1
|
Walters SH, Birchfield AS, Fuglestad B. Advances in utilizing reverse micelles to investigate membrane proteins. Biochem Soc Trans 2024; 52:2499-2511. [PMID: 39508380 DOI: 10.1042/bst20240830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Reverse micelles (RMs) have emerged as useful tools for the study of membrane associated proteins. With a nanoscale water core surrounded by surfactant and solubilized in a non-polar solvent, RMs stand apart as a unique membrane model. While RMs have been utilized as tools to investigate the physical properties of membranes and their associated water, RMs also effectively house membrane associated proteins for a variety of studies. High-resolution protein NMR revealed a need for development of improved RM formulations, which greatly enhanced the use of RMs for aqueous proteins. Protein-optimized RM formulations enabled encapsulation of challenging membrane associated protein types, including lipidated proteins, transmembrane proteins, and peripheral membrane proteins. Improvements in biological accuracy of RMs using phospholipid-based surfactants has advanced their utility as a membrane mimetic even further, better matching the chemistry of the most common cellular membrane lipids. Natural lipid extracts may also be used to construct RMs and house proteins, resulting in a membrane model that better represents the complexity of biological membranes. Recent applications in high-resolution investigations of protein-membrane interactions and inhibitor design of membrane associated proteins have demonstrated the usefulness of these systems in addressing this difficult category of protein. Further developments of RMs as membrane models will enhance the breadth of investigations facilitated by these systems and will enhance their use in biophysical, structural, and drug discovery pursuits of membrane associated proteins. In this review, we present the development of RMs as membrane models and their application to structural and biophysical study of membrane proteins.
Collapse
Affiliation(s)
- Sara H Walters
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Aaron S Birchfield
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, U.S.A
| |
Collapse
|
2
|
Pham P, Biswas O, Hilty C. Parahydrogen Polarization in Reverse Micelles and Application to Sensing of Protein-Ligand Binding. J Am Chem Soc 2024; 146:34274-34278. [PMID: 39652060 DOI: 10.1021/jacs.4c13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A medium containing reverse micelles supports non-hydrogenative parahydrogen induced polarization (nhPHIP) in the organic phase while solubilizing a protein in the aqueous phase. Strongly enhanced NMR signals from iridium hydride complexes report on a ligand, 4-amino-2-benzylaminopyrimidine, which crosses the phase boundary and interacts with the thiaminase protein TenA. The calculation of binding equilibria reveals a KD of 39.7 ± 8.9 μM for protein binding. The nanoscale separation of the two phases allows the separate optimization of the parahydrogen polarization and solubilization of a biological macromolecule. The reverse micelles may be used to study other biological questions using signal enhancement by parahydrogen polarization, such as enzyme reactions, protein-protein interactions, and protein binding epitopes.
Collapse
Affiliation(s)
- Pierce Pham
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Oindrila Biswas
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Stackhouse CI, Pierson KN, Labrecque CL, Mawson C, Berg J, Fuglestad B, Nucci NV. Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation. Biophys Chem 2024; 311:107269. [PMID: 38815545 PMCID: PMC11225088 DOI: 10.1016/j.bpc.2024.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-rac-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (W0, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins - cytochrome c, myoglobin, and flavodoxin - in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as W0 was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.
Collapse
Affiliation(s)
- Crystal I Stackhouse
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Kali N Pierson
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
| | - Cara Mawson
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Joshua Berg
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States.
| | - Nathaniel V Nucci
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| |
Collapse
|
4
|
Walters SH, Castillo AJ, Develin AM, Labrecque CL, Qu Y, Fuglestad B. Investigating protein-membrane interactions using native reverse micelles constructed from naturally sourced lipids. Protein Sci 2023; 32:e4786. [PMID: 37746759 PMCID: PMC10578115 DOI: 10.1002/pro.4786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Advancing the study of membrane associated proteins and their interactions is dependent on accurate membrane models. While a variety of membrane models for high-resolution membrane protein study exist, most do not reflect the diversity of lipids found within biological membranes. In this work, we have developed native reverse micelles (nRMs) formulated with lipids from multiple eukaryotic sources, which encapsulate proteins and enable them to interact as they would with a biological membrane. Diverse formulations of nRMs using soy lecithin, porcine brain lipids, or bovine heart lipids combined with n-dodecylphosphocholine were developed and characterized by dynamic light scattering and 31 P-NMR. To optimize protein encapsulation, ubiquitin was used as a standard and protein NMR verified minimal changes to its structure. Peripheral membrane proteins, which bind reversibly to membranes, were encapsulated and include glutathione peroxidase 4 (GPx4), phosphatidylethanolamine-binding protein 1 (PEBP1), and fatty acid binding protein 4 (FABP4). All three proteins showed anticipated interactions with the membrane-like inner surface of the nRMs as assessed by protein NMR. The nRM formulations developed here allow for efficient, high-resolution study of membrane interacting proteins up to and beyond ~21 kDa, in a more biologically relevant context compared to other non-native membrane models. The approach outlined here may be applied to a wide range of lipid extracts, allowing study of a variety of membrane associated proteins in their specific biological context.
Collapse
Affiliation(s)
- Sara H. Walters
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Abdul J. Castillo
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Angela M. Develin
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Yun Qu
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Brian Fuglestad
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
- Institute for Structural Biology, Drug Discovery and DevelopmentVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
5
|
Labrecque CL, Nolan AL, Develin AM, Castillo AJ, Offenbacher AR, Fuglestad B. Membrane-Mimicking Reverse Micelles for High-Resolution Interfacial Study of Proteins and Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3676-3686. [PMID: 35298177 DOI: 10.1021/acs.langmuir.1c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite substantial advances, the study of proteins interacting with membranes remains a significant challenge. While integral membrane proteins have been a major focus of recent efforts, peripheral membrane proteins (PMPs) and their interactions with membranes and lipids have far less high-resolution information available. Their small size and the dynamic nature of their interactions have stalled detailed interfacial study using structural methods like cryo-EM and X-ray crystallography. A major roadblock for the structural analysis of PMP interactions is limitations in membrane models to study the membrane recruited state. Commonly used membrane mimics such as liposomes, bicelles, nanodiscs, and micelles are either very large or composed of non-biological detergents, limiting their utility for the NMR study of PMPs. While there have been previous successes with integral and peripheral membrane proteins, currently employed reverse micelle (RM) compositions are optimized for their inertness with proteins rather than their ability to mimic membranes. Applying more native, membrane-like lipids and surfactants promises to be a valuable advancement for the study of interfacial interactions between proteins and membranes. Here, we describe the development of phosphocholine-based RM systems that mimic biological membranes and are compatible with high-resolution protein NMR. We demonstrate new formulations that are able to encapsulate the model soluble protein, ubiquitin, with minimal perturbations of the protein structure. Furthermore, one formula, DLPC:DPC, allowed the encapsulation of the PMPs glutathione peroxidase 4 (GPx4) and phosphatidylethanolamine-binding protein 1 (PEBP1) and enabled the embedment of these proteins, matching the expected interactions with biological membranes. Dynamic light scattering and small-angle X-ray scattering characterization of the RMs reveals small, approximately spherical, and non-aggregated particles, a prerequisite for protein NMR and other avenues of study. The formulations presented here represent a new tool for the study of elusive PMP interactions and other membrane interfacial investigations.
Collapse
Affiliation(s)
- Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Aubree L Nolan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Angela M Develin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Abdul J Castillo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
6
|
Sanders AB, Zangaro JT, Webber NK, Calhoun RP, Richards EA, Ricci SL, Work HM, Yang DD, Casey KR, Iovine JC, Baker G, Douglas TV, Dutko SB, Fasano TJ, Lofland SA, Rajan AA, Vasile MA, Carone BR, Nucci NV. Optimization of Biocompatibility for a Hydrophilic Biological Molecule Encapsulation System. Molecules 2022; 27:1572. [PMID: 35268673 PMCID: PMC8911823 DOI: 10.3390/molecules27051572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.
Collapse
Affiliation(s)
- Alyssa B. Sanders
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Jacob T. Zangaro
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Nakoa K. Webber
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Ryan P. Calhoun
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Elizabeth A. Richards
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Samuel L. Ricci
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Hannah M. Work
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Daniel D. Yang
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Kaitlyn R. Casey
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Joseph C. Iovine
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Gabriela Baker
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Taylor V. Douglas
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Sierra B. Dutko
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Thomas J. Fasano
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Sarah A. Lofland
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Ashley A. Rajan
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Mihaela A. Vasile
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Benjamin R. Carone
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Nathaniel V. Nucci
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| |
Collapse
|
7
|
Lu X, Li M, Arce FA, Ling J, Setiawan N, Wang Y, Shi X, Campbell HR, Nethercott MJ, Xu W, Munson EJ, Marsac PJ, Su Y. Mechanistic Investigation of Drug Supersaturation in the Presence of Polysorbates as Solubilizing Additives by Solution Nuclear Magnetic Resonance Spectroscopy. Mol Pharm 2021; 18:4310-4321. [PMID: 34761934 DOI: 10.1021/acs.molpharmaceut.1c00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of solubilizing additives has historically been an attractive approach to address the ever-growing proportion of poorly water-soluble drug (PWSD) compounds within the modern drug discovery pipeline. Lipid-formulations, and more specifically micelle formulations, have garnered particular interest because of their simplicity, size, scalability, and avoidance of solid-state limitations. Although micelle formulations have been widely utilized, the molecular mechanism of drug solubilization in surfactant micelles is still poorly understood. In this study, a series of modern nuclear magnetic resonance (NMR) methods are utilized to gain a molecular-level understanding of intermolecular interactions and kinetics in a model system. This approach enabled the understanding of how a PWSD, 17β-Estradiol (E2), solubilizes within a nonionic micelle system composed of polysorbate 80 (PS80). Based on one-dimensional (1D) 1H chemical shift differences of E2 in PS80 solutions, as well as intermolecular correlations established from 1D selective nuclear Overhauser effect (NOE) and two-dimensional NOE spectroscopy experiments, E2 was found to accumulate within the palisade layer of PS80 micelles. A potential hydrogen-bonding interaction between a hydroxyl group of E2 and a carbonyl group of PS80 alkane chains may allow for stabilizing E2-PS80 mixed micelles. Diffusion and relaxation NMR analysis and particle size measurements using dynamic light scattering indicate a slight increase in the micellar size with increasing degrees of supersaturation, resulting in slower mobility of the drug molecule. Based on these structural findings, a theoretical orientation model of E2 molecules with PS80 molecules was developed and validated by computational docking simulations.
Collapse
Affiliation(s)
- Xingyu Lu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Mingyue Li
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Freddy A Arce
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jing Ling
- Pharmaceutical Sciences, Merck & Co., South San Francisco, California 94080, United States
| | - Nico Setiawan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Heather R Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | - Wei Xu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Eric J Munson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick J Marsac
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Miller SL, Wiebenga-Sanford BP, Rithner CD, Levinger NE. Nanoconfinement Raises the Energy Barrier to Hydrogen Atom Exchange between Water and Glucose. J Phys Chem B 2021; 125:3364-3373. [PMID: 33784460 DOI: 10.1021/acs.jpcb.0c10681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In bulk aqueous environments, the exchange of protons between labile hydroxyl groups typically occurs easily and quickly. Nanoconfinement can dramatically change this normally facile process. Through exchange spectroscopy (EXSY) NMR measurements, we observe that nanoconfinement of glucose and water within AOT (sodium bis(2-ethylhexyl) sulfosuccinate) reverse micelles raises the energy barrier to labile hydrogen exchange, which suggests a disruption of the hydrogen bond network. Near room temperature, we measure barriers high enough to slow the process by as much as 2 orders of magnitude. Although exchange rates slow with decreasing temperatures in these nanoconfined environments, the barrier we measure below ∼285 K is 3-5 times lower than the barrier measured at room temperature, indicating a change in mechanism for the process. These findings suggest the possibility of hydrogen tunneling at a surprisingly high-temperature threshold. Furthermore, differences in exchange rates depend on the hydroxyl group position on the glucose pyranose ring and suggest a net orientation of glucose at the reverse micelle interface.
Collapse
Affiliation(s)
- Samantha L Miller
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | | | - Christopher D Rithner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Nancy E Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
9
|
Versatility of Reverse Micelles: From Biomimetic Models to Nano (Bio)Sensor Design. Processes (Basel) 2021. [DOI: 10.3390/pr9020345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This paper presents an overview of the principal structural and dynamics characteristics of reverse micelles (RMs) in order to highlight their structural flexibility and versatility, along with the possibility to modulate their parameters in a controlled manner. The multifunctionality in a large range of different scientific fields is exemplified in two distinct directions: a theoretical model for mimicry of the biological microenvironment and practical application in the field of nanotechnology and nano-based sensors. RMs represent a convenient experimental approach that limits the drawbacks of the conventionally biological studies in vitro, while the particular structure confers them the status of simplified mimics of cells by reproducing a complex supramolecular organization in an artificial system. The biological relevance of RMs is discussed in some particular cases referring to confinement and a crowded environment, as well as the molecular dynamics of water and a cell membrane structure. The use of RMs in a range of applications seems to be more promising due to their structural and compositional flexibility, high efficiency, and selectivity. Advances in nanotechnology are based on developing new methods of nanomaterial synthesis and deposition. This review highlights the advantages of using RMs in the synthesis of nanoparticles with specific properties and in nano (bio)sensor design.
Collapse
|
10
|
Abel S, Marchi M. Deciphering the Structure of the Gramicidin A Channel in the Presence of AOT Reverse Micelles in Pentane Using Molecular Dynamics Simulations. J Phys Chem B 2020; 124:11802-11818. [PMID: 33346653 DOI: 10.1021/acs.jpcb.0c08902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural studies of proteins and, in particular, integral membrane proteins (IMPs) using solution NMR spectroscopy approaches are challenging due to not only their inherent structural complexities but also the fact that they need to be solubilized in biomimetic environments (such as micelles), which enhances the slow molecular reorientation. To deal with these difficulties and increase the effective rate of molecular reorientation, the encapsulation of IMPs in the aqueous core of the reverse micelle (RM) dissolved in a low-viscosity solvent has been proven to be a viable approach. However, the effect of the reverse micelle (RM) environment on the IMP structure and function is little known. To gain insight into these aspects, this article presents a series of atomistic unconstrained molecular dynamics (MD) of a model ion channel (gramicidin A, gA) with RMs formed with anionic surfactant diacyl chain bis(2-ethylhexyl) sodium succinate (AOT) in pentane at a water-to-surfactant molar ratio (W0) of 6. The simulations were carried out with different protocols and starting conditions for a total of 2.4 μs and were compared with other MDs used with the gA channel inserted in models of the SDS micelle or the DMPC membrane. We show here that in the presence of AOT RMs the gA dimer did not look like the "dumbbell-like" model anticipated by experiments, where the C-terminal parts of the gA are capped with two RMs and the rest of the dimer is protected from the oil solvent by the AOT acyl chains. In contrast, the MD simulations reveal that the AOT, Na+, and water formed two well-defined and elongated RMs attached to the C-terminal ends of the gA dimer, while the rest is in direct contact with the pentane. The initial β6.3 secondary structure of the gA is well conserved and filled with 6-9 waters, as in SDS micelles or the DMPC membrane. Finally, the water movement inside the gA is strongly affected by the presence of RMs at each extremity, and no passage of water molecules through the gA channel is observed even after a long simulation period, whereas the opposite was found for gA in SDS and DMPC.
Collapse
Affiliation(s)
- Stéphane Abel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Massimo Marchi
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
11
|
Bazaziyan B, Bozorgmehr MR, Momen-Heravi M, Beyramabadi SA. Flavodoxin in a binary surfactant system consisting of the nonionic 1-decanoyl-rac-glycerol and the zwitterionic lauryldimethylamine-N-oxide: molecular dynamics simulation approach. PAPERS IN PHYSICS 2020. [DOI: 10.4279/pip.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Due to the short time constant of the spin-spin relaxation process, there is a limitation in the preparation of NMR sample solution for large proteins. To overcome this problem, reverse micelle systems are used. Here, molecular dynamics simulation was used to study the structure of flavodoxin in a quaternary mixture of 1-decanoyl-rac-glycerol, lauryldimethylamine-N-oxide, pentane and hexanol. Hexanol was used as co-solvent. Simulations were performed at three different co-solvent concentrations. The proportion of components in the mixture was selected according to experimental conditions. For comparison, simulation of flavodoxin in water was also performed. The simulation results show that the C$$\alpha$$-RMSD for the protein in water is less than for the surfactant mixture. Also, the radius of gyration of flavodoxin increased in the presence of surfactants. The distance between the two residues trp-57 and phe-94, as a measure of protein activity, was obtained from the simulations. The results showed that in the surfactant mixtures this distance increases. Analysis of the secondary structure of the protein shows that the N-terminal part of the flavodoxin is more affected by surfactants. The flavodoxin diffusion coefficient in the surfactant mixture decreased in relation to its diffusion coefficient in water.
Collapse
|
12
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
13
|
Beriashvili D, Spencer NR, Dieckmann T, Overduin M, Palmer M. Characterization of multimeric daptomycin bound to lipid nanodiscs formed by calcium-tolerant styrene-maleic acid copolymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183234. [PMID: 32145282 DOI: 10.1016/j.bbamem.2020.183234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
Daptomycin is a lipopeptide antibiotic that is important in the treatment of infections with Gram-positive bacteria. In the presence of calcium, daptomycin binds to phosphatidylglycerol in the bacterial cytoplasmic membrane and then forms oligomers that mediate its bactericidal effect. The structure of these bactericidal oligomers has not been elucidated. We here explore the feasibility of structural studies on the oligomer by solution-state NMR. To this end, we use nanodiscs that contain DMPC and DMPG, stabilized with a styrene-maleic acid copolymer that has been modified to minimize calcium chelation. We show that these nanodiscs bind daptomycin and induce the formation of stable oligomers under physiologically relevant conditions. The findings suggest that this membrane model is suitable for structural and functional characterization of oligomeric daptomycin, and possibly of other calcium-dependent lipopeptide antibiotics. We show that these nanodiscs bind daptomycin and induce the formation of stable oligomers, under conditions that are suitable for biomolecular NMR. The findings suggest that this membrane model is suitable for structural elucidation of oligomeric daptomycin, and possibly of other calcium-dependent lipopeptide antibiotics.
Collapse
Affiliation(s)
- David Beriashvili
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.
| | | | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
14
|
Day IJ. Matrix-assisted DOSY. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:1-18. [PMID: 32130955 DOI: 10.1016/j.pnmrs.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The analysis of mixtures by NMR spectroscopy is challenging. Diffusion-ordered NMR spectroscopy enables a pseudo-separation of species based on differences in their translational diffusion coefficients. Under the right circumstances, this is a powerful technique; however, when molecules diffuse at similar rates separation in the diffusion dimension can be poor. In addition, spectral overlap also limits resolution and can make interpretation challenging. Matrix-assisted diffusion NMR seeks to improve resolution in the diffusion dimension by utilising the differential interaction of components in the mixture with an additive to the solvent. Tuning these matrix-analyte interactions allows the diffusion resolution to be optimised. This review presents the background to matrix-assisted diffusion experiments, surveys the wide range of matrices employed, including chromatographic stationary phases, surfactants and polymers, and demonstrates the current state of the art.
Collapse
Affiliation(s)
- Iain J Day
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK.
| |
Collapse
|
15
|
Liu X, Yu Q, Song A, Dong S, Hao J. Progress in nuclear magnetic resonance studies of surfactant systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
F Dudás E, Wacha A, Bóta A, Bodor A. Peptide-bicelle interaction: Following variations in size and morphology by a combined NMR-SAXS approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183095. [PMID: 31672542 DOI: 10.1016/j.bbamem.2019.183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Changes in membrane properties occurring upon protein interaction are key questions in understanding membrane protein function. To report on the occurring size and shape variation we present here a combined NMR-SAXS method performed under physiological conditions using the same samples, enabling determination of a global parameter, the hydration radius (rH) and estimating the bicelle shape. We use zwitterionic (DMPC/DHPC) and negatively charged (DMPC/DHPC/DMPG) bicelles and investigate the interaction with model transmembrane and surface active peptides (KALP23 and melittin). 1H NMR measurements based mostly on the translational diffusion coefficient D determination are used to characterize cmc values of DHPC micelles under the investigated conditions, to describe DHPC distribution with exact determination of the q (long chain/short chain) lipid ratio, to estimate aggregation numbers and effective rH values. The scattering curve is used to fit a lenticular core-shell model enabling us to describe the bicelle shape in terms of ellipsoidal axis length parameters. For all studied systems formation of oblate ellipsoids is found. Even though the rG/rH ratio would be an elegant way to characterize shape variations, we show that changes occurring upon peptide-bicelle interaction in the "effective" size and in the measure on the anisometry - morphology - of the objects can be described by using rH and the simplistic ellipsoidal core-shell model. While the influence of the transmembrane KALP peptide is significant, effects upon addition of surface active melittin peptide seem negligible. This synergy of techniques under controlled conditions can provide information about bicellar shape modulation occurring during peptide-bicelle interactions.
Collapse
Affiliation(s)
- E F Dudás
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - A Wacha
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bóta
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| |
Collapse
|
17
|
Honegger P, Steinhauser O. The nuclear Overhauser Effect (NOE) as a tool to study macromolecular confinement: Elucidation and disentangling of crowding and encapsulation effects. J Chem Phys 2020; 152:024120. [PMID: 31941328 DOI: 10.1063/1.5135816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a methodology to capture short-lived but biophysically important contacts of biomacromolecules using the biomolecule-water nuclear Overhauser effect as an indirect microscope. Thus, instead of probing the direct correlation with the foreign biomolecule, we detect its presence by the disturbance it causes in the surrounding water. In addition, this information obtained is spatially resolved and can thus be attributed to specific sites. We extend this approach to the influence of more than one change in chemical environment and show a methodological way of resolution. This is achieved by taking double differences of corresponding σNOE/σROE ratios of the systems studied and separating specific, unspecific, and intermediate influence. While applied to crowding and encapsulation in this study, this method is generally suitable for any combination of changes in chemical environment.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Othmar Steinhauser
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
18
|
Honegger P, Steinhauser O. The protein-water nuclear Overhauser effect (NOE) as an indirect microscope for molecular surface mapping of interaction patterns. Phys Chem Chem Phys 2019; 22:212-222. [PMID: 31799520 DOI: 10.1039/c9cp04752b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this computational study, the intermolecular solute-solvent Nuclear Overhauser Effect (NOE) of the model protein ubiquitin in different chemical environments (free, bound to a partner protein and encapsulated) is investigated. Short-ranged NOE observables such as the NOE/ROE ratio reveal hydration phenomena on absolute timescales such as fast hydration sites and slow water clefts. We demonstrate the ability of solute-solvent NOE differences measured of the same protein in different chemical environments to reveal hydration changes on the relative timescale. The resulting NOE/ROE-surface maps are shown to be a central key for analyzing biologically relevant chemical influences such as complexation and confinement: the presence of a complexing macromolecule or a confining surface wall modulates the water mobility in the vicinity of the probe protein, hence revealing which residues of said protein are proximate to the foreign interface and which are chemically unaffected. This way, hydration phenomena can serve to indirectly map the precise influence (position) of other molecules or interfaces onto the protein surface. This proposed one-protein many-solvents approach may offer experimental benefits over classical one-protein other-protein pseudo-intermolecular transient NOEs. Furthermore, combined influences such as complexation and confinement may exert non-additive influences on the protein compared to a reference state. We offer a mathematical method to disentangle the influence of these two different chemical environments.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria.
| | | |
Collapse
|
19
|
Fuglestad B, Kerstetter NE, Bédard S, Wand AJ. Extending the Detection Limit in Fragment Screening of Proteins Using Reverse Micelle Encapsulation. ACS Chem Biol 2019; 14:2224-2232. [PMID: 31550881 DOI: 10.1021/acschembio.9b00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of very weak (Kd > 10 mM) interactions of proteins with small molecules has been elusive. This is particularly important for fragment-based drug discovery, where it is suspected that the majority of potentially useful fragments will be invisible to current screening methodologies. We describe an NMR approach that permits detection of protein-fragment interactions in the very low affinity range and extends the current detection limit of ∼10 mM up to ∼200 mM and beyond. Reverse micelle encapsulation is leveraged to effectively reach very high fragment and protein concentrations, a principle that is validated by binding model fragments to E. coli dihydrofolate reductase. The method is illustrated by target-detected screening of a small polar fragment library against interleukin-1β, which lacks a known ligand-binding pocket. Evaluation of binding by titration and structural context allows for validation of observed hits using rigorous structural and statistical criteria. The 21 curated hit molecules represent a remarkable hit rate of nearly 10% of the library. Analysis shows that fragment binding involves residues comprising two-thirds of the protein's surface. Current fragment screening methods rely on detection of relatively tight binding to ligand binding pockets. The method presented here illustrates a potential to faithfully discover starting points for development of small molecules that bind to a desired region of the protein, even if the targeted region is defined by a relatively flat surface.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Nicole E. Kerstetter
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sabrina Bédard
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - A. Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Fuglestad B, Kerstetter NE, Wand AJ. Site-Resolved and Quantitative Characterization of Very Weak Protein-Ligand Interactions. ACS Chem Biol 2019; 14:1398-1402. [PMID: 31246002 DOI: 10.1021/acschembio.9b00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Very weak interactions between small organic molecules and proteins have long been predicted and are expected to have dissociation constants of hundreds of millimolar and above. Unfortunately, quantitative evaluation of binding in a high-resolution structural context for this affinity regime is particularly difficult and often impossible using existing experimental approaches. Here, we show that nanoscale encapsulation of single protein molecules within the water core of reverse micelles enables the detection and evaluation of weak binding interactions at atomic resolution using solution NMR spectroscopy. This strategy is used to survey the interactions of a set of small molecules with the cytokine interleukin-1β (IL-1β). The interaction of IL-1β with these molecules is found to vary from more diffuse and weak binding modes to more specific and with a relatively higher affinity. The interactions detected here cover a large portion of the protein surface and have dissociation constants mostly in the low molar range. These results illustrate the ability of a protein to interact productively with a variety of small molecule functional groups and point to a broader potential to target even relatively featureless protein surfaces for applications in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Nicole E. Kerstetter
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - A. Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
21
|
Behnaz Bazaziyan, Bozorgmehr MR, Momen-Heravi M, Beyramabadi SA. Reverse Micelle Surfactant System Comprising the 1-decanoyl-rac-glycerol and the Lauryldimethylamine-N-oxide: Structure and Dynamics of Confined Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419060050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Urano R, Pantelopulos GA, Straub JE. Aerosol-OT Surfactant Forms Stable Reverse Micelles in Apolar Solvent in the Absence of Water. J Phys Chem B 2019; 123:2546-2557. [PMID: 30688469 DOI: 10.1021/acs.jpcb.8b07847] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Normal micelle aggregates of amphiphilic surfactant in aqueous solvents are formed by a process of entropically driven self-assembly. The self-assembly of reverse micelles from amphiphilic surfactant in a nonpolar solvent in the presence of water is considered to be an enthalpically driven process. Although the formation of normal and reverse surfactant micelles has been well characterized in theory and experiment, the nature of dry micelle formation, from amphiphilic surfactant in a nonpolar solvent in the absence of water, is poorly understood. In this study, a theory of dry reverse micelle formation is developed. Variation in free energy during micelle assembly is derived for the specific case of aerosol-OT surfactant in isooctane solvent using atomistic molecular dynamics simulation analyzed using the energy representation method. The existence and thermodynamic stability of dry reverse micelles of limited size are confirmed. The abrupt occurrence of monodisperse aggregates is a clear signature of a critical micelle concentration, commonly observed in the formation of normal surfactant micelles. The morphology of large dry micelles provides insight into the nature of the thermodynamic driving forces stabilizing the formation of the surfactant aggregates. Overall, this study provides detailed insight into the structure and stability of dry reverse micelles assembly in a nonpolar solvent.
Collapse
Affiliation(s)
- Ryo Urano
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - George A Pantelopulos
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - John E Straub
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
23
|
Honegger P, Steinhauser O. Towards capturing cellular complexity: combining encapsulation and macromolecular crowding in a reverse micelle. Phys Chem Chem Phys 2019; 21:8108-8120. [DOI: 10.1039/c9cp00053d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper studies the orientational structure and dynamics of multi-protein systems under confinement and discusses the implications on biological cells.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
24
|
Honegger P, Heid E, Schmode S, Schröder C, Steinhauser O. Changes in protein hydration dynamics by encapsulation or crowding of ubiquitin: strong correlation between time-dependent Stokes shift and intermolecular nuclear Overhauser effect. RSC Adv 2019; 9:36982-36993. [PMID: 35539058 PMCID: PMC9075347 DOI: 10.1039/c9ra08008b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The local changes in protein hydration dynamics upon encapsulation of the protein or macromolecular crowding are essential to understand protein function in cellular environments. We were able to obtain a spatially-resolved picture of the influence of confinement and crowding on the hydration dynamics of the protein ubiquitin by analyzing the time-dependent Stokes shift (TDSS), as well as the intermolecular Nuclear Overhauser Effect (NOE) at different sites of the protein by large-scale computer simulation of single and multiple proteins in water and confined in reverse micelles. Besides high advanced space resolved information on hydration dynamics we found a strong correlation of the change in NOE upon crowding or encapsulation and the change in the integral TDSS relaxation times in all investigated systems relative to the signals in a diluted protein solution. Changes in local protein hydration dynamics caused by encapsulation or crowding are reflected in the TDSS and the intermolecular NOE alike.![]()
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Esther Heid
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Stella Schmode
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| |
Collapse
|
25
|
Fuglestad B, Marques BS, Jorge C, Kerstetter NE, Valentine KG, Wand AJ. Reverse Micelle Encapsulation of Proteins for NMR Spectroscopy. Methods Enzymol 2018; 615:43-75. [PMID: 30638537 PMCID: PMC6487188 DOI: 10.1016/bs.mie.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reverse micelle (RM) encapsulation of proteins for NMR spectroscopy has many advantages over standard NMR methods such as enhanced tumbling and improved sensitivity. It has opened many otherwise difficult lines of investigation including the study of membrane-associated proteins, large soluble proteins, unstable protein states, and the study of protein surface hydration dynamics. Recent technological developments have extended the ability of RM encapsulation with high structural fidelity for nearly all proteins and thereby allow high-quality state-of-the-art NMR spectroscopy. Optimal conditions are achieved using a streamlined screening protocol, which is described here. Commonly studied proteins spanning a range of molecular weights are used as examples. Very low-viscosity alkane solvents, such as propane or ethane, are useful for studying very large proteins but require the use of specialized equipment to permit preparation and maintenance of well-behaved solutions under elevated pressure. The procedures for the preparation and use of solutions of RMs in liquefied ethane and propane are described. The focus of this chapter is to provide procedures to optimally encapsulate proteins in reverse micelles for modern NMR applications.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christine Jorge
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicole E Kerstetter
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen G Valentine
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Jorge C, Marques BS, Valentine KG, Wand AJ. Characterizing Protein Hydration Dynamics Using Solution NMR Spectroscopy. Methods Enzymol 2018; 615:77-101. [PMID: 30638541 DOI: 10.1016/bs.mie.2018.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein hydration is a critical aspect of protein stability, folding, and function and yet remains difficult to characterize experimentally. Solution NMR offers a route to a site-resolved view of the dynamics of protein-water interactions through the nuclear Overhauser effects between hydration water and the protein in the laboratory (NOE) and rotating (ROE) frames of reference. However, several artifacts and limitations including contaminating contributions from bulk water potentially plague this general approach and the corruption of measured NOEs and ROEs by hydrogen exchange-relayed magnetization. Fortunately, encapsulation of single protein molecules within the water core of a reverse micelle overcomes these limitations. The main advantages are the suppression hydrogen exchange and elimination of bulk water. Here we detail guidelines for the preparation solutions of encapsulated proteins that are suitable for characterization by NOE and ROE spectroscopy. Emphasis is placed on understanding the contribution of detected NOE intensity arising from magnetization relayed by hydrogen exchange. Various aspects of fitting obtained NOE, selectively decoupled NOE, and ROE time courses are illustrated.
Collapse
Affiliation(s)
- Christine Jorge
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen G Valentine
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Joshua Wand
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Urano R, Pantelopulos GA, Song S, Straub JE. Characterization of dynamics and mechanism in the self-assembly of AOT reverse micelles. J Chem Phys 2018; 149:144901. [DOI: 10.1063/1.5042771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ryo Urano
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - George A. Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Shanshan Song
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
28
|
Gallo PN, Iovine JC, Nucci NV. Toward comprehensive measurement of protein hydration dynamics: Facilitation of NMR-based methods by reverse micelle encapsulation. Methods 2018; 148:146-153. [PMID: 30048681 DOI: 10.1016/j.ymeth.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022] Open
Abstract
Protein-water interactions are a fundamental determinant of protein structure and function. Despite their importance, the molecular details of water orientations and dynamics near protein surfaces remain poorly understood, largely due to the difficulty of measuring local water mobility near the protein in a site-resolved fashion. Solution NMR-based measurement of water mobility via the nuclear Overhauser effect was presented as a method for performing comprehensive, site-resolved measurements of water dynamics many years ago. Though this approach yielded extensive insight on the dynamics and locations of waters buried within proteins, its promise for measuring surface hydration dynamics was impeded by various technical barriers. Over the past several years, however, this approach has been pursued anew with the aid of reverse micelle encapsulation of proteins of interest. The confined environment of the reverse micelle resolves many of these barriers and permits site-resolved measurement of relative water dynamics across much of the protein surface. Here, the development of this strategy for measuring hydration dynamics is reviewed with particular focus on the important remaining challenges to its widespread application.
Collapse
Affiliation(s)
- Pamela N Gallo
- Department of Physics & Astronomy, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Joseph C Iovine
- Department of Physics & Astronomy, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Nathaniel V Nucci
- Department of Physics & Astronomy, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States.
| |
Collapse
|
29
|
Kundu K, Singh AP, Panda S, Singh V, Gardas RL, Senapati S. Study on the Conformation of Entrapped Protein inside the Reverse Micellar Confinement Based on the Amino Acid Derived Ionic Liquid. ChemistrySelect 2018. [DOI: 10.1002/slct.201800918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kaushik Kundu
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
| | - Akhil Pratap Singh
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Somenath Panda
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Vikram Singh
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Ramesh L. Gardas
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Sanjib Senapati
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
| |
Collapse
|
30
|
Chen Y, Liu Y, Yao Y, Zhang S, Gu Z. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org Biomol Chem 2018; 15:3232-3238. [PMID: 28327735 DOI: 10.1039/c7ob00169j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | |
Collapse
|
31
|
Senske M, Xu Y, Bäumer A, Schäfer S, Wirtz H, Savolainen J, Weingärtner H, Havenith M. Local chemistry of the surfactant's head groups determines protein stability in reverse micelles. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00407b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein stability in reverse micelles is determined by local chemical interactions between the surfactant molecules and the protein groups.
Collapse
Affiliation(s)
- Michael Senske
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Yao Xu
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Alexander Bäumer
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Sarah Schäfer
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Hanna Wirtz
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Janne Savolainen
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Hermann Weingärtner
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Martina Havenith
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
32
|
Honegger P, Schmollngruber M, Steinhauser O. Micellar confinement disrupts collective structure and accelerates collective dynamics of encapsulated water. Phys Chem Chem Phys 2018; 20:11454-11469. [DOI: 10.1039/c8cp01508b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Detailed numerical study of the dielectric spectrum of zwitterionic reverse micelles is combined with interpretation using a new semi-quantitative analytical model.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Michael Schmollngruber
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
33
|
Honegger P, Steinhauser O. Revival of collective water structure and dynamics in reverse micelles brought about by protein encapsulation. Phys Chem Chem Phys 2018; 20:22932-22945. [DOI: 10.1039/c8cp03422b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mechanism of depolarization in reverse micelles with zwitterionic surfactants and containing polar species but lacking ions is reported.
Collapse
Affiliation(s)
- Philipp Honegger
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| |
Collapse
|
34
|
Zhao B, Zhuang J, Serrano MAC, Vachet RW, Thayumanavan S. Influence of Charge Density on Host–Guest Interactions within Amphiphilic Polymer Assemblies in Apolar Media. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mahalia A. C. Serrano
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
35
|
|
36
|
Schmollngruber M, Braun D, Oser D, Steinhauser O. Dielectric depolarisation and concerted collective dynamics in AOT reverse micelles with and without ubiquitin. Phys Chem Chem Phys 2016; 18:3606-17. [PMID: 26751837 DOI: 10.1039/c5cp07112g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this computational study we present molecular dynamics (MD) simulations of reverse micelles, i.e. nano-scale water pools encapsulated by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and dissolved in isooctane. Although consisting of highly polar components, such micro-emulsions exhibit surprisingly low dielectric permittivity, both static and frequency-dependent. This finding is well supported by experimental dielectric measurements. Furthermore, the computational dielectric spectra of reverse micelles with and without the polar protein ubiquitin are almost identical. A detailed component analysis of our simulated systems reveals the underlying mechanism of the observed dielectric depolarisation. While each component by itself would make a remarkable contribution to the static dielectric permittivity, mutual compensation leads to the observed marginal net result. This compensatory behavior is maintained for all but the highest frequencies. Dielectric model theory adapted to the peculiarities of reverse micelles provides an explanation: embedding a system in a cavity engulfed by a low dielectric medium automatically leads to depolarization. In this sense experiment, simulation and theory are in accordance.
Collapse
Affiliation(s)
| | - Daniel Braun
- Department of Computational Biological Chemistry, University of Vienna, Austria.
| | - Daniel Oser
- Department of Computational Biological Chemistry, University of Vienna, Austria.
| | - Othmar Steinhauser
- Department of Computational Biological Chemistry, University of Vienna, Austria.
| |
Collapse
|
37
|
Stetz MA, Wand AJ. Accurate determination of rates from non-uniformly sampled relaxation data. JOURNAL OF BIOMOLECULAR NMR 2016; 65:157-170. [PMID: 27393626 PMCID: PMC5023280 DOI: 10.1007/s10858-016-0046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/02/2016] [Indexed: 05/04/2023]
Abstract
The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time.
Collapse
Affiliation(s)
- Matthew A Stetz
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104-6059, USA
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104-6059, USA.
| |
Collapse
|
38
|
Zhong X, Qian Y, Huang J, Yang D, Deng Y, Qiu X. Fabrication of Lignosulfonate Vesicular Reverse Micelles to Immobilize Horseradish Peroxidase. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04939] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaowen Zhong
- School
of Chemistry and Chemical
Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Yong Qian
- School
of Chemistry and Chemical
Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Jinhao Huang
- School
of Chemistry and Chemical
Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Dongjie Yang
- School
of Chemistry and Chemical
Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Yonghong Deng
- School
of Chemistry and Chemical
Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Xueqing Qiu
- School
of Chemistry and Chemical
Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| |
Collapse
|
39
|
Senske M, Smith AE, Pielak GJ. Protein Stability in Reverse Micelles. Angew Chem Int Ed Engl 2016; 55:3586-9. [DOI: 10.1002/anie.201508981] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Michael Senske
- Department of Physical Chemistry II; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Austin E. Smith
- Department of Chemistry; University of North Carolina at Chapel Hill; Chapel Hill NC 27599-3290 USA
| | - Gary J. Pielak
- Department of Chemistry; University of North Carolina at Chapel Hill; Chapel Hill NC 27599-3290 USA
| |
Collapse
|
40
|
Affiliation(s)
- Michael Senske
- Department of Physical Chemistry II Ruhr-Universität Bochum 44780 Bochum Germany
| | - Austin E. Smith
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Gary J. Pielak
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| |
Collapse
|
41
|
O'Brien ES, Nucci NV, Fuglestad B, Tommos C, Wand AJ. Defining the Apoptotic Trigger: THE INTERACTION OF CYTOCHROME c AND CARDIOLIPIN. J Biol Chem 2015; 290:30879-87. [PMID: 26487716 PMCID: PMC4692216 DOI: 10.1074/jbc.m115.689406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
The interaction between cytochrome c and the anionic lipid cardiolipin has been proposed as a primary event in the apoptotic signaling cascade. Numerous studies that have examined the interaction of cytochrome c with cardiolipin embedded in a variety of model phospholipid membranes have suggested that partial unfolding of the protein is a precursor to the apoptotic response. However, these studies lacked site resolution and used model systems with negligible or a positive membrane curvature, which is distinct from the large negative curvature of the invaginations of the inner mitochondrial membrane where cytochrome c resides. We have used reverse micelle encapsulation to mimic the potential effects of confinement on the interaction of cytochrome c with cardiolipin. Encapsulation of oxidized horse cytochrome c in 1-decanoyl-rac-glycerol/lauryldimethylamine-N-oxide/hexanol reverse micelles prepared in pentane yields NMR spectra essentially identical to the protein in free aqueous solution. The structure of encapsulated ferricytochrome c was determined to high precision (bb ∼ 0.23 Å) using NMR-based methods and is closely similar to the cryogenic crystal structure (bb ∼ 1.2 Å). Incorporation of cardiolipin into the reverse micelle surfactant shell causes localized chemical shift perturbations of the encapsulated protein, providing the first view of the cardiolipin/cytochrome c interaction interface at atomic resolution. Three distinct sites of interaction are detected: the so-called A- and L-sites, plus a previously undocumented interaction centered on residues Phe-36, Gly-37, Thr-58, Trp-59, and Lys-60. Importantly, in distinct contrast to earlier studies of this interaction, the protein is not significantly disturbed by the binding of cardiolipin in the context of the reverse micelle.
Collapse
Affiliation(s)
- Evan S O'Brien
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Nathaniel V Nucci
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Brian Fuglestad
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Cecilia Tommos
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - A Joshua Wand
- From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|
42
|
Qian Y, Qiu X, Zhong X, Zhang D, Deng Y, Yang D, Zhu S. Lignin Reverse Micelles for UV-Absorbing and High Mechanical Performance Thermoplastics. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03360] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Qian
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xueqing Qiu
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xiaowen Zhong
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Delang Zhang
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yonghong Deng
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Dongjie Yang
- State Key Lab of
Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Shiping Zhu
- Department
of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
43
|
Role of cavities and hydration in the pressure unfolding of T4 lysozyme. Proc Natl Acad Sci U S A 2014; 111:13846-51. [PMID: 25201963 DOI: 10.1073/pnas.1410655111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A-benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins.
Collapse
|
44
|
Nucci NV, Valentine KG, Wand AJ. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:137-47. [PMID: 24656086 PMCID: PMC4127067 DOI: 10.1016/j.jmr.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/11/2013] [Indexed: 05/23/2023]
Abstract
High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the 'slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.
Collapse
Affiliation(s)
- Nathaniel V Nucci
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Kathleen G Valentine
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - A Joshua Wand
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
45
|
Valentine K, Mathies G, Bédard S, Nucci NV, Dodevski I, Stetz MA, Can TV, Griffin RG, Wand AJ. Reverse micelles as a platform for dynamic nuclear polarization in solution NMR of proteins. J Am Chem Soc 2014; 136:2800-7. [PMID: 24456213 PMCID: PMC3955360 DOI: 10.1021/ja4107176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Indexed: 02/06/2023]
Abstract
Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule. Unfortunately, these EPR transitions lie in the microwave range of the electromagnetic spectrum where bulk water absorbs strongly, often resulting in catastrophic heating. Furthermore, the residence times of water on the surface of the protein in bulk solution are generally too short for efficient transfer of polarization. Here we take advantage of the properties of solutions of encapsulated proteins dissolved in low viscosity solvents to implement DNP in liquids. Such samples are largely transparent to the microwave frequencies required and thereby avoid significant heating. Nitroxide radicals are introduced into the reverse micelle system in three ways: attached to the protein, embedded in the reverse micelle shell, and free in the aqueous core. Significant enhancements of the water resonance ranging up to ∼-93 at 0.35 T were observed. We also find that the hydration properties of encapsulated proteins allow for efficient polarization transfer from water to the protein. These and other observations suggest that merging reverse micelle encapsulation technology with DNP offers a route to a significant increase in the sensitivity of solution NMR spectroscopy of proteins and other biomolecules.
Collapse
Affiliation(s)
- Kathleen
G. Valentine
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Guinevere Mathies
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Sabrina Bédard
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Nathaniel V. Nucci
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Igor Dodevski
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Matthew A. Stetz
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Thach V. Can
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert G. Griffin
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - A. Joshua Wand
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|
46
|
Marques BS, Nucci NV, Dodevski I, Wang KWC, Athanasoula EA, Jorge C, Wand AJ. Measurement and control of pH in the aqueous interior of reverse micelles. J Phys Chem B 2014; 118:2020-31. [PMID: 24506449 PMCID: PMC3983379 DOI: 10.1021/jp4103349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The
encapsulation of proteins and nucleic acids within the nanoscale
water core of reverse micelles has been used for over 3 decades as
a vehicle for a wide range of investigations including enzymology,
the physical chemistry of confined spaces, protein and nucleic acid
structural biology, and drug development and delivery. Unfortunately,
the static and dynamical aspects of the distribution of water in solutions
of reverse micelles complicate the measurement and interpretation
of fundamental parameters such as pH. This is a severe disadvantage
in the context of (bio)chemical reactions and protein structure and
function, which are generally highly sensitive to pH. There is a need
to more fully characterize and control the effective pH of the reverse
micelle water core. The buffering effect of titratable head groups
of the reverse micelle surfactants is found to often be the dominant
variable defining the pH of the water core. Methods for measuring
the pH of the reverse micelle aqueous interior using one-dimensional 1H and two-dimensional heteronuclear NMR spectroscopy are described.
Strategies for setting the effective pH of the reverse micelle water
core are demonstrated. The exquisite sensitivity of encapsulated proteins
to the surfactant, water content, and pH of the reverse micelle is
also addressed. These results highlight the importance of assessing
the structural fidelity of the encapsulated protein using multidimensional
NMR before embarking upon a detailed structural and biophysical characterization.
Collapse
Affiliation(s)
- Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics and Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104-6059, United States
| | | | | | | | | | | | | |
Collapse
|