1
|
Xiang J, Shi H, Man WL, Lau TC. Design of Highly Electrophilic and Stable Metal Nitrido Complexes. Acc Chem Res 2024; 57:2700-2716. [PMID: 39197104 DOI: 10.1021/acs.accounts.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
ConspectusMetal oxo (M═O) and nitrido (M≡N) complexes are two important classes of high-valent transition metal complexes. The use of M═O as oxidants in chemical and biological systems has been extensively investigated. Nature makes use of M═O in enzymes such as cytochrome P450 to oxidize a variety of substrates. Highly oxidizing oxo species have also been synthesized and they have been shown to oxidize organic and inorganic substrates via one-electron oxidation, O atom transfer, and H atom abstraction pathways. In contrast, the oxidation chemistry of M≡N is much less investigated. Although a variety of nitrido complexes are known, most of them are inert and do not show appreciable oxidizing properties, which is not unexpected since the N3- ligand is much more electron-donating than the O2- ligand. In principle, highly electrophilic/oxidizing nitrido complexes may be designed by using weakly coordinating ancillary ligands and/or by increasing the oxidation state of the metal centers. A number of such species have been generated in solution at low temperatures. However, attempts to isolate them are often hampered by their ease of decomposition via bimolecular N···N coupling to generate N2. In some cases, decomposition occurs by intramolecular nitrogenation of the ancillary ligand.In this account, we describe our recent efforts into the design of nitrido complexes that are highly oxidizing but stable enough so they can be isolated and characterized, and their reactivity toward organic substrates can be readily investigated.We have successfully isolated and determined the structure of the first stable manganese(VI) nitrido complex bearing an oxidation-resistant macrocyclic tetraamido TAML ligand, [MnVI(N)(TAML)]- (H4TAML = 3,3,6,6,9,9-hexamethyl-3,4,8,9-tetrahydro-1H-benzo[e][1,4,7,10] tetraazacyclotridecine-2,5,7,10(6H,11H)-tetraone). This complex readily undergoes direct aziridination of alkenes; it also abstracts hydrides from NADH analogues via a Separated CPET mechanism. Coupling of the nitrido ligands to give dinitrogen is a major decomposition pathway for electrophilic nitrido complexes. In order to shut down this pathway, we made use of a bulky trianionic corrole ligand TTPPC (H3TTPPC = 5,10,15-tris(2,4,6-triphenylphenyl)corrole) to prepare manganese nitrido complexes. Remarkably, we were able to isolate and determine the structures of [MnV(N)(TTPPC)]- and its one- and two-electron ligand-oxidized products, [MnV(N)(TTPPC+•)] and [MnV(N)(TTPPC2+)]+ ("TTPPC" has a 3- charge, 'TTPPC+•' has an overall 2- charge and 'TTPPC2+' has an overall 1- charge). Although [MnV(N)(TTPPC2+)]+ is formally a manganese(V) complex, it was found to be the most electrophilic among isolated metal nitrido complexes. The use of the bulky corrole ligand effectively prevents the decomposition of Mn≡N by N···N coupling.A number of luminescent M═O species that possess highly oxidizing excited states are known. We have also developed a strongly luminescent osmium(VI) nitrido complex, [OsVI(N)(L)(CN)3]- (OsN, HL = 2-(2-hydroxy-5-nitrophenyl)benzoxazole), that absorbs visible light to generate a highly oxidizing/electrophilic excited state. The excited state readily reacts with a wide variety of organic and inorganic substrates, many of these reactions are unprecedented. Notably, it reacts with cyclohexane to give an osmium(IV) cyclohexyliminato product, and with benzene to give an osmium(IV) p-benzoquinone iminato species.
Collapse
Affiliation(s)
- Jing Xiang
- School of Optoelectronic Materials and Technology, Jianghan University; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Huatian Shi
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, China
| | - Tai-Chu Lau
- School of Optoelectronic Materials and Technology, Jianghan University; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
2
|
Mahato S, VandeVen W, MacNeil GA, Pulfer JM, Storr T. Untangling ancillary ligand donation versus locus of oxidation effects on metal nitride reactivity. Chem Sci 2024; 15:2211-2220. [PMID: 38332824 PMCID: PMC10848731 DOI: 10.1039/d3sc05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024] Open
Abstract
We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.
Collapse
Affiliation(s)
- Samyadeb Mahato
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Jason M Pulfer
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
3
|
Schiller C, Sieh D, Lindenmaier N, Stephan M, Junker N, Reijerse E, Granovsky AA, Burger P. Cleavage of an Aromatic C-C Bond in Ferrocene by Insertion of an Iridium Nitrido Nitrogen Atom. J Am Chem Soc 2023; 145:11392-11401. [PMID: 37172080 DOI: 10.1021/jacs.3c02781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The intermolecular cleavage of C-C bonds is a rare event. Herein, we report on a late transition-metal terminal nitrido complex, which upon oxidation undergoes insertion of the nitrido nitrogen atom into the aromatic C-C bond of ferrocene. This reaction path was confirmed through 15N and deuterium isotope labeling experiments of the nitrido complex and ferrocenium, respectively. Cyclic voltammetry and UV/vis spectroscopy monitoring of the reaction revealed that oxidation is the initial step, yielding the tentative radical cationic nitrido complex, which is experimentally supported by extended X and Q-band electron paramagnetic resonance (EPR) and ENDOR, UV/vis, vT 1H NMR, and vibrational spectroscopic data. Density functional theory (DFT) and multireference calculations of this highly reactive intermediate revealed an S = 1/2 ground state. The high reactivity can be traced to the increased electrophilicity in the oxidized complex. Based on high-level PNO-UCCSD(T) calculations and UV/vis kinetic measurements, it is proposed that the reaction proceeds by initial electrophilic exo attack of the nitrido nitrogen atom at the cyclopentadienyl ring and consecutive ring expansion to a pyridine ring.
Collapse
Affiliation(s)
- Carl Schiller
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel Sieh
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Nils Lindenmaier
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Michel Stephan
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Natascha Junker
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Edward Reijerse
- Max-Planck-Institut für chemische Energiekonversion, EPR Research Group, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Granovsky
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Peter Burger
- Institut für Angewandte und Anorganische Chemie, Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Pikulová P, Misenkova D, Marek R, Komorovsky S, Novotný J. Quadratic Spin-Orbit Mechanism of the Electronic g-Tensor. J Chem Theory Comput 2023; 19:1765-1776. [PMID: 36896579 DOI: 10.1021/acs.jctc.2c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Understanding how the electronic g-tensor is linked to the electronic structure is desirable for the correct interpretation of electron paramagnetic resonance spectra. For heavy-element compounds with large spin-orbit (SO) effects, this is still not completely clear. We report our investigation of quadratic SO contributions to the g-shift in heavy transition metal complexes. We implemented third-order perturbation theory in order to analyze the contributions arising from frontier molecular spin orbitals (MSOs). We show that the dominant quadratic SO term─spin-Zeeman (SO2/SZ)─generally makes a negative contribution to the g-shift, irrespective of the particular electronic configuration or molecular symmetry. We further analyze how the SO2/SZ contribution adds to or subtracts from the linear orbital-Zeeman (SO/OZ) contribution to the individual principal components of the g-tensor. Our study suggests that the SO2/SZ mechanism decreases the anisotropy of the g-tensor in early transition metal complexes and increases it in late transition metal complexes. Finally, we apply MSO analysis to the investigation of g-tensor trends in a set of closely related Ir and Rh pincer complexes and evaluate the influence of different chemical factors (the nuclear charge of the central atom and the terminal ligand) on the magnitudes of the g-shifts. We expect our conclusions to aid the understanding of spectra in magnetic resonance investigations of heavy transition metal compounds.
Collapse
Affiliation(s)
- Petra Pikulová
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
| | - Debora Misenkova
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| | - Radek Marek
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| | - Jan Novotný
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| |
Collapse
|
5
|
Emerson-King J, Pan S, Gyton MR, Tonner-Zech R, Chaplin AB. Synthesis of a rhodium(III) dinitrogen complex using a calix[4]arene-based diphosphine ligand. Chem Commun (Camb) 2023; 59:2150-2152. [PMID: 36727440 PMCID: PMC9933454 DOI: 10.1039/d2cc06837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis and characterisation of the rhodium(III) dinitrogen complex [Rh(2,2'-biphenyl)(CxP2)(N2)]+ are described, where CxP2 is a trans-spanning calix[4]arene-based diphosphine and the dinitrogen ligand is projected into the cavity of the macrocycle.
Collapse
Affiliation(s)
- Jack Emerson-King
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Sudip Pan
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität LeipzigLinnéstraße 2LeipzigD-04103Germany
| | - Matthew R. Gyton
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität LeipzigLinnéstraße 2LeipzigD-04103Germany
| | - Adrian B. Chaplin
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
6
|
Schmitt M, Krossing I. Terminal end-on coordination of dinitrogen versus isoelectronic CO: A comparison using the charge displacement analysis. J Comput Chem 2023; 44:149-158. [PMID: 35312076 DOI: 10.1002/jcc.26837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
Abstract
The metal dinitrogen bonding in a wide series of terminal end-on dinitrogen complexes is investigated with the charge displacement analysis based on natural orbitals of chemical valence (CD-NOCV). The effect of the σ donation and π backdonation on the NN bond are discussed and compared with the observations for a series of carbonyl complexes, published in 2016 by Tarantelli et al. The σ donation is relative invariant over the series of dinitrogen complexes and has no significant effect on the NN bond strength, whereas the π backdonation causes a considerable elongation of the NN bond. Some uncommon examples of weakly bound dinitrogen with blue-shifted stretching frequency compared to free N2 (ν = 2330 cm-1 ) are known. The dinitrogen bonding in these complexes is simulated with a point charge. Apparently, electrostatics account for the shortened N─N bond in these systems.
Collapse
Affiliation(s)
- Manuel Schmitt
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Schild DJ, Nurdin L, Moret ME, Oyala PH, Peters JC. Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphine-Borane Ligand. Angew Chem Int Ed Engl 2022; 61:e202209655. [PMID: 35973965 PMCID: PMC9588675 DOI: 10.1002/anie.202209655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/11/2022]
Abstract
Terminal iron nitrides (Fe≡N) have been proposed as intermediates of Fe-mediated nitrogen fixation, and well-defined synthetic iron nitrides have been characterized in high oxidation states, including FeIV , FeV , and FeVI . This study reports the generation and low temperature characterization of a terminally bound iron(III) nitride, P3 B Fe(N) (P3 B =tris(o-diisopropylphosphinophenyl)borane), which is a proposed intermediate of iron-mediated nitrogen fixation by the P3 B Fe-catalyst system. CW- and pulse EPR spectroscopy (HYSCORE and ENDOR), supported by DFT calculations, help to define a 2 A ground state electronic structure of this C3 -symmetric nitride species, placing the unpaired spin in a sigma orbital along the B-Fe-N vector; this electronic structure is distinct for an iron nitride. The unusual d5 -configuration is stabilized by significant delocalization (≈50 %) of the unpaired electron onto the axial boron and nitrogen ligands, with a majority of the spin residing on boron.
Collapse
Affiliation(s)
- Dirk J Schild
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lucie Nurdin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marc-Etienne Moret
- Current address: Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Regenauer NI, Wadepohl H, Roşca D. Terminal N 2 Dissociation in [(PNN)Fe(N 2 )] 2 (μ-N 2 ) Leads to Local Spin-State Changes and Augmented Bridging N 2 Activation. Chemistry 2022; 28:e202202172. [PMID: 35916757 PMCID: PMC9804668 DOI: 10.1002/chem.202202172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 01/09/2023]
Abstract
Nitrogen fixation at iron centres is a fundamental catalytic step for N2 utilisation, relevant to biological (nitrogenase) and industrial (Haber-Bosch) processes. This step is coupled with important electronic structure changes which are currently poorly understood. We show here for the first time that terminal dinitrogen dissociation from iron complexes that coordinate N2 in a terminal and bridging fashion leaves the Fe-N2 -Fe unit intact but significantly enhances the degree of N2 activation (Δν≈180 cm-1 , Raman spectroscopy) through charge redistribution. The transformation proceeds with local spin state change at the iron centre (S= 1 / 2 ${{ 1/2 }}$ →S=3 /2 ). Further dissociation of the bridging N2 can be induced under thermolytic conditions, triggering a disproportionation reaction, from which the tetrahedral (PNN)2 Fe could be isolated. This work shows that dinitrogen activation can be induced in the absence of external chemical stimuli such as reducing agents or Lewis acids.
Collapse
Affiliation(s)
- Nicolas I. Regenauer
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 276Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 276Germany
| | - Dragoş‐Adrian Roşca
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 276Germany
| |
Collapse
|
9
|
Schild DJ, Nurdin L, Moret ME, Oyala PH, Peters J. Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphine‐Borane Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dirk J Schild
- California Institute of Technology Chemistry UNITED STATES
| | - Lucie Nurdin
- California Institute of Technology Chemistry UNITED STATES
| | | | - Paul H Oyala
- California Institute of Technology Chemistry UNITED STATES
| | - Jonas Peters
- California Institute of Technology Division of Chemistry and Chemical Engineering 1200 East California Blvd 91103 Pasadena UNITED STATES
| |
Collapse
|
10
|
Photochemical Synthesis of Transition Metal-Stabilized Uranium(VI) Nitride Complexes. Nat Commun 2022; 13:3809. [PMID: 35778419 PMCID: PMC9249861 DOI: 10.1038/s41467-022-31582-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
Uranium nitrides play important roles in dinitrogen activation and functionalization and in chemistry for nuclear fuels, but the synthesis and isolation of the highly reactive uranium(VI) nitrides remains challenging. Here, we report an example of transition metal (TM) stabilized U(VI) nitride complexes, which are generated by the photolysis of azide-bridged U(IV)-TM (TM = Rh, Ir) precursors. The U(V) nitride intermediates with bridged azide ligands are isolated successfully by careful control of the irradiation time, suggesting that the photolysis of azide-bridged U(IV)-TM precursors is a stepwise process. The presence of two U(VI) nitrides stabilized by three TMs is clearly demonstrated by an X-ray crystallographic study. These TM stabilized U(V) nitride intermediates and U(VI) nitride products exhibit excellent stability both in the solid-state and in THF solution under ambient light. Density functional theory calculations show that the photolysis necessary to break the N-N bond of the azide ligands implies excitation from uranium f-orbital to the lowest unoccupied molecular orbital (LUMO), as suggested by the strong antibonding N-(N2) character present in the latter.
Collapse
|
11
|
Martelino D, Mahato S, VandeVen W, Hein NM, Clarke RM, MacNeil GA, Thomas F, Storr T. Chromium Nitride Umpolung Tuned by the Locus of Oxidation. J Am Chem Soc 2022; 144:11594-11607. [PMID: 35749669 DOI: 10.1021/jacs.2c01840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation of a series of CrV nitride salen complexes (CrVNSalR) with different para-phenolate substituents (R = CF3, tBu, NMe2) was investigated to determine how the locus of oxidation (either metal or ligand) dictates reactivity at the nitride. Para-phenolate substituents were chosen to provide maximum variation in the electron-donating ability of the tetradentate ligand at a site remote from the metal coordination sphere. We show that one-electron oxidation affords CrVI nitrides ([CrVINSalR]+; R = CF3, tBu) and a localized CrV nitride phenoxyl radical for the more electron-donating NMe2 substituent ([CrVNSalNMe2]•+). The facile nitride homocoupling observed for the MnVI analogues was significantly attenuated for the CrVI complexes due to a smaller increase in nitride character in the M≡N π* orbitals for Cr relative to Mn. Upon oxidation, both the calculated nitride natural population analysis (NPA) charge and energy of molecular orbitals associated with the {Cr≡N} unit change to a lesser extent for the CrV ligand radical derivative ([CrVNSalNMe2]•+) in comparison to the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu). As a result, [CrVNSalNMe2]•+ reacts with B(C6F5)3, thus exhibiting similar nucleophilic reactivity to the neutral CrV nitride derivatives. In contrast, the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu) act as electrophiles, displaying facile reactivity with PPh3 and no reaction with B(C6F5)3. Thus, while oxidation to the ligand radical does not change the reactivity profile, metal-based oxidation to CrVI results in umpolung, a switch from nucleophilic to electrophilic reactivity at the terminal nitride.
Collapse
Affiliation(s)
- Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ryan M Clarke
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
12
|
G Jafari M, Fehn D, Reinholdt A, Hernández-Prieto C, Patel P, Gau MR, Carroll PJ, Krzystek J, Liu C, Ozarowski A, Telser J, Delferro M, Meyer K, Mindiola DJ. Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V 3N 4 Double-Diamond Core. J Am Chem Soc 2022; 144:10201-10219. [PMID: 35652694 DOI: 10.1021/jacs.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(μ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-μ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cristina Hernández-Prieto
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prajay Patel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Shi H, Liang R, Phillips DL, Lee HK, Man WL, Lau KC, Yiu SM, Lau TC. Structure and Reactivity of One- and Two-Electron Oxidized Manganese(V) Nitrido Complexes Bearing a Bulky Corrole Ligand. J Am Chem Soc 2022; 144:7588-7593. [PMID: 35442033 DOI: 10.1021/jacs.2c02506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As a strategy to design stable but highly reactive metal nitrido species, we have synthesized a manganese(V) nitrido complex bearing a bulky corrole ligand, [MnV(N)(TTPPC)]- (1, TTPPC is the trianion of 5,10,15-Tris(2,4,6-triphenylphenyl)corrole). Complex 1 is readily oxidized by 1 equiv of Cp2Fe+ to give the neutral complex 2, which can be further oxidized by 1 equiv of [(p-Br-C6H4)3N•+][B(C6F5)4] to afford the cationic complex 3. All three complexes are stable in the solid state and in CH2Cl2 solution, and their molecular structures have been determined by X-ray crystallography. Spectroscopic and theoretical studies indicate that complexes 2 and 3 are best formulated as Mn(V) nitrido π-cation corrole [MnV(N)(TTPPC+•)] and Mn(V) nitrido π-dication corrole [MnV(N)(TTPPC2+)]+, respectively. Complex 3 is the most reactive N atom transfer reagent among isolated nitrido complexes; it reacts with PPh3 and styrene with second-order rate constants of 2.12 × 105 and 1.95 × 10-2 M-1 s-1, respectively, which are >107 faster than that of 2.
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Runhui Liang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong999077, People's Republic of China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong999077, People's Republic of China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Central Avenue, Shatin, New Territories, Hong Kong999077, People's Republic of China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| |
Collapse
|
14
|
Connor GP, Delony D, Weber JE, Mercado BQ, Curley JB, Schneider S, Mayer JM, Holland PL. Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chem Sci 2022; 13:4010-4018. [PMID: 35440977 PMCID: PMC8985503 DOI: 10.1039/d1sc04503b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium(iii) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH2)2Cl]+, or results in dehydrohalogenation to the rhenium(iii) amido complex, (PNP)Re(NH2)Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol−1, while DFT computations indicate a substantially weaker N–H bond of the putative rhenium(iv)-imide intermediate (BDE = 38 kcal mol−1). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH3 generation. Rhenium–PNP complexes split N2 to nitrides, but the nitrides do not give ammonia. Here, the thermodynamics of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, showing that the first H addition is the bottleneck.![]()
Collapse
Affiliation(s)
- Gannon P Connor
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Daniel Delony
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - Jeremy E Weber
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | | - Julia B Curley
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Sven Schneider
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - James M Mayer
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | |
Collapse
|
15
|
Schmidt‐Räntsch T, Verplancke H, Lienert JN, Demeshko S, Otte M, Van Trieste GP, Reid KA, Reibenspies JH, Powers DC, Holthausen MC, Schneider S. Nitrogen Atom Transfer Catalysis by Metallonitrene C-H Insertion: Photocatalytic Amidation of Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202115626. [PMID: 34905281 PMCID: PMC9305406 DOI: 10.1002/anie.202115626] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/18/2022]
Abstract
C-H amination and amidation by catalytic nitrene transfer are well-established and typically proceed via electrophilic attack of nitrenoid intermediates. In contrast, the insertion of (formal) terminal nitride ligands into C-H bonds is much less developed and catalytic nitrogen atom transfer remains unknown. We here report the synthesis of a formal terminal nitride complex of palladium. Photocrystallographic, magnetic, and computational characterization support the assignment as an authentic metallonitrene (Pd-N) with a diradical nitrogen ligand that is singly bonded to PdII . Despite the subvalent nitrene character, selective C-H insertion with aldehydes follows nucleophilic selectivity. Transamidation of the benzamide product is enabled by reaction with N3 SiMe3 . Based on these results, a photocatalytic protocol for aldehyde C-H trimethylsilylamidation was developed that exhibits inverted, nucleophilic selectivity as compared to typical nitrene transfer catalysis. This first example of catalytic C-H nitrogen atom transfer offers facile access to primary amides after deprotection.
Collapse
Affiliation(s)
- Till Schmidt‐Räntsch
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Jonas N. Lienert
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Matthias Otte
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | | | - Kaleb A. Reid
- Department of ChemistryTexas A&M University3255 TAMUCollege StationTX 77843USA
| | | | - David C. Powers
- Department of ChemistryTexas A&M University3255 TAMUCollege StationTX 77843USA
| | - Max C. Holthausen
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Sven Schneider
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
16
|
Hsueh FC, Barluzzi L, Keener M, Rajeshkumar T, Maron L, Scopelliti R, Mazzanti M. Reactivity of Multimetallic Thorium Nitrides Generated by Reduction of Thorium Azides. J Am Chem Soc 2022; 144:3222-3232. [PMID: 35138846 DOI: 10.1021/jacs.1c13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thorium nitrides are likely intermediates in the reported cleavage and functionalization of dinitrogen by molecular thorium complexes and are attractive compounds for the study of multiple bond formation in f-element chemistry, but only one example of thorium nitride isolable from solution was reported. Here, we show that stable multimetallic azide/nitride thorium complexes can be generated by reduction of thorium azide precursors─a route that has failed so far to produce Th nitrides. Once isolated, the thorium azide/nitride clusters, M3Th═N═Th (M = K or Cs), are stable in solutions probably due to the presence of alkali ions capping the nitride, but their synthesis requires a careful control of the reaction conditions (solvent, temperature, nature of precursor, and alkali ion). The nature of the cation plays an important role in generating a nitride product and results in large structural differences with a bent Th═N═Th moiety found in the K-bound nitride as a result of a strong K-nitride interaction and a linear arrangement in the Cs-bound nitride. Reactivity studies demonstrated the ability of Th nitrides to cleave CO in ambient conditions yielding CN-.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Luciano Barluzzi
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Megan Keener
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Park SV, Corcos AR, Jambor AN, Yang T, Berry JF. Formation of the N≡N Triple Bond from Reductive Coupling of a Paramagnetic Diruthenium Nitrido Compound. J Am Chem Soc 2022; 144:3259-3268. [PMID: 35133829 DOI: 10.1021/jacs.1c13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Construction of nitrogen-nitrogen triple bonds via homocoupling of metal nitrides is an important fundamental reaction relevant to a potential Nitrogen Economy. Here, we report that room temperature photolysis of Ru2(chp)4N3 (chp- = 2-chloro-6-hydroxypyridinate) in CH2Cl2 produces N2 via reductive coupling of Ru2(chp)4N nitrido species. Computational analysis reveals that the nitride coupling transition state (TS) features an out-of-plane "zigzag" geometry instead of the anticipated planar zigzag TS. However, with intentional exclusion of dispersion correction, the planar zigzag TS geometry can also be found. Both the out-of-plane and planar zigzag TS geometries feature two important types of orbital interactions: (1) donor-acceptor interactions involving intermolecular donation of a nitride lone pair into an empty Ru-N π* orbital and (2) Ru-N π to Ru-N π* interactions derived from coupling of nitridyl radicals. The relative importance of these two interactions is quantified both at and after the TS. Our analysis shows that both interactions are important for the formation of the N-N σ bond, while radical coupling interactions dominate the formation of N-N π bonds. Comparison is made to isoelectronic Ru2-oxo compounds. Formation of an O-O bond via bimolecular oxo coupling is not observed experimentally and is calculated to have a much higher TS energy. The major difference between the nitrido and oxo systems stems from an extremely large driving force, ∼-500 kJ/mol, for N-N coupling vs a more modest driving force for O-O coupling, -40 to -140 kJ/mol.
Collapse
Affiliation(s)
- Sungho V Park
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Amanda R Corcos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexander N Jambor
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tzuhsiung Yang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Schmidt‐Räntsch T, Verplancke H, Lienert JN, Demeshko S, Otte M, Van Trieste GP, Reid KA, Reibenspies JH, Powers DC, Holthausen MC, Schneider S. Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Till Schmidt‐Räntsch
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Jonas N. Lienert
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Matthias Otte
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | | | - Kaleb A. Reid
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | | | - David C. Powers
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Max C. Holthausen
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| |
Collapse
|
19
|
Abstract
Carbide complexes remain a rare class of molecules. Their paucity does not reflect exceptional instability but is rather due to the generally narrow scope of synthetic procedures for constructing carbide complexes. The preparation of carbide complexes typically revolves around generating LnM-CEx fragments, followed by cleavage of the C-E bonds of the coordinated carbon-based ligands (the alternative being direct C atom transfer). Prime examples involve deoxygenation of carbonyl ligands and deprotonation of methyl ligands, but several other p-block fragments can be cleaved off to afford carbide ligands. This Review outlines synthetic strategies toward terminal carbide complexes, bridging carbide complexes, as well as carbide-carbonyl cluster complexes. It then surveys the reactivity of carbide complexes, covering stoichiometric reactions where the carbide ligands act as C1 reagents, engage in cross-coupling reactions, and enact Fischer-Tropsch-like chemistry; in addition, we discuss carbide complexes in the context of catalysis. Finally, we examine spectroscopic features of carbide complexes, which helps to establish the presence of the carbide functionality and address its electronic structure.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Shi H, Lee HK, Pan Y, Lau KC, Yiu SM, Lam WWY, Man WL, Lau TC. Structure and Reactivity of a Manganese(VI) Nitrido Complex Bearing a Tetraamido Macrocyclic Ligand. J Am Chem Soc 2021; 143:15863-15872. [PMID: 34498856 DOI: 10.1021/jacs.1c08072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Manganese complexes in +6 oxidation state are rare. Although a number of Mn(VI) nitrido complexes have been generated in solution via one-electron oxidation of the corresponding Mn(V) nitrido species, they are too unstable to isolate. Herein we report the isolation and the X-ray structure of a Mn(VI) nitrido complex, [MnVI(N)(TAML)]- (2), which was obtained by one-electron oxidation of [MnV(N)(TAML)]2- (1). 2 undergoes N atom transfer to PPh3 and styrenes to give Ph3P═NH and aziridines, respectively. A Hammett study for various p-substituted styrenes gives a V-shaped plot; this is rationalized by the ability of 2 to function as either an electrophile or a nucleophile. 2 also undergoes hydride transfer reactions with NADH analogues, such as 10-methyl-9,10-dihydroacridine (AcrH2) and 1-benzyl-1,4-dihydronicotinamide (BNAH). A kinetic isotope effect of 7.3 was obtained when kinetic studies were carried out with AcrH2 and AcrD2. The reaction of 2 with NADH analogues results in the formation of [MnV(N)(TAML-H+)]- (3), which was characterized by ESI/MS, IR spectroscopy, and X-ray crystallography. These results indicate that this reaction occurs via an initial "separated CPET" (separated concerted proton-electron transfer) mechanism; that is, there is a concerted transfer of 1 e- + 1 H+ from AcrH2 (or BNAH) to 2, in which the electron is transferred to the MnVI center, while the proton is transferred to a carbonyl oxygen of TAML rather than to the nitrido ligand.
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - William W Y Lam
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi Road, Tsing Yi Island, Hong Kong, China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| |
Collapse
|
21
|
Sun J, Verplancke H, Schweizer JI, Diefenbach M, Würtele C, Otte M, Tkach I, Herwig C, Limberg C, Demeshko S, Holthausen MC, Schneider S. Stabilizing P≡P: P22–, P2⋅–, and P20 as bridging ligands. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
23
|
Barluzzi L, Hsueh FC, Scopelliti R, Atkinson BE, Kaltsoyannis N, Mazzanti M. Synthesis, structure, and reactivity of uranium(vi) nitrides. Chem Sci 2021; 12:8096-8104. [PMID: 34194699 PMCID: PMC8208130 DOI: 10.1039/d1sc01796a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber-Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(O t Bu)3)3(μ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(O t Bu)3)3(μ-N)}2], 2 and [K2{U(OSi(O t Bu)3)3}2(μ-N)2(μ-I)], 3 while oxidation with a stronger oxidant ("magic blue") yields the U(vi)/U(vi) complex [{U(OSi(O t Bu)3)3}2(μ-N)2(μ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(O t Bu)3)3(μ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(O t Bu)3)3}2(μ-NH2)2(μ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U-N bonding. Computational studies show a delocalised bond across the U-N-U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U-N σ orbital well localised to U[triple bond, length as m-dash]N and π orbitals which partially delocalise to form the U-N single bond with the other uranium.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fang-Che Hsueh
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
24
|
Grant LN, Bhunia M, Pinter B, Rebreyend C, Carroll ME, Carroll PJ, de Bruin B, Mindiola DJ. Pursuit of an Electron Deficient Titanium Nitride. Inorg Chem 2021; 60:5635-5646. [PMID: 33825450 DOI: 10.1021/acs.inorgchem.0c03644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitride salt [(PN)2Ti≡N{μ2-K(OEt2)}]2 (1) (PN- = (N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) can be oxidized with two equiv of I2 or four equiv of ClCPh3 to produce the phosphinimide-halide complexes (NPN')(PN)Ti(X) (X- = I (2), Cl (3); NPN' = N-(2-NPiPr2-4-methylphenyl)-2,4,6-Me3C6H22-), respectively. In the case of 2, H2 was found to be one of the other products; whereas, HCPh3 and Gomberg's dimer were observed upon the formation of 3. Independent studies suggest that the oxidation of 1 could imply the formation of the transient nitridyl species [(PN)2Ti(≡N•)] (A), which can either oxidize the proximal phosphine atom to produce the Ti(III) intermediate [(NPN')(PN)Ti] (B) or, alternatively, engage in H atom abstraction to form the parent imido (PN)2Ti≡NH (4). The latter was independently prepared and was found to photochemically convert to the titanium-hydride, (NPN')(PN)Ti(H) (5). Isotopic labeling studies using (PN)2Ti≡ND (4-d1) as well as reactivity studies of 5 with a hydride abstractor demonstrate the presence of the hydride ligand in 5. An alternative route to putative A was observed via a photochemically promoted incomplete reduction of the azide ligand in (PN)2Ti(N3) (6) to 4. This process was accompanied by some formation of 5. Frozen matrix X-band EPR studies of 6, performed under photolytic conditions, were consistent with species B being formed under these reaction conditions, originating from a low barrier N-insertion into the phosphine group in the putative nitridyl species A. Computational studies were also undertaken to discover the mechanism and plausibility of the divergent pathways (via intermediates A and B) in the formation of 2 and 3, and to characterize the bonding and electronic structure of the elusive nitrogen-centered radical in A.
Collapse
Affiliation(s)
- Lauren N Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Christophe Rebreyend
- Department of Homogeneous Catalysis, Universiteit van Amsterdam, Faculty of Science, van 't Hoff Institute for Molecular Sciences, Postbus 94720, Amsterdam
| | - Maria E Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bas de Bruin
- Department of Homogeneous Catalysis, Universiteit van Amsterdam, Faculty of Science, van 't Hoff Institute for Molecular Sciences, Postbus 94720, Amsterdam
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Zhang W, Chen Y, Zhang G, Tan X, Ji Q, Wang Z, Liu H, Qu J. Hot‐Electron‐Induced Photothermal Catalysis for Energy‐Dependent Molecular Oxygen Activation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wei Zhang
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Chen
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Gong Zhang
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Xiao Tan
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Guilin University of Technology Guilin 541006 China
| | - Qinghua Ji
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Zhaowu Wang
- School of Physics and Engineering Henan University of Science and Technology Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications Luoyang Henan 471023 China
| | - Huijuan Liu
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
26
|
Ehret F, Filippou V, Blickle S, Bubrin M, Záliš S, Kaim W. Structural and Oxidation State Alternatives in Platinum and Palladium Complexes of a Redox-Active Amidinato Ligand. Chemistry 2021; 27:3374-3381. [PMID: 32959415 PMCID: PMC7986709 DOI: 10.1002/chem.202003636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/07/2022]
Abstract
Reaction of [Pt(DMSO)2 Cl2 ] or [Pd(MeCN)2 Cl2 ] with the electron-rich LH=N,N'-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2 ] (1) but dinuclear [Pd2 L4 ] (2), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L- . The reversibly accessible cations [PtL2 ]+ and [Pd2 L4 ]+ were also studied, the latter as [Pd2 L4 ][B{3,5-(CF3 )2 C6 H3 }4 ] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII (L- )2 ] or [Pt. (L )2 ], [PtII (L0.5- )2 ]+ or [PtIII (L- )2 ]+ , [(PdII )2 (μ-L- )4 ] or [(Pd1.5 )2 (μ-L0.75- )4 ], and [(Pd2.5 )2 (μ-L- )4 ]+ or [(PdII )2 (μ-L0.75- )4 ]+ . In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2 ] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2 L4 ], and the dimetal (Pd2 4+ →Pd2 5+ ) instead of ligand (L- →L ) oxidation of the dinuclear palladium compound.
Collapse
Affiliation(s)
- Fabian Ehret
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Vasileios Filippou
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Svenja Blickle
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Martina Bubrin
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223, Prague, Czech Republic
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| |
Collapse
|
27
|
Zhang W, Chen Y, Zhang G, Tan X, Ji Q, Wang Z, Liu H, Qu J. Hot‐Electron‐Induced Photothermal Catalysis for Energy‐Dependent Molecular Oxygen Activation. Angew Chem Int Ed Engl 2021; 60:4872-4878. [DOI: 10.1002/anie.202012306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Zhang
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Chen
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Gong Zhang
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Xiao Tan
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Guilin University of Technology Guilin 541006 China
| | - Qinghua Ji
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Zhaowu Wang
- School of Physics and Engineering Henan University of Science and Technology Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications Luoyang Henan 471023 China
| | - Huijuan Liu
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Dunn PL, Cook BJ, Johnson SI, Appel AM, Bullock RM. Oxidation of Ammonia with Molecular Complexes. J Am Chem Soc 2020; 142:17845-17858. [PMID: 32977718 DOI: 10.1021/jacs.0c08269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidation of ammonia by molecular complexes is a burgeoning area of research, with critical scientific challenges that must be addressed. A fundamental understanding of individual reaction steps is needed, particularly for cleavage of N-H bonds and formation of N-N bonds. This Perspective evaluates the challenges of designing molecular catalysts for oxidation of ammonia and highlights recent key contributions to realizing the goals of viable energy storage and retrieval based on the N-H bonds of ammonia in a carbon-free energy cycle.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian J Cook
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
29
|
A hemilabile diphosphine pyridine pincer ligand: σ- and π-binding in molybdenum coordination complexes. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N-H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020; 59:15215-15219. [PMID: 32441448 PMCID: PMC7680347 DOI: 10.1002/anie.202006391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 01/07/2023]
Abstract
Despite their connection to ammonia synthesis, little is known about the ability of iron-bound, bridging nitrides to form N-H bonds. Herein we report a linear diiron bridging nitride complex supported by a redox-active macrocycle. The unique ability of the ligand scaffold to adapt to the geometric preference of the bridging species was found to facilitate the formation of N-H bonds via proton-coupled electron transfer to generate a μ-amide product. The structurally analogous μ-silyl- and μ-borylamide complexes were shown to form from the net insertion of the nitride into the E-H bonds (E=B, Si). Protonation of the parent bridging amide produced ammonia in high yield, and treatment of the nitride with PhSH was found to liberate NH3 in high yield through a reaction that engages the redox-activity of the ligand during PCET.
Collapse
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Thomas J Longo
- Department of Physics, Villanova University, Villanova, PA, 19085, USA
| | - Laura M Thierer
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Neil C Tomson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
31
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N−H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Thomas J. Longo
- Department of Physics Villanova University Villanova PA 19085 USA
| | - Laura M. Thierer
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Michael R. Gau
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Neil C. Tomson
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
32
|
Abstract
Terminal, electrophilic phosphinidene complexes (M=PR) are attractive platforms for PR-transfer to organic substrates. In contrast to aryl- or alkylphosphinidene complexes terminal chlorophosphinidenes (M=PCl) have only been proposed as transient intermediates but isolable example remain elusive. Here we present the transfer of PCl from chloro-substituted dibenzo-7λ3-phosphanorbornadiene to a square-planar osmium(II) PNP pincer complex to give the first isolable, terminal chlorophosphinidene complex with remarkable thermal stability. Os=P bonding was examined computationally giving rise to highly covalent {OsII=PICl} double bonding.
Collapse
Affiliation(s)
- Josh Abbenseth
- Institute für Anorganische ChemieUniversität GöttingenTammannstraße 437077Göttingen
| | - Sven Schneider
- Institute für Anorganische ChemieUniversität GöttingenTammannstraße 437077Göttingen
| |
Collapse
|
33
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
34
|
van Alten RS, Wätjen F, Demeshko S, Miller AJM, Würtele C, Siewert I, Schneider S. (Electro-)chemical Splitting of Dinitrogen with a Rhenium Pincer Complex. Eur J Inorg Chem 2020; 2020:1402-1410. [PMID: 32421038 PMCID: PMC7217231 DOI: 10.1002/ejic.201901278] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/25/2022]
Abstract
The splitting of N2 into well‐defined terminal nitride complexes is a key reaction for nitrogen fixation at ambient conditions. In continuation of our previous work on rhenium pincer mediated N2 splitting, nitrogen activation and cleavage upon (electro)chemical reduction of [ReCl2(L2)] {L2 = N(CHCHPtBu2)2–} is reported. The electrochemical characterization of [ReCl2(L2)] and comparison with our previously reported platform [ReCl2(L1)] {L1 = N(CH2CH2PtBu2)2–} provides mechanistic insight to rationalize the dependence of nitride yield on the reductant. Furthermore, the reactivity of N2 derived nitride complex [Re(N)Cl(L2)] with electrophiles is presented.
Collapse
Affiliation(s)
- Richt S van Alten
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Florian Wätjen
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Alexander J M Miller
- Department of Chemistry University of North Carolina at Chapel Hill 27599-3290 Chapel Hill NC USA
| | - Christian Würtele
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Inke Siewert
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany.,International Center for Advanced Studies of Energy Conversion University of Goettingen Tammannstraße 6 37077 Goettingen Germany
| | - Sven Schneider
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany.,International Center for Advanced Studies of Energy Conversion University of Goettingen Tammannstraße 6 37077 Goettingen Germany
| |
Collapse
|
35
|
Sengupta D, Sandoval-Pauker C, Schueller E, Encerrado-Manriquez AM, Metta-Magaña A, Lee WY, Seshadri R, Pinter B, Fortier S. Isolation of a Bimetallic Cobalt(III) Nitride and Examination of Its Hydrogen Atom Abstraction Chemistry and Reactivity toward H 2. J Am Chem Soc 2020; 142:8233-8242. [PMID: 32279486 DOI: 10.1021/jacs.0c00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)x][(ketguan)Co(N3)2] (ketguan = [(tBu2CN)C(NDipp)2]-, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride Na(THF)4{[(ketguan)Co(N3)]2(μ-N)} (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a CoIII═N═CoIII canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other group 9 bridging nitride complexes, no radical character is detected at the bridging N atom of 1. Indeed, 1 is unreactive toward weak C-H donors and even cocrystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1·CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [(ketguan)Co(N3)(py)]2 (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/Co(III) bridged imido species [(ketguan)Co(py)][(ketguan)Co](μ-NH)(μ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ∼ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5 ± 0.1, supportive of a HAA formation pathway. The reactivity of our system was further probed by photolyzing benzene/pyridine solutions of 4a under H2 and D2 atmospheres (150 psi), which leads to the exclusive formation of the bis(imido) complexes [(ketguan)Co(μ-NH)]2 (6) and [(ketguan)Co(μ-ND)]2 (6-D), respectively, as a result of dihydrogen activation. These results provide unique insights into the chemistry and electronic structure of late 3d metal nitrides while providing entryway into C-H activation pathways.
Collapse
Affiliation(s)
- Debabrata Sengupta
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | | | - Emily Schueller
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ram Seshadri
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
36
|
Affiliation(s)
- Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
37
|
Flesch S, Domenianni LI, Vöhringer P. Probing the primary processes of a triazido-cobalt(III) complex with femtosecond vibrational and electronic spectroscopies. Photochemical selectivity and multi-state reactivity. Phys Chem Chem Phys 2020; 22:25618-25630. [PMID: 33147305 DOI: 10.1039/d0cp04865h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The elementary dynamics following 355 nm-excitation of the complex, mer-[Co(dien)(N3)3], were studied in liquid dimethyl sulfoxide (DMSO) solution using femtosecond-ultraviolet-pump/mid-infrared-to-near-ultraviolet probe spectroscopy in conjunction with electronic structure calculations based on density functional theory. Following the initial N3--to-Co charge transfer excitation, the parent complex undergoes an ultrafast metal-to-ligand back electron transfer (BET) within 2 ps thereby populating a metal-centered singlet excited state, 1MC, which can either repopulate the electronic ground state or cleave an azido ligand from the ligand sphere surrounding the metal center. From the asymptotic ground-state bleaching signal after 1 ns, a primary quantum yield for ligand loss of ca. 13% is estimated. The IR-spectrum of the product demonstrates that the photodissociation occurs selectively from the equatorial binding site thereby leading exclusively to the solvolysis product, mer-trans-[Co(dien)(N3)2(DMSO)]+, which features the solvent ligand in the equatorial coordination plane and the azides in the two axial positions. The remarkable photochemical selectivity is traced back to the initial BET and the nature of the intermediate state, 1MC, whose electronic structure entails occupancy of the σ-antibonding d(x2-y2)-orbital. A stereochemical scrambling at the stage of the primary penta-coordinated diazido product is kinetically inhibited on the singlet surface by an energy barrier of roughly 27 kJ mol-1. Primary penta-coordinated products that may be born on the triplet surface are funneled to their singlet ground-state preferentially from geometries with trans-oriented azido ligands thereby also preventing a stereochemical isomerization that could possibly arise from an intersystem crossing.
Collapse
Affiliation(s)
- Stefan Flesch
- Lehrstuhl für Molekulare Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität, Wegelerstraße 12, 53115 Bonn, Germany.
| | | | | |
Collapse
|
38
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Kawakami R, Kuriyama S, Tanaka H, Arashiba K, Konomi A, Nakajima K, Yoshizawa K, Nishibayashi Y. Catalytic reduction of dinitrogen to tris(trimethylsilyl)amine using rhodium complexes with a pyrrole-based PNP-type pincer ligand. Chem Commun (Camb) 2019; 55:14886-14889. [PMID: 31720597 DOI: 10.1039/c9cc06896a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium complexes bearing an anionic pyrrole-based PNP-type pincer ligand are synthesised and found to work as effective catalysts for the transformation of molecular dinitrogen into tris(trimethylsilyl)amine under mild reaction conditions. This is the first successful example of rhodium-catalysed dinitrogen reduction under mild reaction conditions.
Collapse
Affiliation(s)
- Ryosuke Kawakami
- Department of Systems Innovation, and School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Polezhaev AV, Ezernitskaya MG, Koridze AA. Dihydrogen and dinitrogen rhodium complexes bearing metallocene-based pincer ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Zott MD, Garrido-Barros P, Peters JC. Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03499] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael D. Zott
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
42
|
Rebreyend C, Mouarrawis V, Siegler MA, van der Vlugt JI, de Bruin B. Steric Protection of Rhodium‐Nitridyl Radical Species. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christophe Rebreyend
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Valentinos Mouarrawis
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry Johns Hopkins University 21218 Baltimore Maryland USA
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
43
|
Ghannam J, Sun Z, Cundari TR, Zeller M, Lugosan A, Stanek CM, Lee WT. Intramolecular C-H Functionalization Followed by a [2 σ + 2 π] Addition via an Intermediate Nickel-Nitridyl Complex. Inorg Chem 2019; 58:7131-7135. [PMID: 31117623 DOI: 10.1021/acs.inorgchem.9b00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Irradiation of a disphenoidal Ni(II) azido complex, [Cz tBu(Pyr iPr)2NiN3] (1), revealed an unprecedented nickel complex, [Cz tBu(Pyr iPr)(NH2-Pyr iPr)] (2), in >90% isolated yield. As evidenced by single-crystal X-ray diffraction, 2 is produced by double intramolecular C-H activation of a putative nickel-nitridyl intermediate, [Cz tBu(Pyr iPr)2Ni-⃛N•]. Calculations support the generation of an intermediate with significant nitridyl radical character after the loss of N2, which, in turn, undergoes tandem C-H activations, leading to functionalized intermediates and products. This is an unprecedented example of transient Ni-⃛N•-promoted intramolecular C-H functionalization, followed by a [2σ + 2π] addition, yielding bis-metallacyclic product 2. Complex 2 is also observed from the reaction of Ni(I) precursor Cz tBu(Pyr iPr)2Ni (3) and Me3SiN3, suggesting a unique thermal route toward a masked nickel-nitridyl intermediate.
Collapse
Affiliation(s)
- Jack Ghannam
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , Denton , Texas 76203 , United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , Denton , Texas 76203 , United States
| | - Matthias Zeller
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Adriana Lugosan
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Christopher M Stanek
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Wei-Tsung Lee
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| |
Collapse
|
44
|
Chang HC, Mondal B, Fang H, Neese F, Bill E, Ye S. Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes. J Am Chem Soc 2019; 141:2421-2434. [PMID: 30620571 PMCID: PMC6728100 DOI: 10.1021/jacs.8b11429] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Iron(V)-nitrido and -oxo complexes
have been proposed as key intermediates
in a diverse array of chemical transformations. Herein we present
a detailed electronic-structure analysis of [FeV(N)(TPP)]
(1, TPP2– = tetraphenylporphyrinato),
and [FeV(N)(cyclam-ac)]+ (2, cyclam-ac
= 1,4,8,11-tetraazacyclotetradecane-1-acetato) using electron paramagnetic
resonance (EPR) and 57Fe Mössbauer spectroscopy
coupled with wave function based complete active-space self-consistent
field (CASSCF) calculations. The findings were compared with all other
well-characterized genuine iron(V)-nitrido and -oxo complexes, [FeV(N)(MePy2tacn)](PF6)2 (3, MePy2tacn = methyl-N′,N″-bis(2-picolyl)-1,4,7-triazacyclononane), [FeV(N){PhB(t-BuIm)3}]+ (4, PhB(tBuIm)3– = phenyltris(3-tert-butylimidazol-2-ylidene)borate),
and [FeV(O)(TAML)]− (5,
TAML4– = tetraamido macrocyclic ligand). Our results
revealed that complex 1 is an authenticated iron(V)-nitrido
species and contrasts with its oxo congener, compound I, which contains
a ferryl unit interacting with a porphyrin radical. More importantly,
tetragonal iron(V)-nitrido and -oxo complexes 1–3 and 5 all possess an orbitally nearly doubly
degenerate S = 1/2 ground state. Consequently, analogous
near-axial EPR spectra with g|| < g⊥ ≤ 2 were measured for them,
and their g|| and g⊥ values were found to obey a simple relation of g⊥2 + (2 – g∥)2 = 4. However, the bonding situation for trigonal iron(V)-nitrido
complex 4 is completely different as evidenced by its
distinct EPR spectrum with g|| < 2
< g⊥. Further in-depth analyses
suggested that tetragonal low spin iron(V)-nitrido and -oxo complexes
feature electronic structures akin to those found for complexes 1–3 and 5. Therefore, the
characteristic EPR signals determined for 1–3 and 5 can be used as a spectroscopic marker
to identify such highly reactive intermediates in catalytic processes.
Collapse
Affiliation(s)
- Hao-Ching Chang
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Bhaskar Mondal
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Huayi Fang
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
45
|
Oda A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y. Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn II-Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and Their Origins. Inorg Chem 2019; 58:327-338. [PMID: 30495931 DOI: 10.1021/acs.inorgchem.8b02425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxygenase reactivity toward selective partial oxidation of CH4 to CH3OH requires an atomic oxygen-radical bound to metal (M-O•: oxyl intermediate) that is capable of abstracting an H atom from the significantly strong C-H bond in CH4. Because such a reaction is frequently observed in metal-doped zeolites, it has been recognized that the zeolite provides an environment that stabilizes the M-O• intermediate. However, no experimental data of M-O• have so far been discovered in the zeolite; thus, little is known about the correlation among the state of M-O•, its reactivity for CH4, and the nature of the zeolite environment. Here, we report a combined spectroscopic and computational study of the room-temperature activation of CH4 over ZnII-O• in the MFI zeolite. One ZnII-O• species does perform H-abstraction from CH4 at room temperature. The resultant CH3• species reacts with the other ZnII-O• site to form the ZnII-OCH3 species. The H2O-assisted extraction of surface methoxide yields 29 μmol g-1 of CH3OH with a 94% selectivity. The quantum mechanics (QM)/molecular mechanics (MM) calculation determined the central step as the oxyl-mediated hydrogen atom transfer which requires an activation energy of only 10 kJ mol-1. On the basis of the findings in gas-phase experiments regarding the CH4 activation by the free [M-O•]+ species, the remarkable H-abstraction reactivity of the ZnII-O• species in zeolites was totally rationalized. Additionally, the experimentally validated QM/MM calculation revealed that the zeolite lattice has potential as the ligand to enhance the polarization of the M-O• bond and thereby enables to create effectively the highly reactive M-O• bond required for low-temperature activation of CH4. The present study proposes that tuning of the polarization effect of the anchoring site over heterogeneous catalysts is the valuable way to create the oxyl-based functionality on the heterogeneous catalyst.
Collapse
Affiliation(s)
- Akira Oda
- Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan.,Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| | - Takahiro Ohkubo
- Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| | - Takashi Yumura
- Department of Chemistry and Materials Technology , Kyoto Institute of Technology , Matsugasaki , Sakyo-ku, Kyoto 606-8585 , Japan
| | - Hisayoshi Kobayashi
- Department of Chemistry and Materials Technology , Kyoto Institute of Technology , Matsugasaki , Sakyo-ku, Kyoto 606-8585 , Japan
| | - Yasushige Kuroda
- Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
46
|
Li P, Li L, Yue X, Wang Q, Pu M, Yang Z, Lei M. 1,2 addition or cycloaddition of allenes by a dihafnium μ−Nitrido complex? A DFT study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Chantarojsiri T, Reath AH, Yang JY. Cationic Charges Leading to an Inverse Free‐Energy Relationship for N−N Bond Formation by Mn
VI
Nitrides. Angew Chem Int Ed Engl 2018; 57:14037-14042. [DOI: 10.1002/anie.201805832] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/15/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Teera Chantarojsiri
- Department of Chemistry University of California Irvine CA USA
- Department of Chemistry Faculty of Science Mahidol University Bangkok Thailand
| | | | - Jenny Y. Yang
- Department of Chemistry University of California Irvine CA USA
| |
Collapse
|
48
|
Chantarojsiri T, Reath AH, Yang JY. Cationic Charges Leading to an Inverse Free‐Energy Relationship for N−N Bond Formation by Mn
VI
Nitrides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Teera Chantarojsiri
- Department of Chemistry University of California Irvine CA USA
- Department of Chemistry Faculty of Science Mahidol University Bangkok Thailand
| | | | - Jenny Y. Yang
- Department of Chemistry University of California Irvine CA USA
| |
Collapse
|
49
|
Heins SP, Morris WD, Cundari TR, MacMillan SN, Lobkovsky EB, Livezey NM, Wolczanski PT. Complexes of [(dadi)Ti(L/X)]m That Reveal Redox Non-Innocence and a Stepwise Carbene Insertion into a Carbon–Carbon Bond. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Spencer P. Heins
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Wesley D. Morris
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Thomas R. Cundari
- Department of Chemistry, CASCaM, University of North Texas, Denton, Texas 76201, United States
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Nicholas M. Livezey
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
Kinauer M, Diefenbach M, Bamberger H, Demeshko S, Reijerse EJ, Volkmann C, Würtele C, van Slageren J, de Bruin B, Holthausen MC, Schneider S. An iridium(iii/iv/v) redox series featuring a terminal imido complex with triplet ground state. Chem Sci 2018; 9:4325-4332. [PMID: 29780564 PMCID: PMC5944377 DOI: 10.1039/c8sc01113c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 01/11/2023] Open
Abstract
The iridium(iii/iv/v) imido redox series [Ir(NtBu){N(CHCHPtBu2)2}]0/+/2+ was synthesized and examined spectroscopically, magnetically, crystallographically and computationally. The monocationic iridium(iv) imide exhibits an electronic doublet ground state with considerable 'imidyl' character as a result of covalent Ir-NtBu bonding. Reduction gives the neutral imide [Ir(NtBu){N(CHCHPtBu2)2}] as the first example of an iridium complex with a triplet ground state. Its reactivity with respect to nitrene transfer to selected electrophiles (CO2) and nucleophiles (PMe3), respectively, is reported.
Collapse
Affiliation(s)
- Markus Kinauer
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Martin Diefenbach
- Institut für Anorganische und Analytische Chemie , Goethe-Universität , Max-von-Laue-Str. 7 , 60438 Frankfurt am Main , Germany
| | - Heiko Bamberger
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Serhiy Demeshko
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Edward J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Christian Volkmann
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Christian Würtele
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Joris van Slageren
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam , The Netherlands .
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie , Goethe-Universität , Max-von-Laue-Str. 7 , 60438 Frankfurt am Main , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| |
Collapse
|