1
|
Pissas M, Ferentinos E, Kyritsis P, Sanakis Y. Field-Induced Slow Magnetization Relaxation of a Tetrahedral S=2 Fe IIS 4-Containing Complex. Chempluschem 2024; 89:e202400109. [PMID: 38727531 DOI: 10.1002/cplu.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Indexed: 06/09/2024]
Abstract
In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2-5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero-field splitting parameters of 1 which were previously determined by high- frequency and -field electron paramagnetic resonance and Mössbauer spectroscopies.
Collapse
Affiliation(s)
- Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| |
Collapse
|
2
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Braun J, Powell AK, Unterreiner AN. Gaining Insights into the Interplay between Optical and Magnetic Properties in Photoexcited Coordination Compounds. Chemistry 2024; 30:e202400977. [PMID: 38693865 DOI: 10.1002/chem.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.
Collapse
Affiliation(s)
- Jonas Braun
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Wang YH, Gao ZN, Liang S, Jie Li, Wei WJ, Han SD, Zhang YQ, Hu JX, Wang GM. Synergism of Light-Induced [4 + 4] Cycloaddition and Electron Transfer Toward Switchable Photoluminescence and Single-Molecule Magnet Behavior in a Dy 4 Cubane. RESEARCH (WASHINGTON, D.C.) 2024; 7:0411. [PMID: 38974011 PMCID: PMC11223772 DOI: 10.34133/research.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024]
Abstract
Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.
Collapse
Affiliation(s)
- Yu-Han Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Zhen-Ni Gao
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Shuai Liang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Jie Li
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Wu-Ji Wei
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology,
Nanjing Normal University, Nanjing 210023, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Yadav J, Gupta A, Mondal A, Daumann F, Hörner G, Weber B, Konar S. Exploring the Magnetic Interactions in Two Novel Cyanide-Bridged Homo- and Heterometallic Hexadecanuclear Complexes. Chemistry 2024; 30:e202400321. [PMID: 38625710 DOI: 10.1002/chem.202400321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Two novel isostructural cyanide-bridged hexadecanuclear complexes with the general formula {[Fe(CN)6]6[M{en(Bn)py}]10}2+ [M=Fe (12+), Ni (22+)] have been synthesized. The structural analyses disclose the presence of multivalent Fe centres with different spin states in complex 12+ whereas all the Fe centres share a conserved oxidation state in complex 22+. The DC magnetic study revealed antiferromagnetic interactions between the adjacent metal centres and ferrimagnetic behaviour in 12+. On the other hand, ferromagnetic interactions were observed in complex 22+ due to nearly orthogonal orientation of the interacting orbitals and poor spatial overlap as observed in BS-DFT calculations.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry, Elements Building, Indian Institute of Science Education and Research Bhopal, Bhauri, Madhya Pradesh, Bhopal By-pass road, India, 462066
| | - Arindam Gupta
- Department of Chemistry, Elements Building, Indian Institute of Science Education and Research Bhopal, Bhauri, Madhya Pradesh, Bhopal By-pass road, India, 462066
| | - Arpan Mondal
- Department of Chemistry, Elements Building, Indian Institute of Science Education and Research Bhopal, Bhauri, Madhya Pradesh, Bhopal By-pass road, India, 462066
| | - Florian Daumann
- IAAC, Friedrich-Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Gerald Hörner
- IAAC, Friedrich-Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Birgit Weber
- IAAC, Friedrich-Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Sanjit Konar
- Department of Chemistry, Elements Building, Indian Institute of Science Education and Research Bhopal, Bhauri, Madhya Pradesh, Bhopal By-pass road, India, 462066
| |
Collapse
|
6
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Kaushik K, Sarkar A, Kamilya S, Li Y, Dechambenoit P, Rouzières M, Mehta S, Mondal A. Light-Induced, Structural Matrix Guided Stepwise Spin-State Switching in 3d-5d Molecular Assembly. Inorg Chem 2024; 63:7604-7612. [PMID: 38556753 DOI: 10.1021/acs.inorgchem.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
A new iron(II) molecular complex {[W(CN)8][Fe(bik*)3]2}BF4·7H2O·1.5CH3OH (1.7H2O·1.5CH3OH) was synthesized using a versatile octacyanotungstate(V) building block and N-donor bidentate ligand (bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone) and detailed characterizations were carried out. The crystal structure of 1.7H2O·1.5CH3OH is composed of an ionic salt from one anionic [W(CN)8]3- unit, two isolated cationic [Fe(bik*)3]2+ units, and one BF4- counteranion in the asymmetric unit. Magnetic studies of 1.7H2O·1.5CH3OH display interesting two-step reversible thermo-induced spin-state switching and the partially desolvated form 1.7H2O shows a photomagnetic effect at low temperatures. Additionally, the physical properties of 1.7H2O·1.5CH3OH were compared with the monomeric unit of {[Fe(bik*)3]2}·4ReO4·H2O (2.H2O) and detailed photophysical investigations were also performed to study the effect of a structural matrix {[W(CN)8]3- and ReO4- unit} on the spin-state switching properties of the [Fe(bik*)3]2+ unit in both systems (1.7H2O·1.5CH3OH and 2.H2O).
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Archita Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris, cedex 5, France
| | - Pierre Dechambenoit
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| |
Collapse
|
8
|
Zenno H, Sekine Y, Zhang Z, Hayami S. Solvation/desolvation induced reversible distortion change and switching between spin crossover and single molecular magnet behaviour in a cobalt(II) complex. Dalton Trans 2024; 53:5861-5870. [PMID: 38411596 DOI: 10.1039/d3dt03936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coexistence and switching between spin-crossover (SCO) and single molecular magnet (SMM) behaviours in one single complex may lead to materials that exhibit bi-stable and stimuli sensitive properties in a wide temperature range and under multiple conditions; unfortunately, the conflict and dilemma in the principle of approaching SCO and SMM molecules make it particularly difficult; at low temperature, low spin (LS) SCO molecules possess highly symmetrical geometry and isotropic spins, which are not suitable for SMM behaviour. Herein, we overcome this issue by using a rationally designed Co(II) mononuclear complex [Co(MeOphterpy)2] (ClO4)2 (1; MeOphterpy = 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine), the magnetic properties of which reversibly respond to desolvation and solvation. The solvated structure reinforced a low distortion of the coordination sphere via hydrogen bonding between ligands and methanol molecules, while in the desolvated structure a methoxy group flipping occurred, increasing the distortion of the coordination sphere and stabilising the HS state at low temperature, which exhibited a field-induced slow magnetic relaxation, resulting in a reversible switching between SCO and SMM properties within one molecule.
Collapse
Affiliation(s)
- Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Zhongyue Zhang
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
9
|
Rabelo R, Toma L, Julve M, Lloret F, Pasán J, Cangussu D, Ruiz-García R, Cano J. How the spin state tunes the slow magnetic relaxation field dependence in spin crossover cobalt(II) complexes. Dalton Trans 2024; 53:5507-5520. [PMID: 38416047 DOI: 10.1039/d4dt00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel family of cobalt(II) compounds with tridentate pyridine-2,6-diiminephenyl type ligands featuring electron-withdrawing substituents of general formula [Co(n-XPhPDI)2](ClO4)2·S [n-XPhPDI = 2,6-bis(N-n-halophenylformimidoyl)pyridine with n = 4 (1-3) and 3 (4); X = I (1), Br (2 and 4) and Cl (3); S = MeCN (1 and 2) and EtOAc (3)] has been synthesised and characterised by single-crystal X-ray diffraction, electron paramagnetic resonance, and static (dc) and dynamic (ac) magnetic measurements combined with theoretical calculations. The structures of 1-4 consist of mononuclear bis(chelating) cobalt(II) complex cations, [CoII(n-XPhPDI)2]2+, perchlorate anions, and acetonitrile (1 and 2) or ethyl acetate (3) molecules of crystallisation. This unique series of mononuclear six-coordinate octahedral cobalt(II) complexes displays both thermally-induced low-spin (LS)/high-spin (HS) transition and field-induced slow magnetic relaxation in both LS and HS states. A complete LS ↔ HS transition occurs for 1 and 2, while it is incomplete for 4, one-third of the complexes being HS at low temperatures. In contrast, 3 remains HS in all the temperature range. 1 and 2 show dual spin relaxation dynamics under the presence of an applied dc magnetic field (Hdc), with the occurrence of faster- (FR) and slower-relaxing (SR) processes at lower (Hdc = 1.0 kOe) and higher fields (Hdc = 2.5 kOe), respectively. On the contrary, 3 and 4 exhibit only SR and FR relaxations, regardless of Hdc. Overall, the distinct field-dependence of the single-molecule magnet (SMM) behaviour along with this family of spin-crossover (SCO) cobalt(II)-n-XPhPDI complexes is dominated by Raman mechanisms and, occasionally, with additional temperature-independent Intra-Kramer [LS or HS (D > 0)] or Quantum Tunneling of Magnetisation mechanisms [HS (D < 0)] also contributing.
Collapse
Affiliation(s)
- Renato Rabelo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Luminita Toma
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Joan Cano
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| |
Collapse
|
10
|
Huang YB, Li JQ, Xu WH, Zheng W, Zhang X, Gao KG, Ji T, Ikeda T, Nakanishi T, Kanegawa S, Wu SQ, Su SQ, Sato O. Electrically Detectable Photoinduced Polarization Switching in a Molecular Prussian Blue Analogue. J Am Chem Soc 2024; 146:201-209. [PMID: 38134356 DOI: 10.1021/jacs.3c07545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Light, a nondestructive and remotely controllable external stimulus, effectively triggers a variety of electron-transfer phenomena in metal complexes. One prime example includes using light in molecular cyanide-bridged [FeCo] bimetallic Prussian blue analogues, where it switches the system between the electron-transferred metastable state and the system's ground state. If this process is coupled to a ferroelectric-type phase transition, the generation and disappearance of macroscopic polarization, entirely under light control, become possible. In this research, we successfully executed a nonpolar-to-polar phase transition in a trinuclear cyanide-bridged [Fe2Co] complex crystal via directional electron transfer. Intriguingly, by exposing the crystal to the wavelength of light─785 nm─without any electric field─we can drive this ferroelectric phase transition to completely depolarize the crystal, during which a measurable electric current response can be detected. These discoveries signify an important step toward the realization of fully light-controlled ferroelectric memory devices.
Collapse
Affiliation(s)
- Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-Qiu Li
- Chaozhou Three-circle (Group) Co., Ltd., Sanhuan Industrial District, Fengtang, Chaozhou 515646, Guangdong, China
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kai-Ge Gao
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, PR China
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Dergachev ID, Dergachev VD, Rooein M, Mirzanejad A, Varganov SA. Predicting Kinetics and Dynamics of Spin-Dependent Processes. Acc Chem Res 2023; 56:856-866. [PMID: 36926853 DOI: 10.1021/acs.accounts.2c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
ConspectusPredicting mechanisms and rates of nonadiabatic spin-dependent processes including photoinduced intersystem crossings, thermally activated spin-forbidden reactions, and spin crossovers in metal centers is a very active field of research. These processes play critical roles in transition-metal-based and metalloenzymatic catalysis, molecular magnets, light-harvesting materials, organic light-emitting diodes, photosensitizers for photodynamic therapy, and many other applications. Therefore, accurate modeling of spin-dependent processes in complex systems and on different time scales is important for many problems in chemistry, biochemistry, and materials sciences.Nonadiabatic statistical theory (NAST) and nonadiabatic molecular dynamics (NAMD) are two complementary approaches to modeling the kinetics and dynamics of spin-dependent processes. NAST predicts the probabilities and rate constants of nonradiative transitions between electronic states with different spin multiplicities using molecular properties at only few critical points on the potential energy surfaces (PESs), including the reactant minimum and the minimum energy crossing point (MECP) between two spin states. This makes it possible to obtain molecular properties for NAST calculations using accurate but often computationally expensive electronic structure methods, which is critical for predicting the rate constants of spin-dependent processes. Alternatively, NAST can be used to study spin-dependent processes in very large complex molecular systems using less computationally expensive electronic structure methods. The nuclear quantum effects, such as zero-point vibrational energy, tunneling, and interference between reaction paths can be easily incorporated. However, the statistical and local nature of NAST makes it more suitable for large systems and slow kinetics. In contrast, NAMD explores entire PESs of interacting electronic states, making it ideal for modeling fast barrierless spin-dependent processes. Because the knowledge of large portions of PESs is often needed, the simulations require a very large number of electronic structure calculations, which limits the NAMD applicability to relatively small molecular systems and ultrafast kinetics.In this Account, we discuss our contribution to the development of the NAST and NAMD approaches for predicting the rates and mechanism of spin-dependent processes. First, we briefly describe our NAST and NAMD implementations. The NAST implementation is an extension of the transition state theory to the processes involving two crossing potential energy surfaces of different spin multiplicities. The NAMD approach includes the trajectory surface hopping (TSH) and ab initio multiple spawning (AIMS) methods. Second, we discuss several applications of NAST and NAMD to model spin-dependent processes in different systems. The NAST applicability to large complex systems is demonstrated by the studies of the spin-forbidden isomerization of the active sites of metal-sulfur proteins. Our implementation of the MECP search algorithm within the fully ab initio fragment molecular orbital method allows applying NAST to systems with thousands of atoms, such as the solvated protein rubredoxin. Applications of NAMD to ultrafast spin-dependent processes are represented by the generalized AIMS simulations utilizing the fast GPU-based TeraChem electronic structure program to gain insight into the complex photoexcited state relaxation in 2-cyclopentenone.
Collapse
Affiliation(s)
- Ilya D Dergachev
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Vsevolod D Dergachev
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Mitra Rooein
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Amir Mirzanejad
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Sergey A Varganov
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
12
|
Mičová R, Rajnák C, Titiš J, Samoľová E, Zalibera M, Bieńko A, Boča R. Slow magnetic relaxation in two mononuclear Mn(II) complexes not governed by the over-barrier Orbach process. Chem Commun (Camb) 2023; 59:2612-2615. [PMID: 36757181 DOI: 10.1039/d2cc06510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.
Collapse
Affiliation(s)
- Romana Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Erika Samoľová
- X-Ray Crystallography Facility, UC San Diego, 5128 Urey Hall MC 0358, 9500 Gilman Drive, La Jolla CA, USA.,Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Michal Zalibera
- Department of Physical Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| |
Collapse
|
13
|
Münzfeld L, Dahlen M, Hauser A, Mahieu N, Kuppusamy SK, Moutet J, Tricoire M, Köppe R, La Droitte L, Cador O, Le Guennic B, Nocton G, Moreno-Pineda E, Ruben M, Roesky PW. Molecular Lanthanide Switches for Magnetism and Photoluminescence. Angew Chem Int Ed Engl 2023; 62:e202218107. [PMID: 36651327 DOI: 10.1002/anie.202218107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Solvation of [(CNT)Ln(η8 -COT)] (Ln=La, Ce, Nd, Tb, Er; CNT=cyclononatetraenyl, i.e., C9 H9 - ; COT=cyclooctatetraendiid, i.e., C8 H8 2- ) complexes with tetrahydrofuran (THF) gives rise to neutral [(η4 -CNT)Ln(thf)2 (η8 -COT)] (Ln=La, Ce) and ionic [Ln(thf)x (η8 -COT)][CNT] (x=4 (Ce, Nd, Tb), 3 (Er)) species in a solid-to-solid transformation. Due to the severe distortion of the ligand sphere upon solvation, these species act as switchable luminophores and single-molecule magnets. The desolvation of the coordinated solvents can be triggered by applying a dynamic vacuum, as well as a temperature gradient stimulus. Raman spectroscopic investigations revealed fast and fully reversible solvation and desolvation processes. Moreover, we also show that a Nd:YAG laser can induce the necessary temperature gradient for a self-sufficient switching process of the Ce(III) analogue in a spatially resolved manner.
Collapse
Affiliation(s)
- Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Nolwenn Mahieu
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jules Moutet
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Maxime Tricoire
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Ralf Köppe
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Léo La Droitte
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Grégory Nocton
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Eufemio Moreno-Pineda
- Depto de Química-Física, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Centre Européen de Science Quantique (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), UMR 7006, CNRS, Université de Strasbourg, 8 allée Gaspard Monge, BP, 70028, 67083, Strasbourg Cedex, France
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| |
Collapse
|
14
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Jing Y, Wang J, Kong M, Wang GJ, Zhang YQ, Song Y. Detailed Magnetic Properties and Theoretical Calculation in Ferromagnetic Coupling DyIII-MII 3d-4f Complexes Based on a 1,4,7,10-tetraazacyclododecane Derivative. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Drahoš B, Šalitroš I, Císařová I, Herchel R. A multifunctional magnetic material based on a solid solution of Fe(ii)/Co(ii) complexes with a macrocyclic cyclam-based ligand. Dalton Trans 2021; 50:11147-11157. [PMID: 34324612 DOI: 10.1039/d1dt01534f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to prepare a multifunctional magnetic material combining spin crossover together with single-molecular magnetism, co-crystallization of Fe(ii) and Co(ii) complexes of the pyridine derivative of cyclam (Py2-C = 1,8-bis(pyridin-2-ylmethyl)-1,4,8,11-tetraazacyclotetradecane) was performed. Complexes with the general formula [MII(Py2-C)](ClO4)2·H2O (MII = Fe (1), Co (2) or Fe0.4Co0.6 (3)) were prepared and thoroughly characterized. Based on X-ray molecular structures, they formed octahedral complexes with cis-arrangement of the coordinated pyridine moieties. Magnetic data revealed that the Fe(ii) complex 1 shows complete SCO with the transition temperature T1/2 = 141 K, which is preserved also in the mixed Fe/Co system 3 (T1/2 = 128 K). Co(ii) complex 2 behaves as a field-induced single-molecule magnet as well as the mixed system 3 with a direct and phonon bottleneck relaxation process, respectively. This is the first example of such Fe/Co solid solution providing SCO in combination with field-induced SMM properties. Unfortunately, the light-induced excited spin-state trapping (LIESST) effect was not observed either for the Fe(ii) complex 1 or the mixed system 3 and thus, the effect of SCO on SMM properties at low temperature could not be investigated in detail. Nevertheless, the obtained results clearly document the success of the solid solution methodology for the preparation of multifunctional magnetic materials.
Collapse
Affiliation(s)
- Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
17
|
Stoian SA, Moshari M, Ferentinos E, Grigoropoulos A, Krzystek J, Telser J, Kyritsis P. Electronic Structure of Tetrahedral, S = 2, [Fe{(EP iPr 2) 2N} 2], E = S, Se, Complexes: Investigation by High-Frequency and -Field Electron Paramagnetic Resonance, 57Fe Mössbauer Spectroscopy, and Quantum Chemical Studies. Inorg Chem 2021; 60:10990-11005. [PMID: 34288665 DOI: 10.1021/acs.inorgchem.1c00670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we assessed the electronic structures of two pseudotetrahedral complexes of FeII, [Fe{(SPiPr2)2N}2] (1) and [Fe{(SePiPr2)2N}2] (2), using high-frequency and -field EPR (HFEPR) and field-dependent 57Fe Mössbauer spectroscopies. This investigation revealed S = 2 ground states characterized by moderate, negative zero-field splitting (zfs) parameters D. The crystal-field (CF) theory analysis of the spin Hamiltonian (sH) and hyperfine structure parameters revealed that the orbital ground states of 1 and 2 have a predominant dx2-y2 character, which is admixed with dz2 (∼10%). Although replacing the S-containing ligands of 1 by their Se-containing analogues in 2 leads to a smaller |D| value, our theoretical analysis, which relied on extensive ab initio CASSCF calculations, suggests that the ligand spin-orbit coupling (SOC) plays a marginal role in determining the magnetic anisotropy of these compounds. Instead, the dx2-y2β → dxyβ excitations yield a large negative contribution, which dominates the zfs of both 1 and 2, while the different energies of the dx2-y2β → dxzβ transitions are the predominant factor responsible for the difference in zfs between 1 and 2. The electronic structures of these compounds are contrasted with those of other [FeS4] sites, including reduced rubredoxin by considering a D2-type distortion of the [Fe(E-X)4] cores, where E = S, Se; X = C, P. Our combined CASSCF/DFT calculations indicate that while the character of the orbital ground state and the quintet excited states' contribution to the zfs of 1 and 2 are modulated by the magnitude of the D2 distortion, this structural change does not impact the contribution of the excited triplet states.
Collapse
Affiliation(s)
- Sebastian A Stoian
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Mahsa Moshari
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Alexios Grigoropoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical, and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| |
Collapse
|
18
|
Zhao L, Meng YS, Liu Q, Sato O, Shi Q, Oshio H, Liu T. Switching the magnetic hysteresis of an [Fe ii-NC-W v]-based coordination polymer by photoinduced reversible spin crossover. Nat Chem 2021; 13:698-704. [PMID: 34031565 DOI: 10.1038/s41557-021-00695-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023]
Abstract
Magnetic bistable materials that feature magnetic hysteresis are comparable to elementary binary units and promising for application in switches and memory devices. In this work, we report a material that consists of parallel cyanide-bridged [Feii-Wv] coordination chains linked together through rigid bis(imidazolyl)-benzene ligands and displays multiple magnetic states. The paramagnetic high-spin and diamagnetic low-spin states of the spin-crossover Feii ions can be interconverted by reversible light-induced excited spin state trapping (LIESST) by alternating between light irradiation of 808 and 473 nm. At 1.8 K, under 808-nm-light irradiation, magnetic interactions between the photogenerated paramagnetic high-spin Feii centres and the Wv centres lead to long fragments that exhibit single-chain magnet behaviour, with a wide magnetic hysteresis and a large coercive field of 19 kOe; under a 473 nm light, isolated Feii-Wv fragments behave as single-molecule magnets instead. At 3.3 K, the high-spin form still displays magnetic hysteresis, albeit narrower, whereas the low-spin one does not.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, Fukuoka, Japan
| | - Quan Shi
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian, China
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| |
Collapse
|
19
|
Tiaouinine S, Flores Gonzalez J, Lefeuvre B, Guizouarn T, Cordier M, Dorcet V, Kaboub L, Cador O, Pointillart F. Spin Crossover and Field‐Induced Single‐Molecule Magnet Behaviour in Co(II) Complexes Based on Terpyridine with Tetrathiafulvalene Analogues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siham Tiaouinine
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
| | - Jessica Flores Gonzalez
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Bertrand Lefeuvre
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Thierry Guizouarn
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Marie Cordier
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Lakehmici Kaboub
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
- Laboratory of Chemistry Molecular Engineering and Nanostructures University of Ferhat Abbas-Sétif 1 19000 Sétif Algeria
| | - Olivier Cador
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Fabrice Pointillart
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| |
Collapse
|
20
|
Wang P, Saber MR, VanNatta PE, Yap GPA, Popescu CV, Scarborough CC, Kieber-Emmons MT, Dunbar KR, Riordan CG. Molecular and Electronic Structures and Single-Molecule Magnet Behavior of Tris(thioether)-Iron Complexes Containing Redox-Active α-Diimine Ligands. Inorg Chem 2021; 60:6480-6491. [PMID: 33840189 DOI: 10.1021/acs.inorgchem.1c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporating radical ligands into metal complexes is one of the emerging trends in the design of single-molecule magnets (SMMs). While significant effort has been expended to generate multinuclear transition metal-based SMMs with bridging radical ligands, less attention has been paid to mononuclear transition metal-radical SMMs. Herein, we describe the first α-diiminato radical-containing mononuclear transition metal SMM, namely, [κ2-PhTttBu]Fe(AdNCHCHNAd) (1), and its analogue [κ2-PhTttBu]Fe(CyNCHCHNCy) (2) (PhTttBu = phenyltris(tert-butylthiomethyl)borate, Ad = adamantyl, and Cy = cyclohexyl). 1 and 2 feature nearly identical geometric and electronic structures, as shown by X-ray crystallography and electronic absorption spectroscopy. A more detailed description of the electronic structure of 1 was obtained through EPR and Mössbauer spectroscopies, SQUID magnetometry, and DFT, TD-DFT, and CAS calculations. 1 and 2 are best described as high-spin iron(II) complexes with antiferromagnetically coupled α-diiminato radical ligands. A strong magnetic exchange coupling between the iron(II) ion and the ligand radical was confirmed in 1, with an estimated coupling constant J < -250 cm-1 (J = -657 cm-1, DFT). Calibrated CAS calculations revealed that the ground-state Fe(II)-α-diiminato radical configuration has significant ionic contributions, which are weighted specifically toward the Fe(I)-neutral α-diimine species. Experimental data and theoretical calculations also suggest that 1 possesses an easy-axis anisotropy, with an axial zero-field splitting parameter D in the range from -4 to-1 cm-1. Finally, dynamic magnetic studies show that 1 exhibits slow magnetic relaxation behavior with an energy barrier close to the theoretical maximum, 2|D|. These results demonstrate that incorporating strongly coupled α-diiminato radicals into mononuclear transition metal complexes can be an effective strategy to prepare SMMs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Mohamed R Saber
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States.,Department of Chemistry, Fayoum University, Fayoum 63514, Egypt
| | - Peter E VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Codrina V Popescu
- Department of Chemistry, University of Saint Thomas, 2115 Summit Avenue, Saint Paul, Minnesota 55105, United States
| | - Christopher C Scarborough
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Syngenta Crop Protection AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | | | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Charles G Riordan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Liu Q, Hu JX, Meng YS, Jiang WJ, Wang JL, Wen W, Wu Q, Zhu HL, Zhao L, Liu T. Asymmetric Coordination Toward a Photoinduced Single-Chain Magnet Showing High Coercivity Values. Angew Chem Int Ed Engl 2021; 60:10537-10541. [PMID: 33569868 DOI: 10.1002/anie.202017249] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/29/2022]
Abstract
The production of photo-switchable molecular nanomagnets with substantial coercivity, which is indispensable for information storage and process applications, is challenging. Introducing photo-responsive spin-crossover units provides a feasible means of controlling the magnetic anisotropy, interactions, and overall nanomagnet properties. Herein, we report a cyanide-bridged chain 1⋅12H2 O ({[(Pz Tp)FeIII (CN)3 ]2 FeII (Pmat)2 }n ⋅12 H2 O) generated by linking the FeII -based spin-crossover unit with the [(Pz Tp)Fe(CN)3 ]- (Pz Tp: tetrakis(pyrazolyl)borate) building block in the presence of asymmetric ditopic ligand Pmat ((4-pyridine-4-yl)methyleneamino-1,2,4-triazole). Structural characterization revealed that the introduction of this asymmetric ligand led to a distorted coordination environment of FeII ions, which were equatorially coordinated by four cyanide N atoms, and apically coordinated by one pyridine N atom and one triazole N atom. Upon 808-nm light irradiation, 1⋅12H2 O underwent photoinduced spin-crossover and exhibited single-chain magnet behavior with a coercive field of up to 1.3 T. This represents a 3d-based photoinduced single-chain magnet exhibiting pronounced hysteresis.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Ji-Xiang Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Jun-Li Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Wen Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Qiong Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Hai-Lang Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| |
Collapse
|
22
|
Liu Q, Hu J, Meng Y, Jiang W, Wang J, Wen W, Wu Q, Zhu H, Zhao L, Liu T. Asymmetric Coordination Toward a Photoinduced Single‐Chain Magnet Showing High Coercivity Values. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Ji‐Xiang Hu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Wen‐Jing Jiang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Jun‐Li Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Wen Wen
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Qiong Wu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Hai‐Lang Zhu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| |
Collapse
|
23
|
Milocco F, de Vries F, Siebe HS, Engbers S, Demeshko S, Meyer F, Otten E. Widening the Window of Spin-Crossover Temperatures in Bis(formazanate)iron(II) Complexes via Steric and Noncovalent Interactions. Inorg Chem 2021; 60:2045-2055. [PMID: 33464882 PMCID: PMC7856632 DOI: 10.1021/acs.inorgchem.0c03593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Bis(formazanate)iron(II) complexes
undergo a thermally induced S = 0 to S = 2 spin transition in solution.
Here we present a study of how steric effects and π-stacking
interactions between the triarylformazanate ligands affect the
spin-crossover behavior, in addition to electronic substituent effects.
Moreover, the effect of increasing the denticity of the formazanate
ligands is explored by including additional OMe donors in the ligand
(7). In total, six new compounds (2–7) have been synthesized and characterized, both in solution
and in the solid state, via spectroscopic, magnetic, and structural
analyses. The series spans a broad range of spin-crossover temperatures
(T1/2) for the LS ⇌ HS equilibrium
in solution, with the exception of compound 6 which remains
high-spin (S = 2) down to 210 K. In the solid state, 6 was shown to exist in two distinct forms: a tetrahedral
high-spin complex (6a, S = 2) and a
rare square-planar structure with an intermediate-spin state (6b, S = 1). SQUID measurements, 57Fe Mössbauer spectroscopy, and differential scanning calorimetry
indicate that in the solid state the square-planar form 6b undergoes an incomplete spin-change-coupled isomerization to tetrahedral 6a. The complex that contains additional OMe donors (7) results in a six-coordinate (NNO)2Fe coordination
geometry, which shifts the spin-crossover to significantly higher
temperatures (T1/2 = 444 K). The available
experimental and computational data for 7 suggest that
the Fe···OMe interaction is retained upon spin-crossover.
Despite the difference in coordination environment, the weak OMe donors
do not significantly alter the electronic structure or ligand-field
splitting, and the occurrence of spin-crossover (similar to the compounds
lacking the OMe groups) originates from a large degree of metal–ligand
π-covalency. A series of
Fe(II) complexes with formazanate ligands are
reported, and ligand substituent effects on structure and spin-crossover
properties are examined. These ligand modifications allow isolation
of compounds with tetrahedral geometries in both low- and high-spin
ground states as well as an intermediate-spin square-planar complex.
Steric properties, π-stacking interactions, and additional donor
substituents lead to a wide range of spin-crossover temperatures (T1/2) in this class of compounds.
Collapse
Affiliation(s)
- Francesca Milocco
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Folkert de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Harmke S Siebe
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silène Engbers
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
24
|
Su QQ, Yuan Q, Wu XF, Chen SH, Xiang J, Jin XX, Wang LX, Wang BW, Gao S, Lau TC. Slow magnetic relaxation in structurally similar mononuclear 8-coordinate Fe(II) and Fe(III) compounds. Chem Commun (Camb) 2021; 57:781-784. [PMID: 33355553 DOI: 10.1039/d0cc07004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A pair of structurally-similar and stable 8-coordinate high-spin Fe(ii) and Fe(iii) compounds have been obtained. Both compounds exhibit field-induced slow magnetic relaxation behaviour. The Fe(iii) compound represents the first example of 8-coordinate Fe(iii) single-molecule magnets (SMM).
Collapse
Affiliation(s)
- Qian-Qian Su
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Qiong Yuan
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Si-Huai Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China. and South China University of Technology, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
25
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
26
|
Wen W, Meng YS, Jiao CQ, Liu Q, Zhu HL, Li YM, Oshio H, Liu T. Ferromagnetic Archimedean polyhedra {Fe 24M 18} (M = Fe, Ni, and Mn) with tunable electron configurations. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00593f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three symmetric nanocages {Fe24M18} that mimic the Archimedean polyhedra, namely pseudo-rhombicuboctahedron, were synthesized. Their electron configurations depend highly on the changes of metal ions and the deprotonation of auxiliary ligands.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Cheng-Qi Jiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Hai-Lang Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Ya-Ming Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| |
Collapse
|
27
|
Zhang Y, Yang Q, Lu J, Guo M, Li XL, Tang J. Heterometallic {DyIII2FeII2} grids with slow magnetic relaxation and spin crossover. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01471k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The self-assembly of a DyIII ion, an FeII ion and a multitopic H2L ligand produces novel [2 × 2] {DyIII2FeII2} grids exhibiting slow magnetic relaxation and spin crossover.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Qianqian Yang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jingjing Lu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Mei Guo
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
28
|
Książek M, Weselski M, Kaźmierczak M, Tołoczko A, Siczek M, Durlak P, Wolny JA, Schünemann V, Kusz J, Bronisz R. Spatiotemporal Studies of the One-Dimensional Coordination Polymer [Fe(ebtz) 2 (C 2 H 5 CN) 2 ](BF 4 ) 2 : Tug of War between the Nitrile Reorientation Versus Crystal Lattice as a Tool for Tuning the Spin Crossover Properties*. Chemistry 2020; 26:14419-14434. [PMID: 32678463 DOI: 10.1002/chem.202002460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4 )2 ⋅6 H2 O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2 (RCN)2 ](BF4 )2 ⋅nRCN (n=2 for R=CH3 (1) and n=0 for R=C2 H5 (2) C3 H7 (3), C3 H5 (4), CH2 Cl (5)) exhibiting spin crossover (SCO). SCO in 1 and 3-5 is complete and occurs above 160 K. In 2, it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2 ↓ =78 K, T1/2 ↑ =123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2. An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS -VLS ) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe-nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2 (C2 H5 CN/C3 H7 CN)2 ](BF4 )2 mixed crystals (2 a, 2 b), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1-5 suggest a particular possibility of 2 to adopt a low (140-145°) value of its Fe-N-C(propionitrile) angle.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr Durlak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Juliusz A Wolny
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Volker Schünemann
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
29
|
Rajnák C, Titiš J, Moncol’ J, Valigura D, Boča R. Effect of the Distant Substituent to Slow Magnetic Relaxation of Pentacoordinate Fe(III) Complexes. Inorg Chem 2020; 59:14871-14878. [DOI: 10.1021/acs.inorgchem.0c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Moncol’
- Institute of Inorganic Chemistry, FCHPT, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Dušan Valigura
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| |
Collapse
|
30
|
Slow Magnetic Relaxation in a One-Dimensional Coordination Polymer Constructed from Hepta-Coordinate Cobalt(II) Nodes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A one-dimensional coordination polymer was synthesized employing hepta-coordinate CoII as nodes and dicyanamide as linkers. Detailed direct current (DC) and alternating current (AC) magnetic susceptibility measurements reveal the presence of field-induced slow magnetic relaxation behavior of the magnetically isolated seven-coordinate CoII center with an easy-plane magnetic anisotropy. Detailed ab initio calculations were performed to understand the magnetic relaxation processes. To our knowledge, the reported complex represents the first example of slow magnetic relaxation in a one-dimensional coordination polymer constructed from hepta-coordinate CoII nodes and dicyanamide linkers.
Collapse
|
31
|
Kawamura A, Xie J, Boyn JN, Jesse KA, McNeece AJ, Hill EA, Collins KA, Valdez-Moreira JA, Filatov AS, Kurutz JW, Mazziotti DA, Anderson JS. Reversible Switching of Organic Diradical Character via Iron-Based Spin-Crossover. J Am Chem Soc 2020; 142:17670-17680. [PMID: 32948091 DOI: 10.1021/jacs.0c08307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Airi Kawamura
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A. Jesse
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew J. McNeece
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan A. Hill
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A. Collins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Alexander S. Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Josh W. Kurutz
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A. Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
32
|
Park SV, Fry CG, Bill E, Berry JF. A metastable Ru III azido complex with metallo-Staudinger reactivity. Chem Commun (Camb) 2020; 56:10738-10741. [PMID: 32789338 DOI: 10.1039/d0cc04426a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metastable purple [(Py5Me2)RuIII(N3)]2+ ion reacts with PPh3 at room temperature to form the phosphinimine complex [(Py5Me2)RuII(N(H)PPh3)]2+ and free [H2NPPh3]+ in a combined 23% conversion. Mechanistic studies suggest that this is the first metallo-Staudinger reaction of a late transition metal that bypasses the nitrido mechanism and instead utilizes a Ru-N[double bond, length as m-dash]N[double bond, length as m-dash]N-PPh3 phosphazide intermediate.
Collapse
Affiliation(s)
- Sungho V Park
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
33
|
Korzeniak T, Sasmal S, Pinkowicz D, Nitek W, Pełka R, Czernia D, Stefańczyk O, Sieklucka B. Chiral Photomagnets Based on Copper(II) complexes of 1,2-Diaminocyclohexane and Octacyanidomolybdate(IV) Ions. Inorg Chem 2020; 59:5872-5882. [DOI: 10.1021/acs.inorgchem.9b03511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomasz Korzeniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sujit Sasmal
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Robert Pełka
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Dominik Czernia
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Olaf Stefańczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
34
|
Su QQ, Fan K, Huang XD, Xiang J, Cheng SC, Ko CC, Zheng LM, Kurmoo M, Lau TC. Field-induced slow magnetic relaxation in low-spin S = 1/2 mononuclear osmium(v) complexes. Dalton Trans 2020; 49:4084-4092. [PMID: 32134093 DOI: 10.1039/d0dt00295j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photochemical reactions of (PPh4)[OsVI(N)(L)(CN)3] (NO2-OsN) with piperidine and pyrrolidine afforded two osmium(v) hydrazido compounds, (PPh4)[OsV(L)(CN)3(NNC5H10)] ([PPh4]1) and (PPh4)[OsV(L)(CN)3(NNC4H8)] ([PPh4]2), respectively. Their structures consist of isolated, mononuclear distorted octahedral osmium anions that are well-separated from each other by PPh4+. Their low spin S = 1/2 and L = 1 ground state was confirmed by magnetometry and DFT calculations. Interestingly, both compounds exhibit slow magnetic relaxation under a bias dc-field. These osmium(v) complexes are potentially useful building-blocks for the construction of molecule-based architectures with interesting magnetic properties. In contrast, the structurally related (PPh4)[OsIII(L)(CN)3(NH3)] ([PPh4]3), which also has a low-spin S = 1/2 ground state but with a different electronic configuration (5d5), does not exhibit slow magnetic relaxation, due to the absence of any orbital moment (L = 0). Furthermore, the structurally different osmium(v) hydrazido compound reported by Meyer, [OsV(tpy)(Cl)2(NNC5H10)](PF6) (4[PF6]), also does not exhibit slow magnetic relaxation due possibly to a change in magnetic anisotropy from axial for [PPh4]1 and [PPh4]2 to planar.
Collapse
Affiliation(s)
- Qian-Qian Su
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China.
| | - Kun Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Mohamedally Kurmoo
- Institut de Chimie, Université de Strasbourg, CNRS-UMR7177, 4 rue Blaise Pascal, Strasbourg Cedex 67007, France
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
35
|
Magnetic Properties of Fe(II) Complexes of Cyclam Derivative with One p-Aminobenzyl Pendant Arm. METALS 2020. [DOI: 10.3390/met10030366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In order to prepare an Fe(II) spin crossover (SCO) complex that could be consequently modified to a bimetallic coordination compound that possesses another magnetic property of interest, a specially designed ligand L-NH2 (1-(4-aminobenzyl)-4,11-bis(pyridine-2-ylmethyl)- 1,4,8,11-tetraazacyclotetradecane) was prepared. This ligand consists of a macrocyclic cyclam part containing two 2-pyridylmethyl pendant arms (expecting SCO upon Fe(II) complexation) and one p-aminobenzyl pendant arm with an NH2 group. The presence of this group enables the consequent transformation to various functional groups for the selective complexation of other transition metals or lanthanides (providing the second property of interest). Furthermore, the performed theoretical calculations (TPSSh/def2-TZVP) predicted SCO behavior for the Fe(II) complex of L-NH2. Thus, Fe(II) complexes [Fe(L-NH2)](ClO4)2 (1) and [Fe(L-NH2)]Cl2·6H2O (2) were synthesized and thoroughly characterized. Based on the crystal structure of an isostructural analogous Ni(II) complex [Ni(L-NH2)]Cl2·6H2O (3), the coordination number six was confirmed with an octahedral coordination sphere and a cis-arrangement of the pyridine pendant arms. The measured magnetic data confirmed the high-spin behavior of both compounds with large magnetic anisotropy (D = 17.8 for 1 and 20.9 cm−1 for 2 complemented in both cases also with large rhombicity), though unfortunately without any indication of the SCO behavior with decreasing temperature. The lack of SCO can be ascribed to the crystal packing and/or the non-covalent intermolecular interactions stabilizing the high-spin state in the solid state.
Collapse
|
36
|
Li J, Wu S, Su S, Kanegawa S, Sato O. Manipulating Slow Magnetic Relaxation by Light in a Charge Transfer {Fe
2
Co} Complex. Chemistry 2020; 26:3259-3263. [DOI: 10.1002/chem.202000154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/21/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Junqiu Li
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shuqi Wu
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shengqun Su
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
37
|
Ma YJ, Hu JX, Han SD, Pan J, Li JH, Wang GM. Manipulating On/Off Single-Molecule Magnet Behavior in a Dy(III)-Based Photochromic Complex. J Am Chem Soc 2020; 142:2682-2689. [PMID: 31955567 DOI: 10.1021/jacs.9b13461] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exploitation of room temperature (RT) photochromism and photomagnetism to induce single-molecule magnet (SMM) behavior has potential applications toward optical switches and magnetic memories, and remains a tremendous challenge in the development of new bulk magnets. Herein, a series of chain complexes [Ln3(H-HEDP)3(H2-HEDP)3]·2H3-TPT·H4-HEDP·10H2O (QDU-1; Ln = Dy (QDU-1(Dy)), Gd (QDU-1(Gd)), and Y (QDU-1(Y)); HEDP = hydroxyethylidene diphosphonate; TPT = 2,4,6-tri(4-pyridyl)-1,3,5-triazine) were synthesized by solvothermal reactions. All the compounds exhibited reversible photochromic and photomagnetic behaviors via UV light irradiation at RT, induced by the photogenerated radicals via a photoinduced electron transfer (PET) mechanism. More importantly, the PET process induced significant variations in magnetic interactions for the Dy(III) congener. Strong ferromagnetic coupling with remarkably slow magnetic relaxation without applied dc fields was observed between DyIII ions and photogenerated O• radicals, showing SMM behavior after RT illumination. For the first time, we observed the reversible RT photochromism and photomagnetism in the lanthanide-based materials. This work realized the radicals-actuated on/off SMM behavior via RT light irradiation, providing a new strategy for constructing the light-induced SMMs.
Collapse
Affiliation(s)
- Yu-Juan Ma
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| |
Collapse
|
38
|
Hojorat M, Al Sabea H, Norel L, Bernot K, Roisnel T, Gendron F, Guennic BL, Trzop E, Collet E, Long JR, Rigaut S. Hysteresis Photomodulation via Single-Crystal-to-Single-Crystal Isomerization of a Photochromic Chain of Dysprosium Single-Molecule Magnets. J Am Chem Soc 2020; 142:931-936. [PMID: 31880442 DOI: 10.1021/jacs.9b10584] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A one-dimensional coordination solid 1c is synthesized by reaction of a bispyridyl dithienylethene (DTE) photochromic unit with the highly anisotropic dysprosium-based single-molecule magnet [Dy(Tppy)F(pyridine)2]PF6. Slow magnetic relaxation characteristics are retained in the chain compound 1c, and photoisomerization of the bridging DTE ligand induces a single-crystal-to-single-crystal transformation that can be monitored using photocrystallography. Notably, the resulting chain compound 1o exhibits faster low-temperature relaxation than that of 1c, which is apparent in magnetic hysteresis data collected for both compounds as high as 4 K. Ab initio calculations suggest that this photomodulation of the magnetic relaxation behavior is due to crystal packing changes rather than changes to the crystal field splitting upon ligand isomerization.
Collapse
Affiliation(s)
- Maher Hojorat
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| | - Hassan Al Sabea
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| | - Lucie Norel
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| | - Kevin Bernot
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| | - Thierry Roisnel
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| | - Frederic Gendron
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| | - Boris Le Guennic
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| | - Elzbieta Trzop
- Univ Rennes , CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 , F-35000 Rennes , France
| | - Eric Collet
- Univ Rennes , CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 , F-35000 Rennes , France
| | - Jeffrey R Long
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Stéphane Rigaut
- Univ Rennes , INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France
| |
Collapse
|
39
|
Książek M, Weselski M, Dreczko A, Maliuzhenko V, Kaźmierczak M, Tołoczko A, Kusz J, Bronisz R. Two ways of spin crossover in an iron(ii) coordination polymer associated with conformational changes of a bridging ligand. Dalton Trans 2020; 49:9811-9819. [DOI: 10.1039/d0dt01696a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural phase transition in [Fe(bbtre)3](ClO4)2·2CH3CN (bbtre = 1,4-di(1-ethyl-1,2,3-triazol-5-yl)butane) plays the role of a switch, allowing spin crossover to be carried out in two ways.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| | - Marek Weselski
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | | | | | | | - Joachim Kusz
- Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| | - Robert Bronisz
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
40
|
Huang XC, Xu R, Chen YZ, Zhang YQ, Shao D. Two Four-Coordinate and Seven-Coordinate Co II Complexes Based on the Bidentate Ligand 1, 8-Naphthyridine Showing Slow Magnetic Relaxation Behavior. Chem Asian J 2019; 15:279-286. [PMID: 31793204 DOI: 10.1002/asia.201901395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/30/2019] [Indexed: 12/11/2022]
Abstract
For a long time, the cobalt(II) complex ([Co(napy)4 ](ClO4 )2 ) (napy=1, 8-naphthyridine) has been considered as an eight-coordinate complex without any structural proof. After careful considerations, two complexes [Co(napy)2 Cl2 ] (1) and [Co(napy)4 ](ClO4 )2 (2) based on the bidentate ligand napy were synthesized and structurally characterized. X-ray single-crystal structural determination showed that the cobalt(II) center in [Co(napy)2 Cl2 ] (1) is four-coordinate with a tetrahedral geometry (Td ), while [Co(napy)4 ](ClO4 )2 (2) is seven-coordinate rather than eight-coordinate with a capped trigonal prism geometry (C2v ). Direct-current (dc) magnetic data revealed that complexes 1 and 2 possess positive zero-field splitting (ZFS) parameters of 11.08 and 25.30 cm-1 , respectively, with easy-plane magnetic anisotropy. Alternating current(ac) susceptibility measurements revealed that both complexes showed slow magnetic relaxation behaviour. Theoretical calculations demonstrated that the presence of easy-plane magnetic anisotropy (D>0) for complexes 1 and 2 is in agreement with the experimental data. Furthermore, these results pave the way to obtain four-coordinate and seven-coordinate cobalt(II) single-ion magnets (SIMs) by using a bidentate ligand.
Collapse
Affiliation(s)
- Xing-Cai Huang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yong-Zhi Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Dong Shao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
41
|
Arczyński M, Stanek J, Sieklucka B, Dunbar KR, Pinkowicz D. Site-Selective Photoswitching of Two Distinct Magnetic Chromophores in a Propeller-Like Molecule To Achieve Four Different Magnetic States. J Am Chem Soc 2019; 141:19067-19077. [PMID: 31747269 DOI: 10.1021/jacs.9b09576] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Magnetic photoswitching is a highly important but relatively rare phenomenon for enabling optical writing/reading of the magnetic state of a molecule. In this work, an unprecedented site-selective double photoswitching is reported from the assembly of two different "photomagnetic chromophores" into a single hexanuclear molecule: namely, a spin-crossover Fe(II) center exhibiting light-induced excited spin state trapping (LIESST) and a photochemically active octacyanometalate(IV) unit. Four different magnetization levels are accessible through the appropriate combination of violet/red light and temperature, results that highlight the potential of photomagnetic molecules as future molecular memory cells.
Collapse
Affiliation(s)
- Mirosław Arczyński
- Jagiellonian University , Faculty of Chemistry , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Jan Stanek
- Marian Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , 30-348 Kraków , Poland
| | - Barbara Sieklucka
- Jagiellonian University , Faculty of Chemistry , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Kim R Dunbar
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , United States
| | - Dawid Pinkowicz
- Jagiellonian University , Faculty of Chemistry , Gronostajowa 2 , 30-387 Kraków , Poland
| |
Collapse
|
42
|
Ma D, Peng G, Zhang YY, Li B. Field-induced slow magnetic relaxation in two-dimensional and three-dimensional Co(ii) coordination polymers. Dalton Trans 2019; 48:15529-15536. [PMID: 31314024 DOI: 10.1039/c9dt02070e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two coordination polymers formulated as [Co(1,4-bimb)0.5(5-aip)(H2O)]n (1) and [Co(1,4-bib)1.5(5-hip)(H2O)]n (2) (1,4-bimb = 1,4-bis(imidazol-1-ylmethyl)benzene, 5-aip = 5-aminoisophthalic acid, 1,4-bib = 1,4-bis(1-imidazolyl)benzene and 5-hip = 5-hydroxyisophthalic acid) have been prepared and structurally characterized. Complex 1 is a two-dimensional (2D) network where Co(ii) is six coordinate in a CoO4N2 coordination environment, while the structure of 2 consists of a three-dimensional (3D) framework built from mononuclear Co(ii) units with distorted octahedral geometry as nodes. Static magnetic studies show that first-order orbital angular momentum may play an important role in the magnetic properties of 1, whereas strong easy-axis anisotropy (D = -102 cm-1) was observed in 2. Alternating current (ac) susceptibility measurements demonstrate that both the complexes display field-induced single ion magnet (SIM) behavior.
Collapse
Affiliation(s)
- Deyun Ma
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, P. R. China
| | - Guo Peng
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China. and Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Ying-Ying Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| |
Collapse
|
43
|
Berdiell IC, Hochdörffer T, Desplanches C, Kulmaczewski R, Shahid N, Wolny JA, Warriner SL, Cespedes O, Schünemann V, Chastanet G, Halcrow MA. Supramolecular Iron Metallocubanes Exhibiting Site-Selective Thermal and Light-Induced Spin-Crossover. J Am Chem Soc 2019; 141:18759-18770. [DOI: 10.1021/jacs.9b08862] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Tim Hochdörffer
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | | | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Juliusz A. Wolny
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | - Stuart L. Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, EC Stoner Building, University of Leeds, Leeds LS2 9JT, U.K
| | - Volker Schünemann
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | | | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
44
|
Drahoš B, Šalitroš I, Herchel R. First step in preparation of multifunctional spin crossover material based on Fe(II) complex of cyclam-based ligand. Magnetism and DFT studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Mondal A, Kharwar AK, Konar S. Sizeable Effect of Lattice Solvent on Field Induced Slow Magnetic Relaxation in Seven Coordinated CoII Complexes. Inorg Chem 2019; 58:10686-10693. [DOI: 10.1021/acs.inorgchem.9b00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
46
|
Halcrow MA, Capel Berdiell I, Pask CM, Kulmaczewski R. Relationship between the Molecular Structure and Switching Temperature in a Library of Spin-Crossover Molecular Materials. Inorg Chem 2019; 58:9811-9821. [PMID: 31335133 DOI: 10.1021/acs.inorgchem.9b00843] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-function relationships relating the spin-crossover (SCO) midpoint temperature (T1/2) in the solid state are surveyed for 43 members of the iron(II) dipyrazolylpyridine family of SCO compounds. The difference between T1/2 in the solid state and in solution [ΔT(latt)] is proposed as a measure of the lattice contribution to the transition temperature. Negative linear correlations between the SCO temperature and the magnitude of the rearrangement of the coordination sphere during SCO are evident among isostructural or near-isostructural subsets of compounds; that is, a larger change in the molecular structure during SCO stabilizes the high-spin state of a material. Improved correlations are often obtained when ΔT(latt), rather than the raw T1/2 value, is considered as the measure of the SCO temperature. Different lattice types show different tendencies to stabilize the high-spin or low-spin state of the molecules they contain, which correlates with the structural changes that most influence ΔT(latt) in each case. These relationships are mostly unaffected by the SCO cooperativity in the compounds or by the involvement of any crystallographic phase changes. One or two materials within each subset are outliers in some or all of these correlations, however, which, in some cases, can be attributed to small differences in their ligand geometry or unusual phase behavior during SCO. A reinvestigation of the structural chemistry of [Fe(3-bpp)2][NCS]2·nH2O [3-bpp = bis(1H-pyrazol-3-yl)pyridine; n = 0 or 2], undertaken as part of this study, is also presented.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| | - Izar Capel Berdiell
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| | - Christopher M Pask
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| | - Rafal Kulmaczewski
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| |
Collapse
|
47
|
Ding M, Hickey AK, Pink M, Telser J, Tierney DL, Amoza M, Rouzières M, Ozumerzifon TJ, Hoffert WA, Shores MP, Ruiz E, Clérac R, Smith JM. Magnetization Slow Dynamics in Ferrocenium Complexes. Chemistry 2019; 25:10625-10632. [PMID: 31066934 DOI: 10.1002/chem.201900799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Indexed: 11/12/2022]
Abstract
The single-molecule magnet (SMM) properties of a series of ferrocenium complexes, [Fe(η5 -C5 R5 )2 ]+ (R=Me, Bn), are reported. In the presence of an applied dc field, the slow dynamics of the magnetization in [Fe(η5 -C5 Me5 )2 ]BArF are revealed. Multireference quantum mechanical calculations show a large energy difference between the ground and first excited states, excluding the commonly invoked, thermally activated (Orbach-like) mechanism of relaxation. In contrast, a detailed analysis of the relaxation time highlights that both direct and Raman processes are responsible for the SMM properties. Similarly, the bulky ferrocenium complexes, [Fe(η5 -C5 Bn5 )2 ]BF4 and [Fe(η5 -C5 Bn5 )2 ]PF6 , also exhibit magnetization slow dynamics, however an additional relaxation process is clearly detected for these analogous systems.
Collapse
Affiliation(s)
- Mei Ding
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois, 60605, United States
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, United States
| | - Martin Amoza
- Departament de Química Inorgànica i Orgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | - Mathieu Rouzières
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France
| | - Tarik J Ozumerzifon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, United States
| | - Wesley A Hoffert
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, United States
| | - Matthew P Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, United States
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | - Rodolphe Clérac
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| |
Collapse
|
48
|
Xie X, Yang L, Luo F. Dual magnetic behavior of dysprosium(III) molecular magnet and Co(II) spin-crossover in an isolated [3d]-[4f] compound. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Klug CM, Ozumerzifon TJ, Bhowmick I, Livesay BN, Rappé AK, Shores MP. Anionic guest-dependent slow magnetic relaxation in Co(ii) tripodal iminopyridine complexes. Dalton Trans 2019; 48:9117-9126. [PMID: 30843557 DOI: 10.1039/c9dt00739c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the syntheses and magnetic property characterizations of four mononuclear cobalt(ii) complex salts featuring a tripodal iminopyridine ligand with external anion receptor groups, [CoL5-ONHtBu]X2 (X = Cl (1), Br (2), I (3) and ClO4 (4)). While all four salts exhibit anion binding through pendant amide moieties, only in the case of 1 is field-induced slow relaxation of magnetisation observed, whereas in the other salts this phenomenon is absent at the limits of our instrumentation. The effect of chloride inducing a seventh Co-N interaction and concomitant structural distortion is hypothesized as the origin of the observed dynamic magnetic properties observed in 1. Ab initio computational studies carried out on a 7-coordinate Co(ii) model species survey the complex interplay of coordination number and trigonal twisting on the sign and magnitude of the axial anisotropy parameter (D), and identify structural features whose distortions can trigger large switches in the sign and magnitude of magnetic anisotropy.
Collapse
Affiliation(s)
- Christina M Klug
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The spin transition of metal ions involves interconversion between electron configurations exhibiting considerably different functions and plays a substantial role in the chemical, physical, and biological fields. The photoinduced spin transition offers a promising approach to tune various physical properties with high spatial and temporal resolutions for producing smart multifunctional materials not only to explore their basic science but also to satisfy the demands of the next-generation photoswitchable-molecule-based devices. Therefore, it is attracting considerable interest to utilize photoinduced spin transition to simultaneously tune multifunctions. However, two issues are challenging in obtaining reversible and swift manipulation of functions: (1) the interconversion between different electron configurations of photoresponsive units should be reversibly switched via photoinduced spin transition; (2) effective coupling should be built between the photoresponsive and functional units to produce photoswitchable functions utilizing photoinduced spin transition. In this Account, we will review our recent advances in the usage of spin transition of metal ions as actuators for tuning the magnetic, dielectric, fluorescence, and mechanical properties, wherein the role of a photoswitchable spin transition is highlighted. We mainly focus on the study of two spin-transition categories, including spin-crossover (SCO) of one metal ion and metal-to-metal charge transfer (MMCT). Initially, we will describe a strategy for developing photoinduced reversible SCO and MMCT. The role of flexible intermolecular interactions, in particular, π···π interactions, is discussed with respect to a photoinduced reversible MMCT. Then, the SCO and MMCT units were assembled using metallocyanate building blocks to form a chain, wherein the spin states, anisotropy, and magnetic coupling interactions can be photoswitched to tune the single-chain magnet behavior. Besides magnetic properties, the photoinduced spin transition that is associated with the concomitant changing of charge distribution, bond lengths, and absorption spectra can be utilized to tune the multifunctions. Therefore, the transfer of an electron from a central cobalt site to one of the two iron sites in linear trinuclear Fe2Co compounds resulted in the transformation of a centrosymmetric nonpolar molecule into an asymmetric polar molecule, and the molecular electric dipole and dielectric properties can be reversibly switched. Moreover, the spin transition usually involved significant expansion or contraction of the coordination sphere of metal ions because of the population/depopulation of the antibonding eg orbitals. Therefore, colossal positive and negative thermal expansion behaviors were achieved in a layered compound by manipulating the spin-transition process and the rotation of the functional units, thereby providing a strategy for synthesizing phototunable nanomotors. Photoinduced spin transition can also be used to modulate the fluorescence properties by controlling the energy transfer between the fluorescent ligands and the metal sites showing SCO. Finally, we will provide a perspective and detail the remaining challenges that are associated with this research area. We believe that an increasing number of fascinating photoswitchable SCO and MMCT systems will emerge in the near future and that the materials exhibiting various properties and functions that can be manipulated using photoinduced spin transition will provide novel opportunities for the development of smart multifunctional materials and devices.
Collapse
Affiliation(s)
- Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|