asymmetric unit of such a crystal contains two independent molecules of compositions [Cu(L1)(μ-O2CMe)2][ClO4] and [Cu(L1)(μ-O2CMe)2(MeCN)][ClO4] (coordinated MeCN with 0.75 occupancy), and two molecules of MeCN and H2O (each H2O molecule with 0.25 occupancy) as the solvent of crystallization. These two cations, each having five-coordinate (μ-phenoxo)bis(μ-acetato)-bridged CuII ions, differ by only the coordination environment of only one CuII ion, which has a weakly coordinated acetonitrile molecule in its sixth position. Temperature-dependent magnetic studies on 1 reveal that the copper(ii) centres are antiferromagnetically coupled with the exchange-coupling constant J = -124(1) cm-1. Theoretically calculated J = -126.51 cm-1, employing a broken-symmetry DFT approach, is in excellent agreement with the experimental value. The dicopper(ii) complex has been found to be catalytically efficient in the hydrolysis of 2-hydroxypropyl-p-nitrophenylphosphate (HPNP). Detailed kinetic experiments and solution studies (potentiometry, species distribution and ESI-MS) were performed to elucidate the reaction mechanism. DFT calculations were performed to discriminate between different possible mechanistic pathways. The free-energy barrier for HPNP hydrolysis catalyzed by 1 is comparable to that obtained from the experimentally-determined value. The involvement of non-covalent (hydrogen-bonding) interaction has also been probed by DFT calculations. The activity of 1 is found to be the highest, compared to the structurally-characterized Mn, Co, Ni and Zn complexes of L1(-) reported earlier, under identical experimental conditions, in which each metal centre is six-coordinate.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Totan Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Francesc Lloret
- Departament de Química Inorgànica/Fundació General de la Universitat de València (FGUV)/Instituto de Ciencia, Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| |
Collapse
|
12
|
Um IH, Kang JS, Dust JM. Alkali metal ion catalysis and inhibition in alkaline ethanolysis of O-Y-substituted-phenyl O-phenyl thionocarbonates: contrasting M + ion effects upon changing electrophilic centre from C=O to C=S. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudo-first-order rate constants (kobsd) were measured for nucleophilic substitution reactions of O-Y-substituted-phenyl O-phenyl thionocarbonates (4a–4h) with alkali metal ethoxides (EtOM, M = Li, Na, or K) in anhydrous ethanol at 25.0 ± 0.1 °C. Plots of kobsd vs. [EtOM] exhibited upward curvature for the reaction of O-4-nitrophenyl O-phenyl thionocarbonate (4a) with EtOK in the presence of 18-crown-6-ether (18C6), but showed downward curvature for the reaction with EtOLi, indicating that the reaction is catalyzed by the 18C6-crowned K+ ion, but is inhibited by Li+ ion. The kobsd values were dissected into kEtO− and kEtOM, the second-order rate constant for the reaction with dissociated EtO− and ion-paired EtOM, respectively. The reactivity of EtOM toward 4a increases in the order EtOLi < EtONa < EtO− < EtOK < EtOK/18C6, which is in contrast to that reported previously for the corresponding reaction of 4-nitrophenyl phenyl carbonate (a C=O analogue of 4a), e.g., EtO− ≈ EtOK/18C6 < EtOLi < EtONa < EtOK. The reaction mechanism, including the transition-state model and the origin of the contrasting reactivity patterns found for the reactions of the C=O and C=S compounds, are discussed.
Collapse
Affiliation(s)
- Ik-Hwan Um
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Ji-Sun Kang
- Engineering Plastic R&T, Solvay, Seoul 153-023, Korea
| | - Julian M. Dust
- Department of Chemistry and Environmental Science, Grenfell Campus-Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| |
Collapse
|
13
|
Quinazolinone azolyl ethanols: potential lead antimicrobial agents with dual action modes targeting methicillin-resistant Staphylococcus aureus DNA. Future Med Chem 2016; 8:1927-1940. [DOI: 10.4155/fmc-2016-0002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: Due to bacterial drug resistance, a new series of quinazolinone azolyl ethanols were synthesized and evaluated. Results: In vitro antibacterial assay showed that triazolyl ethanol quinazolinone 3a was the most active compound, especially against methicillin-resistant Staphylococcus aureus (MRSA) with minimal inhibitory concentration value of 8 µg/ml, which was superior to chloromycin and comparable to norfloxacin. Molecular docking study displayed that compound 3a could interact with MRSA DNA by the formation of hydrogen bonds. Further interactions of quinazolinone 3a with MRSA DNA suggested that it could intercalate into MRSA DNA to form 3a–DNA complex. DNA cleavage properties of 3a–Cu2+ and 3a–Zn2+ complexes were confirmed by agarose gel electrophoresis experiments. Conclusion: Compound 3a should be a potential lead antibacterial molecule with dual action modes.
Collapse
|
14
|
Brown JJ, Gahan LR, Schöffler A, Krenske EH, Schenk G. Investigation of the identity of the nucleophile initiating the hydrolysis of phosphate esters catalyzed by dinuclear mimics of metallohydrolases. J Inorg Biochem 2016; 162:356-365. [DOI: 10.1016/j.jinorgbio.2016.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/17/2016] [Accepted: 02/10/2016] [Indexed: 11/17/2022]
|
15
|
Bím D, Svobodová E, Eigner V, Rulíšek L, Hodačová J. Copper(II) and Zinc(II) Complexes of Conformationally Constrained Polyazamacrocycles as Efficient Catalysts for RNA Model Substrate Cleavage in Aqueous Solution at Physiological pH. Chemistry 2016; 22:10426-37. [DOI: 10.1002/chem.201601175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Bím
- Department of Organic Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic), Fax: (+420) 220-444-288
- Institute of Organic Chemistry and Biochemistry; v.v.i. and Gilead Sciences Research Center, Academy of Sciences of the Czech Republic; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic), Fax: (+420) 220-444-288
| | - Václav Eigner
- Department of Solid State Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry; v.v.i. and Gilead Sciences Research Center, Academy of Sciences of the Czech Republic; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Jana Hodačová
- Department of Organic Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic), Fax: (+420) 220-444-288
| |
Collapse
|
16
|
Synthesis, characterization and crystal structure of dinuclear cobalt(II) macrocyclic complexes, containing thiocyanate and azide groups. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Fanning AM, Plush SE, Gunnlaugsson T. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP). Org Biomol Chem 2016; 13:5804-16. [PMID: 25909178 DOI: 10.1039/c4ob02384f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.
Collapse
Affiliation(s)
- Ann-Marie Fanning
- School of Chemistry and Trinity Biomedical Sciences Institute, University of Dublin, Trinity College Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
18
|
Daver H, Das B, Nordlander E, Himo F. Theoretical Study of Phosphodiester Hydrolysis and Transesterification Catalyzed by an Unsymmetric Biomimetic Dizinc Complex. Inorg Chem 2016; 55:1872-82. [DOI: 10.1021/acs.inorgchem.5b02733] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Henrik Daver
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Biswanath Das
- Inorganic Chemistry Research Group, Chemical Physics, Center for
Chemistry and Chemical Engineering, Lund University, Box 124, SE-221
00 Lund, Sweden
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group, Chemical Physics, Center for
Chemistry and Chemical Engineering, Lund University, Box 124, SE-221
00 Lund, Sweden
| | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| |
Collapse
|
19
|
Zhang X, Liu X, Phillips DL, Zhao C. Hydrolysis mechanisms of BNPP mediated by facial copper(ii) complexes bearing single alkyl guanidine pendants: cooperation between the metal centers and the guanidine pendants. Dalton Trans 2016; 45:1593-603. [DOI: 10.1039/c5dt03949e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inter-complex and intra-complex nucleophilic attacks by metal-bound hydroxide were investigated by considering the second coordination spheres.
Collapse
Affiliation(s)
- Xuepeng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Xueping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | | | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
20
|
Wu AZ, Chen L, Wang T. Phosphodiester Cleavage Promoted by an Asymmetric Dinuclear Zinc Complex: Synthesis, Structure, and Catalytic Activity. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201500196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Yang K, Kim MY, Um IH. S NAr Reactions of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides: Differential Stabilization of Ground State and Transition State Determines Alkali-Metal Ion Catalysis or Inhibition. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kiyull Yang
- Department of Chemistry Education; Gyeongsang National University; Jinju 660-701 Korea
| | - Min-Young Kim
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Ik-Hwan Um
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| |
Collapse
|
22
|
Sanyal R, Zhang X, Kundu P, Chattopadhyay T, Zhao C, Mautner FA, Das D. Mechanistic Implications in the Phosphatase Activity of Mannich-Based Dinuclear Zinc Complexes with Theoretical Modeling. Inorg Chem 2015; 54:2315-24. [DOI: 10.1021/ic502937a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ria Sanyal
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Xuepeng Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Priyanka Kundu
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Tanmay Chattopadhyay
- Department
of Chemistry, Panchakot Mahavidyalaya, Sarbari, Purulia 723121, India
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Franz A. Mautner
- Institut
fuer Physikalische und Theoretische Chemie, Technische Universitaet Graz, A-8010 Graz, Austria
| | - Debasis Das
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
23
|
The effect of chain size on the modeling of second sphere effects in biomimetic complexes. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Brown RS. Metal Ion-Promoted Leaving Group Assistance in the Light Alcohols. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.apoc.2015.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zhang X, Zhu Y, Gao H, Zhao C. Solvolysis Mechanisms of RNA Phosphodiester Analogues Promoted by Mononuclear Zinc(II) Complexes: Mechanisic Determination upon Solvent Medium and Ligand Effects. Inorg Chem 2014; 53:11903-12. [DOI: 10.1021/ic501084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuepeng Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yajie Zhu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Gao
- Key
Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute
of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
26
|
Lee J, Kim MY, Um IH. Kinetic Study on Nucleophilic Substitution Reaction of 5-Nitro-8-quinolyl Benzoate, Picolinate, Nicotinate and Isonicotinate with Alkali Metal Ethoxide: Effect of Nonleaving Group on Reactivity and Transition State Structure. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Jeon SH, Yoon JH, Kim MY, Um IH. Alkali-Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Picolinate with Alkali Metal Ethoxides: Effect of Modification of Nonleaving Group from Benzoyl to Picolinyl on Reactivity and Transition State Structure. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.5.1506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Zhang X, Xu X, Xu H, Zhang X, Phillips DL, Zhao C. Mechanistic Investigation into the Cleavage of a Phosphomonoester Mediated by a Symmetrical Oxyimine-Based Macrocyclic Zinc(II) Complex. Chemphyschem 2014; 15:1887-98. [DOI: 10.1002/cphc.201301216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/24/2014] [Indexed: 11/08/2022]
|
29
|
Zhang X, Zhu Y, Zheng X, Phillips DL, Zhao C. Mechanismic Investigation on the Cleavage of Phosphate Monoester Catalyzed by Unsymmetrical Macrocyclic Dinuclear Complexes: The Selection of Metal Centers and the Intrinsic Flexibility of the Ligand. Inorg Chem 2014; 53:3354-61. [DOI: 10.1021/ic402717x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuepeng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Yajie Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Xiaowei Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
30
|
Diez-Castellnou M, Mancin F, Scrimin P. Efficient Phosphodiester Cleaving Nanozymes Resulting from Multivalency and Local Medium Polarity Control. J Am Chem Soc 2014; 136:1158-61. [DOI: 10.1021/ja411969e] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Marta Diez-Castellnou
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|