1
|
Zhu GH, Jiang X. Rh(I)-Catalyzed Cascade Carbonylative Cyclization of Propargyl α-Diazoindolacetates for Construction of Carbazoles. Org Lett 2023; 25:8077-8082. [PMID: 37933919 DOI: 10.1021/acs.orglett.3c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A Rh(I)-catalyzed carbene migration/carbonylation/cyclization (MCC) strategy has been established for the construction of diverse functionalized carbazoles from propargyl α-diazoindolacetates. Rh(I)-stabilized carbene with different electrophilic properties displays specific reactivity toward alkyne and CO during the transformation, ensuring the smooth progress of the tandem cyclization. Other heteroaryl scaffolds were achieved simultaneously through this cascade protocol, thus offering a straightforward pathway toward functionalized polycyclic aromatic molecule synthesis.
Collapse
Affiliation(s)
- Guo-Hao Zhu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Ding R, Cui H, Zhu Y, Zhou Y, Tao H, Mai S. Domino Sonogashira coupling/metal carbene-involved annulation enabled by Pd/Cu relay catalysis: rapid assembly of indazole-containing biheteroaryls. Org Chem Front 2023. [DOI: 10.1039/d3qo00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An efficient and novel method has been developed for the synthesis of indazole-containing biheteroaryls via a domino Sonogashira coupling/azaenyne cycloisomerization/Barton–Kellogg reaction.
Collapse
|
3
|
Kim KM, Sutar SM, Kalkhambkar RG, Refat MS, Alsuhaibani AM. Microwave and Ultrasonic‐Assisted Synthesis of Highly Functionalized Carbazoles And Dibenzofurans from Biaryl‐Triazenes Promoted by Acidic Ionic Liquid. ChemistrySelect 2022. [DOI: 10.1002/slct.202103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kang Min Kim
- Department of Pharmaceutical science and technology Kyungsung University Busan 608-736 Korea
| | - Suraj M. Sutar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnatak 580001 India
| | - Rajesh G. Kalkhambkar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnatak 580001 India
| | - Moamen S. Refat
- Department of Chemistry College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science College of Education Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| |
Collapse
|
4
|
Zhang T, Wang S, Zuo D, Zhao J, Luo W, Wang C, Li P. Palladium-Catalyzed Carbonylative [5+1] Cycloaddition of N-Tosyl Vinylaziridines: Solvent-Controlled Divergent Synthesis of α,β- and β,γ-Unsaturated δ-Lactams. J Org Chem 2022; 87:10408-10415. [PMID: 35892153 DOI: 10.1021/acs.joc.2c00710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed carbonylative [5+1] cycloaddition of N-tosyl vinylaziridines with CO has been developed. This protocol affords an efficient and practical approach for solvent-controlled divergent synthesis of α,β-unsaturated δ-lactams in dimethylformamide and β,γ-unsaturated δ-lactams in tetrahydrofuran in good to excellent yields. Significantly, the step- and atom-economical reactions are more regioselective toward [5+1] cycloaddition than toward [3+1] cycloaddition.
Collapse
Affiliation(s)
- Tao Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Dandan Zuo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
5
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
6
|
Banerjee A, Saha S, Maji MS. Cascade Benzannulation Approach for the Syntheses of Lipocarbazoles, Carbazomycins, and Related Alkaloids. J Org Chem 2022; 87:4343-4359. [PMID: 35253429 DOI: 10.1021/acs.joc.2c00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shuvendu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
7
|
Zhang X, Yu S, Liu Z, Long Y, Zhao J, Xu W, Zhang H, Zhang H. Development of a Kilogram-Scale Route for Clinical Sample Production of the Intravenous Anesthetic Cipepofol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaowei Zhang
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Shuowen Yu
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Zhaojun Liu
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Yuanqiang Long
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Jinwei Zhao
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Wei Xu
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Haifeng Zhang
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Haijun Zhang
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
8
|
Yu JX, Wu LJ, Wang ZQ, Xu ZF, Li JH. Palladium-catalyzed alkynylative [5 + 1] carboannulation of 1,3-diarylprop-2-yn-1-yl acetates with terminal alkynes enabled by C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01836a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using 1,3-diarylprop-2-yn-1-yl acetates as the five-carbon components enables alkynylative[5 + 1] carboannulation involving C–H functionalization toward 3-ethynyl-1-methylene-1,2-dihydronaphthalenes.
Collapse
Affiliation(s)
- Jiang-Xi Yu
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhi-Qiang Wang
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
| | - Zhi-Feng Xu
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
| | - Jin-Heng Li
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
9
|
Jiang S, Ma H, Yang R, Song XR, Xiao Q. Recent advances in the cascade reactions of enynols/diynols for the synthesis of carbo- and heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo01154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summaries a view of the advances in the cascade reactions of enynols/diynols for the construction of carbo- and heterocycles.
Collapse
Affiliation(s)
- Shimin Jiang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Ruchun Yang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| |
Collapse
|
10
|
Guo L, Ye M, Vaccaro L, Li M, Gu Y. Two‐Step Access to
β
‐Substituted
o
‐Hydroxyphenyl Ethyl Ketones from 4‐Chromanone and its Application in Preparation of a Silica‐Supported Cobalt(II) Salen Complex. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luxia Guo
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education Huazhong University of Science and Technology (HUST) 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Meng Ye
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education Huazhong University of Science and Technology (HUST) 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C. Dipartimento di Chimica, biologia e Biotecnologie Università degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Minghao Li
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education Huazhong University of Science and Technology (HUST) 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Yanlong Gu
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education Huazhong University of Science and Technology (HUST) 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Lanzhou 730000 People's Republic of China
| |
Collapse
|
11
|
Wu XT, Xiao EK, Ma F, Yin J, Wang J, Chen P, Jiang YJ. Substrate-Controlled Regiodivergent Synthesis of Fluoroacylated Carbazoles via Friedel-Crafts Acylation. J Org Chem 2021; 86:6734-6743. [PMID: 33852307 DOI: 10.1021/acs.joc.1c00473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A general, efficient, and substrate-controlled regiodivergent trifluoroacetylation of carbazoles has been developed through Friedel-Crafts acylation. This strategy was applicable to a wide scope of readily available substituted carbazoles at air atmosphere without using a metal catalyst, affording the corresponding trifluoroacetylated carbazoles in up to 99% yield. The divergency of the products and the orientation rules have been illustrated based on different substituents on carbazole rings. This method could also be extended to the synthesis of chlorodifluoroacetylated and pentafluoropropionylated carbazoles, which have been achieved for the first time.
Collapse
Affiliation(s)
- Xian-Tao Wu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - En-Kai Xiao
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Feng Ma
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jin Yin
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Peng Chen
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yi-Jun Jiang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
12
|
Polley A, Varalaxmi K, Nandi A, Jana R. Divergent Total Synthesis of (±)‐Mahanine and Other Carbazole Alkaloids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arghya Polley
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| | - Kasarla Varalaxmi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Organic and Medicinal Chemistry Division National Institute of Pharmaceutical Education and Research (NIPER) Kolkata 700054 West Bengal India
| | - Arijit Nandi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| |
Collapse
|
13
|
Neto JSS, Zeni G. Recent Developments in the Cyclization of Alkynes and Nitrogen Compounds for the Synthesis of Indole Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
14
|
Mei C, Zhao M, Lu W. Equivalent Loading of Directed Arenes in Pd(II)-Catalyzed Oxidative Cross-Coupling of Aryl C-H Bonds at Room Temperature. J Org Chem 2021; 86:2714-2733. [PMID: 33443427 DOI: 10.1021/acs.joc.0c02722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The unsymmetrical biaryls (Ar1-Ar2) produced by the catalytic cross-couplings of aryl halides (Ar1-halo) with aryl metallics (Ar2-M) in the loading ratio of 1:1 are popular in chemical synthesis. In contrast, there has been less precedence on the same biaryls produced effectively from two normal aryl C-H bonds with equivalent loading. Here, we report that, in a palladium/oxidant/acid catalytic system at room temperature, one arene (Ar1-H, 1 equiv) can highly selectively couple with the other one (Ar2-H, 1 equiv) to afford the target Ar1-Ar2 just by controlling the directing groups and the substituted groups on their phenyl rings. The utility of this one-one cross-coupling is also demonstrated by synthesis of a few bioactive molecules.
Collapse
Affiliation(s)
- Chong Mei
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mengdi Zhao
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Lu
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
Zhu G, Gao WC, Jiang X. Rh(I)-Catalyzed Carbene Migration/Carbonylation/Cyclization: Straightforward Construction of Fully Substituted Aryne Precursors. J Am Chem Soc 2021; 143:1334-1340. [PMID: 33439011 DOI: 10.1021/jacs.0c13012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Rh(I)-catalyzed cascade formation of carbenoid followed by a carbonylative cyclization of silyl diynes has been established to achieve diverse ortho silyl-substituted phenolics, enabling access to fully substituted aryne precursors via a one-step fluorosulfurylation. The silyl mask on the termini of alkynes is demonstrated not only to suppress the undesired oxidation but also to control the selectivity of CO insertion. Straightforward access to fully substituted arynes was comprehensively established and applied for the efficient construction of polycyclic aromatic molecules.
Collapse
Affiliation(s)
- Guohao Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Wen-Chao Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
16
|
Chen X, Shatskiy A, Liu JQ, D Kärkäs M, Wang XS. Synthesis of Sulfonylated Heterocycles via Copper-Catalyzed Heteroaromatization/Sulfonyl Transfer of Propargylic Alcohols. Chem Asian J 2021; 16:30-33. [PMID: 33025769 DOI: 10.1002/asia.202001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Indexed: 01/04/2023]
Abstract
An unprecedented copper-catalyzed heteroaromatization/sulfonyl transfer of propargylic alcohols with isocyanide has been developed. 3-Sulfonyl benzofurans and indoles were produced under Cu(I) catalysis in good to high yields. The developed catalytic methodology provides controlled, modular, and facile access to sulfonyl benzoheterocycle scaffolds.
Collapse
Affiliation(s)
- Xinyi Chen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China.,Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China
| |
Collapse
|
17
|
Banerjee A, Kundu S, Bhattacharyya A, Sahu S, Maji MS. Benzannulation strategies for the synthesis of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines. Org Chem Front 2021. [DOI: 10.1039/d1qo00092f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents a critical and authoritative analysis of several exciting benzannulation approaches developed in the past decade for the construction of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines.
Collapse
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Kundu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Arya Bhattacharyya
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Sahu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Modhu Sudan Maji
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
18
|
Wu LJ, Yang LF, Lv GF, Li JH. Divergent functionalization of terminal alkynes enabled alkynylative [5+1] benzannulation of 3-acetoxy-1,4-enynes. Chem Commun (Camb) 2020; 56:15329-15332. [PMID: 33220665 DOI: 10.1039/d0cc06793h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We here describe an alkynylative [5+1] benzannulation of 3-acetoxy-1,4-enynes with terminal alkynes, which enables both the construction of a benzene ring skeleton and intermolecular incorporation of an alkynyl group in a single reaction using Pd and Cu cooperative catalysts. The method represents efficient access to internal aryl alkynes through divergent functionalization of two terminal alkyne components: one alkyne serves as the one-carbon unit to realize the [5+1] benzannulation and the other alkyne as a nucleophile terminates the reaction.
Collapse
Affiliation(s)
- Li-Jun Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | | | | | | |
Collapse
|
19
|
Wu LJ, Teng F, Lv GF, Li JH. Relay Palladium/Copper Catalysis Enabled Silylative [5 + 1] Benzannulation Using Terminal Alkynes as One-Carbon Units. Org Lett 2020; 22:8544-8549. [PMID: 33075230 DOI: 10.1021/acs.orglett.0c03144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using terminal alkyne as a nontraditional one-carbon (C1) unit and silylborane as an external silicon pronucleophile, a relay palladium/copper-catalyzed silylative [5 + 1] benzannulation of 3-acetoxy-1,4-enynes for producing polysubstituted arylsilanes, especially including bioactive motif-based analogues, in a single reaction step through benzene ring skeleton assembly and silyl intermolecular incorporation cascades is developed. Mechanistic studies show that this reaction allows the terminal sp-hybridized carbon atom in terminal alkynes as a C1 unit via cleavage of two π-bonds and one C(sp)-H bond.
Collapse
Affiliation(s)
- Li-Jun Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Liu X, Liu Y, Chen L. Tandem Annulations of Propargylic Alcohols to Indole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000930] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road Guangzhou 510006 People's Republic of China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| |
Collapse
|
21
|
Li Q, Gong J, Li Y, Zhang R, Wang H, Zhang J, Yan H, Lam JWY, Sung HHY, Williams ID, Kwok RTK, Li MH, Wang J, Tang BZ. Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AIEgen. Chem Sci 2020; 12:709-717. [PMID: 34163804 PMCID: PMC8179000 DOI: 10.1039/d0sc04725b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/17/2020] [Indexed: 12/03/2022] Open
Abstract
Developing versatile synthetic methodologies with merits of simplicity, efficiency, and environment friendliness for five-membered heterocycles is of incredible importance to pharmaceutical and material science, as well as a huge challenge to synthetic chemistry. Herein, an unexpected regioselective photoreaction to construct a fused five-membered azaheterocycle with an aggregation-induced emission (AIE) characteristic is developed under mild conditions. The formation of the five-membered ring is both thermodynamically and kinetically favored, as justified by theoretical calculation and experimental evidence. Markedly, a light-driven amplification strategy is proposed and applied in selective mitochondria-targeted cancer cell recognition and fluorescent photopattern fabrication with improved resolution. The work not only delivers the first report on efficiently generating a fused five-membered azaheterocyclic AIE luminogen under mild conditions via photoreaction, but also offers deep insight into the essence of the photosynthesis of fused five-membered azaheterocyclic compounds.
Collapse
Affiliation(s)
- Qiyao Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Junyi Gong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ying Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jianquan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - He Yan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris Paris 75005 France
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Nanoscience, Division of Life Science, Department of Chemical and Biomedical Engineering and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
- Center for Aggregation-induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
22
|
De N, Ko D, Baek SY, Oh C, Kim J, Baik MH, Yoo EJ. Cu(I)-Catalyzed Enantioselective [5 + 1] Cycloaddition of N-Aromatic Compounds and Alkynes via Chelating-Assisted 1,2-Dearomative Addition. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nirupam De
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Donguk Ko
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-yeol Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) and Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) and Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jiyoung Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) and Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Eun Jeong Yoo
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
23
|
Tanaka S, Asako T, Ota E, Yamaguchi J. Synthesis of a Pentaarylcarbazole: Installation of Different Aryl Groups on a Benzenoid Moiety. CHEM LETT 2020. [DOI: 10.1246/cl.200302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shuhei Tanaka
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takashi Asako
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Eisuke Ota
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
24
|
Xia X, Zhao M, He W, Zou L, San X, Wang D. Metal‐Free Oxidative [5+1] Cyclization of 1,5‐Enynes for the Synthesis of Pyrazine 1‐Oxide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao‐Feng Xia
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Mingming Zhao
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Wei He
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Lianghua Zou
- School of Pharmaceutical SciencesJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xinxin San
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
25
|
Yuan Z, Zeng Y, Feng Z, Guan Z, Lin A, Yao H. Constructing chiral bicyclo[3.2.1]octanes via palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Nat Commun 2020; 11:2544. [PMID: 32439921 PMCID: PMC7242361 DOI: 10.1038/s41467-020-16221-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transition-metal-catalyzed tandem Heck/carbonylation reaction has emerged as a powerful tool for the synthesis of structurally diverse carbonyl molecules, as well as natural products and pharmaceuticals. However, the asymmetric version was rarely reported, and remains a challenging topic. Herein, we describe a palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Alcohols, phenols and amines are employed as versatile coupling reagents for the construction of multifunctional chiral bicyclo[3.2.1]octanes with one all-carbon quaternary and two tertiary carbon stereogenic centers in high diastereo- and enantioselectivities. This study represents an important progress in both the asymmetric tandem Heck/carbonylation reactions and enantioselective difunctionalization of internal alkenes.
Collapse
Affiliation(s)
- Zhenbo Yuan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ziwen Feng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zhe Guan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
26
|
Farley CM, Sasakura K, Zhou YY, Kanale VV, Uyeda C. Catalytic [5 + 1]-Cycloadditions of Vinylcyclopropanes and Vinylidenes. J Am Chem Soc 2020; 142:4598-4603. [PMID: 32083863 DOI: 10.1021/jacs.0c00356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polysubstituted cyclohexenes bearing 1,3 (meta) substitution patterns are challenging to access using the Diels-Alder reaction (the ortho-para rule). Here, we report a cobalt-catalyzed reductive [5 + 1]-cycloaddition between a vinylcyclopropane and a vinylidene to provide methylenecyclohexenes bearing all-meta relationships. Vinylidene equivalents are generated from 1,1-dichloroalkenes using Zn as a stoichiometric reductant. Experimental observations are consistent with a mechanism involving a cobaltacyclobutane formed from a [2 + 2]-cycloaddition between a cobalt vinylidene and a vinylcyclopropane.
Collapse
Affiliation(s)
- Conner M Farley
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kohei Sasakura
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - You-Yun Zhou
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Vibha V Kanale
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Wu LJ, Yang LF, Li JH, Wang QA. Dicarbonylative benzannulation of 3-acetoxy-1,4-enynes with CO and silylboranes by Pd and Cu cooperative catalysis: one-step access to 3-hydroxyarylacylsilanes. Chem Commun (Camb) 2020; 56:1669-1672. [PMID: 31939456 DOI: 10.1039/c9cc09077k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new, general Pd/Cu-cocatalysed dicarbonylative benzannulation of 3-acetoxy-1,4-enynes with CO and silylboranes is described. The method utilizes CO as both a one-carbon (C1) unit and an external addition functional reagent to achieve an unprecedented dicarbonylative benzannulation process, and represents a facile, efficient route to 3-hydroxyarylacylsilanes. Mechanistically, the silyl-Cu intermediate formed from CuF2 and silylboranes, and silyl-Pd intermediate generated by transmetallation are two key factors for successfully targeting the reaction and selectivity.
Collapse
Affiliation(s)
- Li-Jun Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | | | | | | |
Collapse
|
28
|
Blaszczyk SA, Glazier DA, Tang W. Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks. Acc Chem Res 2020; 53:231-243. [PMID: 31820914 PMCID: PMC7261388 DOI: 10.1021/acs.accounts.9b00477] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cycloaddition reactions are a hallmark in organic synthesis because they provide an efficient way to construct highly substituted carbo- and heterocycles found in natural products and pharmaceutical agents. Most cycloadditions occur under thermal or photochemical conditions, but transition-metal complexes can promote reactions that occur beyond these circumstances. Transition-metal complexation with alkynes, alkenes, allenes, or dienes often alters the reactivity of those π-systems and facilitates access to diverse cycloaddition products. This Account describes our efforts toward the design of novel five-carbon synthons for use in rhodium-catalyzed (5 + n) cycloadditions, which include 3-acyloxy-1,4-enynes (ACEs) for (5 + 1) and (5 + 2) cycloadditions and 3-hydroxy-1,4-enynes (HYEs) for (5 + 1) cycloadditions. Furthermore, this Account includes relevant computational information, mechanistic insights, and applications of these cycloadditions in the synthesis of various highly substituted carbo- and heterocycles. The (5 + n) cycloaddition reactions presented herein share the following common mechanistic features: the 1,2-migration of an acyloxy group in propargyl esters or the ionization of a hydroxyl group in propargylic alcohols, oxidative cyclization to form a metallacycle, insertion of the one- or two-carbon component, and reductive elimination to yield the final product. In conjunction with a cationic rhodium catalyst, we used ACEs for the intramolecular (5 + 2) cycloaddition with tethered alkynes, alkenes, and allenes. In some cases, an electron-deficient phosphine ligand improved the reaction yields, especially when the ACE featured an internal alkyne. We also demonstrated that chirality could be efficiently transferred from a relatively simple starting material to a more complex bicyclic product. Products derived from ACEs with tethered alkenes and allenes contained one or more stereocenters, and high diastereoselectivity was achieved in most of these cases. For ACEs tethered to an allene, the reaction preferentially occurred at the internal alkene. We also switched the positions of the alkene and the alkyne in the 1,4-enyne of our original ACE to provide an inverted ACE variant, which produced products with complementary functionalities. After we successfully developed the Rh-catalyzed intramolecular (5 + 2) cycloaddition, we optimized conditions for the intermolecular version, which required a neutral rhodium catalyst and phosphine ligand. When a terminal alkyne was used as the two-carbon component, high regioselectivity was observed. While investigating the effect of esters on the rate of the intermolecular (5 + 2) cycloadditions, we determined that an electron-rich ester significantly accelerated the reaction. Subsequently, we demonstrated that (5 + 1) cycloadditions undergo this rate enhancement as well in the presence of an ester. Aside from ACEs, we synthesized HYEs in four steps from commercially available 2-aminobenzoic acid for use in the (5 + 1) cycloaddition. Mechanistically, HYEs were designed so that the aniline nitrogen could serve as the nucleophile and the -OH could serve as the leaving group. Using HYEs, we developed a novel method to make substituted carbazoles, dibenzofurans, and tricyclic compounds with a cyclohexadienone moiety. Although the occurrence of transition-metal-catalyzed acyloxy migrations has been known for decades, only recently has their synthetic value been realized. We hope our studies that employ readily available 1,4-enynes as the five-carbon components in (5 + n) cycloadditions can inspire the design of new two-component and multicomponent cycloadditions.
Collapse
Affiliation(s)
- Stephanie A. Blaszczyk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel A. Glazier
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
29
|
Affiliation(s)
- Hongwei Qian
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Yicheng Bi
- Qingdao University of Science & TechnologySifang Campus 53 Zhengzhou Road Qingdao Shandong 266042 People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| |
Collapse
|
30
|
Zhang L, Liu T, Wang YM, Chen J, Zhao YL. Rhodium-Catalyzed Coupling–Cyclization of Alkenyldiazoacetates with o-Alkenyl Arylisocyanides: A General Route to Carbazoles. Org Lett 2019; 21:2973-2977. [DOI: 10.1021/acs.orglett.9b00307] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lu Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yi-Ming Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jing Chen
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
31
|
|
32
|
Tani T, Sawatsugawa Y, Sano Y, Hirataka Y, Takahashi N, Hashimoto S, Sugiura T, Tsuchimoto T. Alkynyl−B(dan)s in Various Palladium‐Catalyzed Carbon−Carbon Bond‐Forming Reactions Leading to Internal Alkynes, 1,4‐Enynes, Ynones, and Multiply Substituted Alkenes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801527] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tomohiro Tani
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Yuuki Sawatsugawa
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Yusuke Sano
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Yo Hirataka
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Naomi Takahashi
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Sadahiro Hashimoto
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Tetsuya Sugiura
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
33
|
Chen S, Jiang P, Wang P, Pei Y, Huang H, Xiao F, Deng GJ. Three-Component Cascade Synthesis of Carbazoles through [1s,6s] Sigmatropic Shift under Metal-Free Conditions. J Org Chem 2019; 84:3121-3131. [DOI: 10.1021/acs.joc.8b02994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Pingyu Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Pu Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yong Pei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
34
|
Ma K, Martin BS, Yin X, Dai M. Natural product syntheses via carbonylative cyclizations. Nat Prod Rep 2019; 36:174-219. [PMID: 29923586 DOI: 10.1039/c8np00033f] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the application of various transition metal-catalyzed/mediated carbonylative cyclization reactions in natural product total synthesis.
Collapse
Affiliation(s)
- Kaiqing Ma
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Brandon S. Martin
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Xianglin Yin
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Mingji Dai
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| |
Collapse
|
35
|
Xu WB, Li C, Wang J. RhI
-Catalyzed Carbonylative [3+1] Construction of Cyclobutenones via C−C σ-Bond Activation of Cyclopropenes. Chemistry 2018; 24:15786-15790. [DOI: 10.1002/chem.201804170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Jianbo Wang
- Key Laboratory of Bioorganic Chemistry and; Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| |
Collapse
|
36
|
Wu L, Song R, Luo S, Li J. Palladium‐Catalyzed Reductive [5+1] Cycloaddition of 3‐Acetoxy‐1,4‐enynes with CO: Access to Phenols Enabled by Hydrosilanes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li‐Jun Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - Ren‐Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - Jin‐Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
37
|
Wu L, Song R, Luo S, Li J. Palladium‐Catalyzed Reductive [5+1] Cycloaddition of 3‐Acetoxy‐1,4‐enynes with CO: Access to Phenols Enabled by Hydrosilanes. Angew Chem Int Ed Engl 2018; 57:13308-13312. [DOI: 10.1002/anie.201808388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Li‐Jun Wu
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Ren‐Jie Song
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Jin‐Heng Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent, Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 China
| |
Collapse
|
38
|
Rong MG, Qin TZ, Liu XR, Wang HF, Zi W. De Novo Synthesis of Phenols and Naphthols through Oxidative Cycloaromatization of Dienynes. Org Lett 2018; 20:6289-6293. [DOI: 10.1021/acs.orglett.8b02786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming-Guang Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tian-Zhu Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Rui Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Fa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
Dai P, Ogunlana AA, Bao X. Mechanistic Insights into Cyclopropenes-Involved Carbonylative Carbocyclization Catalyzed by Rh(I) Catalyst: A DFT Study. J Org Chem 2018; 83:12734-12743. [DOI: 10.1021/acs.joc.8b02178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ping Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Abosede Adejoke Ogunlana
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
40
|
Men Y, Hu Z, Dong J, Xu X, Tang B. Formal [1 + 2 + 3] Annulation: Domino Access to Carbazoles and Indolocarbazole Alkaloids. Org Lett 2018; 20:5348-5352. [PMID: 30110173 DOI: 10.1021/acs.orglett.8b02266] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new formal [1 + 2 + 3] annulation of o-alkenyl arylisocyanides with α, β-unsaturated ketones under metal-, base-, and acid-free conditions is disclosed. This domino reaction provides a general protocol for the efficient and practical synthesis of a wide range of carbazole derivatives from readily available starting materials in a single operation. Furthermore, this methodology was used as the key step in a protecting-group-free synthesis of indolocarbazole alkaloids arcyriaflavin A and racemosin B.
Collapse
Affiliation(s)
- Yang Men
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China.,Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis , Northeast Normal University , Changchun 130024 , China
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
41
|
Brütting C, Fritsche RF, Kutz SK, Börger C, Schmidt AW, Kataeva O, Knölker HJ. Synthesis of 1,1′- and 2,2′-Bicarbazole Alkaloids by Iron(III)-Catalyzed Oxidative Coupling of 2- and 1-Hydroxycarbazoles. Chemistry 2017; 24:458-470. [DOI: 10.1002/chem.201704554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Christian Brütting
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Raphael F. Fritsche
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Sebastian K. Kutz
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Carsten Börger
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Arndt W. Schmidt
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Olga Kataeva
- A. M. Butlerov Chemistry Institute; Kazan Federal University; Kremlevskaya Str. 18 Kazan 420008 Russia
| | - Hans-Joachim Knölker
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
42
|
Feng JJ, Zhang J. Rhodium-Catalyzed Stereoselective Intramolecular Tandem Reaction of Vinyloxiranes with Alkynes: Atom- and Step-Economical Synthesis of Multifunctional Mono-, Bi-, and Tricyclic Compounds. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03399] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian-Jun Feng
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| | - Junliang Zhang
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| |
Collapse
|
43
|
|
44
|
Cao T, Chen K, Zhu S. An efficient approach to generate aryl carbenes: gold-catalyzed sequential activation of 1,6-diynes. Org Chem Front 2017. [DOI: 10.1039/c6qo00769d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to generate aryl gold carbenes has been developed.
Collapse
Affiliation(s)
- Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Kai Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
45
|
Song W, Blaszczyk SA, Liu J, Wang S, Tang W. Transition metal mediated carbonylative benzannulations. Org Biomol Chem 2017; 15:7490-7504. [DOI: 10.1039/c7ob01000a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes novel building blocks recently developed for transition metal-catalyzed carbonylative benzannulations.
Collapse
Affiliation(s)
- Wangze Song
- School of Pharmacy
- University of Wisconsin-Madison
- Madison
- USA
- School of Pharmaceutical Science and Technology
| | | | - Jitian Liu
- School of Pharmacy
- University of Wisconsin-Madison
- Madison
- USA
| | - Shuojin Wang
- School of Pharmacy
- Hainan Medical University
- Haikou
- China
| | - Weiping Tang
- School of Pharmacy
- University of Wisconsin-Madison
- Madison
- USA
- Department of Chemistry
| |
Collapse
|
46
|
Wu L, Deng G, Liang Y. Synthesis of dibenzo[a,c]carbazoles from 2-(2-halophenyl)-indoles and iodobenzenes via palladium-catalyzed dual C–H functionalization. Org Biomol Chem 2017; 15:6808-6812. [DOI: 10.1039/c7ob01638g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an efficient approach to synthesize dibenzo[a,c]carbazoles via a palladium-catalyzed cross-coupling tandem reaction.
Collapse
Affiliation(s)
- Lijun Wu
- Key Laboratory of the Assembly and Application of Organic Functional Molecules
- Hunan Normal University
- Changsha
- China
| | - Guobo Deng
- Key Laboratory of the Assembly and Application of Organic Functional Molecules
- Hunan Normal University
- Changsha
- China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules
- Hunan Normal University
- Changsha
- China
| |
Collapse
|
47
|
Dagar A, Biswas S, M.Mobin S, Samanta S. An Efficient, Solvent-Free and Green One-Pot Protocol for the Rapid Access to Polyfunctionalized Carbazoles. ChemistrySelect 2016. [DOI: 10.1002/slct.201601611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anuradha Dagar
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Madhya Pradesh India
| | - Soumen Biswas
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Madhya Pradesh India
| | - Shaikh M.Mobin
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Madhya Pradesh India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Madhya Pradesh India
| |
Collapse
|
48
|
Haak E. Transition-Metal-Catalyzed Transformations of 1-Alkenylpropargyl Alcohols and Esters: Valuable Cascade Reactions for Increasing Structural Complexity. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Edgar Haak
- Institut für Chemie; Otto-von-Guericke Universität Magdeburg; Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
49
|
Shuler SA, Yin G, Krause SB, Vesper CM, Watson DA. Synthesis of Secondary Unsaturated Lactams via an Aza-Heck Reaction. J Am Chem Soc 2016; 138:13830-13833. [PMID: 27754648 DOI: 10.1021/jacs.6b08932] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of unsaturated secondary lactams via the palladium-catalyzed cyclization of O-phenyl hydroxamates onto a pendent alkene is reported. This method provides rapid access to a broad range of lactams that are widely useful building blocks in alkaloid synthesis. Mechanistic studies support an aza-Heck-type pathway.
Collapse
Affiliation(s)
- Scott A Shuler
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Guoyin Yin
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Sarah B Krause
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Caroline M Vesper
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
50
|
Wang T, Hoye TR. Hexadehydro-Diels-Alder (HDDA)-Enabled Carbazolyne Chemistry: Single Step, de Novo Construction of the Pyranocarbazole Core of Alkaloids of the Murraya koenigii (Curry Tree) Family. J Am Chem Soc 2016; 138:13870-13873. [PMID: 27734671 DOI: 10.1021/jacs.6b09628] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we report the use of the hexadehydro-Diels-Alder (HDDA) reaction for the de novo construction of a benzenoid ring in fused polycyclic heteroaromatic carbazole (i.e., [2,3]-benzoindole) skeletons. The strategy allows creation of highly substituted benzenoids. We also describe the HDDA-enabled chemical synthesis of the natural product alkaloids mahanimbine and koenidine. Trapping of the intermediate carbazolyne with a conjugated enal, proceeding through formal [2+2] cycloaddition, 4π-electrocyclic ring opening, and 6π-electrocyclic ring-closing events, constitutes a robust method for producing pyranocarbazoles.
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemistry, 207 Pleasant Street, SE, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, 207 Pleasant Street, SE, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|