1
|
Lee G, Kageyama Y, Takeda S. Site-Selective Spin-Probe with a Photocleavable Macrocyclic Linker for Measuring the Dynamics of Water Surrounding a Liposomal Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyeorye Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshiyuki Kageyama
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sadamu Takeda
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
2
|
Sanders AB, Zangaro JT, Webber NK, Calhoun RP, Richards EA, Ricci SL, Work HM, Yang DD, Casey KR, Iovine JC, Baker G, Douglas TV, Dutko SB, Fasano TJ, Lofland SA, Rajan AA, Vasile MA, Carone BR, Nucci NV. Optimization of Biocompatibility for a Hydrophilic Biological Molecule Encapsulation System. Molecules 2022; 27:1572. [PMID: 35268673 PMCID: PMC8911823 DOI: 10.3390/molecules27051572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.
Collapse
Affiliation(s)
- Alyssa B. Sanders
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Jacob T. Zangaro
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Nakoa K. Webber
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Ryan P. Calhoun
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Elizabeth A. Richards
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Samuel L. Ricci
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Hannah M. Work
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Daniel D. Yang
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Kaitlyn R. Casey
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Joseph C. Iovine
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Gabriela Baker
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Taylor V. Douglas
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Sierra B. Dutko
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Thomas J. Fasano
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Sarah A. Lofland
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Ashley A. Rajan
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Mihaela A. Vasile
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Benjamin R. Carone
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Nathaniel V. Nucci
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| |
Collapse
|
3
|
Dai D, Wang X, Liu Y, Yang XL, Glaubitz C, Denysenkov V, He X, Prisner T, Mao J. Room-temperature dynamic nuclear polarization enhanced NMR spectroscopy of small biological molecules in water. Nat Commun 2021; 12:6880. [PMID: 34824218 PMCID: PMC8616939 DOI: 10.1038/s41467-021-27067-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful and popular technique for probing the molecular structures, dynamics and chemical properties. However the conventional NMR spectroscopy is bottlenecked by its low sensitivity. Dynamic nuclear polarization (DNP) boosts NMR sensitivity by orders of magnitude and resolves this limitation. In liquid-state this revolutionizing technique has been restricted to a few specific non-biological model molecules in organic solvents. Here we show that the carbon polarization in small biological molecules, including carbohydrates and amino acids, can be enhanced sizably by in situ Overhauser DNP (ODNP) in water at room temperature and at high magnetic field. An observed connection between ODNP 13C enhancement factor and paramagnetic 13C NMR shift has led to the exploration of biologically relevant heterocyclic compound indole. The QM/MM MD simulation underscores the dynamics of intermolecular hydrogen bonds as the driving force for the scalar ODNP in a long-living radical-substrate complex. Our work reconciles results obtained by DNP spectroscopy, paramagnetic NMR and computational chemistry and provides new mechanistic insights into the high-field scalar ODNP.
Collapse
Affiliation(s)
- Danhua Dai
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xianwei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China
| | - Yiwei Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Liang Yang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Clemens Glaubitz
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jiafei Mao
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Fukuyama M, Suto M, Hibara A. Transport of Oligopeptide from Aqueous Phase to Span 80 Reverse Micelles in Microdroplet Array. ANAL SCI 2021; 37:753-758. [PMID: 33487599 DOI: 10.2116/analsci.20scp18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The partitioning of water and tetramethylrhodamine-conjugated-10-residue oligopeptides from the aqueous phase of microdroplets into Span 80 reverse micelles was observed by utilizing microdroplet arrays. Each peptide was dissolved in phosphate buffer saline, and initially encapsulated in arrayed droplets. An organic phase containing the reverse micelles was added to the microdroplets. Here, the hydration degree of the reverse micelle was adjusted by contact of the organic phase with a 1.0 M NaCl aqueous solution or with a phosphate buffer saline before combining it with the microdroplets. For micelles treated with a 1.0 M NaCl, significant water transport from the microdroplet to the micelle was observed, and peptide with low solubility in water was transported to the reverse micelles, while those with high solubility in water were not. For micelles treated with phosphate buffer saline, the water transport was minimal, and no significant peptide transport was observed. These results suggest that the partitioning of low-solubility oligopeptides requires accompanying water transport to the reverse micelle phase.
Collapse
Affiliation(s)
- Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| | - Makoto Suto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University.,Department of Chemistry, Graduate School of Science, Tohoku University
| | - Akihide Hibara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|
5
|
Solid-state NMR approaches to investigate large enzymes in complex with substrates and inhibitors. Biochem Soc Trans 2020; 49:131-144. [PMID: 33367567 DOI: 10.1042/bst20200099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Enzyme catalysis is omnipresent in the cell. The mechanisms by which highly evolved protein folds enable rapid and specific chemical transformation of substrates belong to the marvels of structural biology. Targeting of enzymes with inhibitors has immediate application in drug discovery, from chemotherapeutics over antibiotics to antivirals. NMR spectroscopy combines multiple assets for the investigation of enzyme function. The non-invasive technique can probe enzyme structure and dynamics and map interactions with substrates, cofactors and inhibitors at the atomic level. With experiments performed at close to native conditions, catalytic transformations can be monitored in real time, giving access to kinetic parameters. The power of NMR in the solid state, in contrast with solution, lies in the absence of fundamental size limitations, which is crucial for enzymes that are either membrane-embedded or assemble into large soluble complexes exceeding hundreds of kilodaltons in molecular weight. Here we review recent progress in solid-state NMR methodology, which has taken big leaps in the past years due to steady improvements in hardware design, notably magic angle spinning, and connect it to parallel biochemical advances that enable isotope labelling of increasingly complex enzymes. We first discuss general concepts and requirements of the method and then highlight the state-of-the-art in sample preparation, structure determination, dynamics and interaction studies. We focus on examples where solid-state NMR has been instrumental in elucidating enzyme mechanism, alone or in integrative studies.
Collapse
|
6
|
Yakimov AV, Mance D, Searles K, Copéret C. A Formulation Protocol with Pyridine to Enable Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy on Reactive Surface Sites: Case Study with Olefin Polymerization and Metathesis Catalysts. J Phys Chem Lett 2020; 11:3401-3407. [PMID: 32271018 DOI: 10.1021/acs.jpclett.0c00716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS) has emerged as a powerful characterization tool in material chemistry and heterogeneous catalysis by dramatically increasing, by up to 2 orders of magnitude, the NMR signals associated with surface sites. DNP-SENS mostly relies on using exogenous polarizing agents (PAs), typically dinitroxyl radicals, to boost the NMR signals. However, the PAs may interact with the surface or even react with surface sites, thus leading to loss or quenching of DNP enhancements. Herein, we describe the development of a DNP-SENS formulation that allows broadening the application of DNP-SENS to samples containing highly reactive surface sites, namely a Ziegler-Natta propylene polymerization catalyst, a sulfated zirconia-supported metallocene, and a silica-supported cationic Mo alkylidene. The protocol consists of adsorbing pyridine prior to the DNP formulation (TEKPol/TCE). The addition of pyridine not only preserves the PAs and thereby restores the DNP enhancement but also allows probing Lewis/Brønsted acid surface sites that are often present on these catalysts.
Collapse
Affiliation(s)
| | - Deni Mance
- ETH Zurich, Vladimir-Prelog Weg 1-5/10, 8093 Zurich, Switzerland
| | - Keith Searles
- ETH Zurich, Vladimir-Prelog Weg 1-5/10, 8093 Zurich, Switzerland
| | | |
Collapse
|
7
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
8
|
Fuglestad B, Marques BS, Jorge C, Kerstetter NE, Valentine KG, Wand AJ. Reverse Micelle Encapsulation of Proteins for NMR Spectroscopy. Methods Enzymol 2018; 615:43-75. [PMID: 30638537 PMCID: PMC6487188 DOI: 10.1016/bs.mie.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reverse micelle (RM) encapsulation of proteins for NMR spectroscopy has many advantages over standard NMR methods such as enhanced tumbling and improved sensitivity. It has opened many otherwise difficult lines of investigation including the study of membrane-associated proteins, large soluble proteins, unstable protein states, and the study of protein surface hydration dynamics. Recent technological developments have extended the ability of RM encapsulation with high structural fidelity for nearly all proteins and thereby allow high-quality state-of-the-art NMR spectroscopy. Optimal conditions are achieved using a streamlined screening protocol, which is described here. Commonly studied proteins spanning a range of molecular weights are used as examples. Very low-viscosity alkane solvents, such as propane or ethane, are useful for studying very large proteins but require the use of specialized equipment to permit preparation and maintenance of well-behaved solutions under elevated pressure. The procedures for the preparation and use of solutions of RMs in liquefied ethane and propane are described. The focus of this chapter is to provide procedures to optimally encapsulate proteins in reverse micelles for modern NMR applications.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christine Jorge
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicole E Kerstetter
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen G Valentine
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Pump E, Bendjeriou-Sedjerari A, Viger-Gravel J, Gajan D, Scotto B, Samantaray MK, Abou-Hamad E, Gurinov A, Almaksoud W, Cao Z, Lesage A, Cavallo L, Emsley L, Basset JM. Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity. Chem Sci 2018; 9:4866-4872. [PMID: 29910939 PMCID: PMC5982197 DOI: 10.1039/c8sc00532j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS).
Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS). However, the technique is limited when using highly sensitive heterogeneous catalysts due to secondary reaction of surface organometallic fragments (SOMFs) with stable radical polarization agents. Here, we observe that in non-porous silica nanoparticles (NPs) (dparticle = 15 nm) some DNP enhanced NMR or SENS characterizations are possible, depending on the metal-loading of the SOMF and the type of SOMF substituents (methyl, isobutyl, neopentyl). This unexpected observation suggests that aggregation of the nanoparticles occurs in non-polar solvents (such as ortho-dichlorobenzene) leading to (partial) protection of the SOMF inside the interparticle space, thereby preventing reaction with bulky polarization agents. We discover that the DNP SENS efficiency is correlated with the hydrophilicity of the SOMF/support, which depends on the carbon and SOMF concentration. Nitrogen sorption measurements to determine the BET constant (CBET) were performed. This constant allows us to predict the aggregation of silica nanoparticles and consequently the efficiency of DNP SENS. Under optimal conditions, CBET > 60, we found signal enhancement factors of up to 30.
Collapse
Affiliation(s)
- Eva Pump
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| | - Anissa Bendjeriou-Sedjerari
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| | - Jasmine Viger-Gravel
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - David Gajan
- Institut de Sciences Analytiques (CNRS/ENS-Lyon/UCB-Lyon 1) , Université de Lyon , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Baptiste Scotto
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| | - Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST) , Core Labs , Thuwal , 23955-6900 , Saudi Arabia
| | - Andrei Gurinov
- King Abdullah University of Science and Technology (KAUST) , Core Labs , Thuwal , 23955-6900 , Saudi Arabia
| | - Walid Almaksoud
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| | - Anne Lesage
- Institut de Sciences Analytiques (CNRS/ENS-Lyon/UCB-Lyon 1) , Université de Lyon , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia .
| |
Collapse
|
10
|
Plainchont B, Berruyer P, Dumez JN, Jannin S, Giraudeau P. Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Anal Chem 2018; 90:3639-3650. [PMID: 29481058 DOI: 10.1021/acs.analchem.7b05236] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic nuclear polarization (DNP) can boost sensitivity in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. This Feature illustrates how the coupling of DNP with both liquid- and solid-state NMR spectroscopy has the potential to considerably extend the range of applications of NMR in analytical chemistry.
Collapse
Affiliation(s)
- Bertrand Plainchont
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France
| | - Pierrick Berruyer
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Univ. Paris Sud, Université Paris-Saclay , 91190 Gif-sur Yvette , France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Patrick Giraudeau
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France.,Institut Universitaire de France , 75005 Paris , France
| |
Collapse
|
11
|
Viger-Gravel J, Berruyer P, Gajan D, Basset JM, Lesage A, Tordo P, Ouari O, Emsley L. Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jasmine Viger-Gravel
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Pierrick Berruyer
- Université de Lyon; Institut des Sciences Analytiques (UMR 5280 CNRS/UCBL/ENS Lyon), Centre de RMN à Très Hauts Champs; 69100 Villeurbanne France
| | - David Gajan
- Université de Lyon; Institut des Sciences Analytiques (UMR 5280 CNRS/UCBL/ENS Lyon), Centre de RMN à Très Hauts Champs; 69100 Villeurbanne France
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST); KAUST Catalysis Center (KCC); Thuwal 23955-6900 Saudi Arabia
| | - Anne Lesage
- Université de Lyon; Institut des Sciences Analytiques (UMR 5280 CNRS/UCBL/ENS Lyon), Centre de RMN à Très Hauts Champs; 69100 Villeurbanne France
| | - Paul Tordo
- Aix Marseille Uni, CNRS, ICR UMR 7273; 13397 Marseille France
| | - Olivier Ouari
- Aix Marseille Uni, CNRS, ICR UMR 7273; 13397 Marseille France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| |
Collapse
|
12
|
Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices. Angew Chem Int Ed Engl 2017; 56:8726-8730. [DOI: 10.1002/anie.201703758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/08/2023]
|
13
|
Silverio DL, van Kalkeren HA, Ong TC, Baudin M, Yulikov M, Veyre L, Berruyer P, Chaudhari S, Gajan D, Baudouin D, Cavaillès M, Vuichoud B, Bornet A, Jeschke G, Bodenhausen G, Lesage A, Emsley L, Jannin S, Thieuleux C, Copéret C. Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel L. Silverio
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Henri A. van Kalkeren
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Ta-Chung Ong
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Mathieu Baudin
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
- Laboratoire des Biomolécules (LBM); Département de Chimie, Ecole Normale Supérieure; UPMC Université Paris 06; CNRS; PSL Research University; 24 rue Lhomond FR-75005 Paris
- Laboratoire des Biomolécules (LBM); Sorbonne Universités; UPMC Université Paris 06; Ecole Normale Supérieure; CNRS; FR-75005 Paris
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Laurent Veyre
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Pierrick Berruyer
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - Sachin Chaudhari
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - David Gajan
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - David Baudouin
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Matthieu Cavaillès
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Basile Vuichoud
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
| | - Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
- Laboratoire des Biomolécules (LBM); Département de Chimie, Ecole Normale Supérieure; UPMC Université Paris 06; CNRS; PSL Research University; 24 rue Lhomond FR-75005 Paris
- Laboratoire des Biomolécules (LBM); Sorbonne Universités; UPMC Université Paris 06; Ecole Normale Supérieure; CNRS; FR-75005 Paris
| | - Anne Lesage
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - Chloé Thieuleux
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| |
Collapse
|
14
|
Sauvée C, Casano G, Abel S, Rockenbauer A, Akhmetzyanov D, Karoui H, Siri D, Aussenac F, Maas W, Weber RT, Prisner T, Rosay M, Tordo P, Ouari O. Tailoring of Polarizing Agents in the bTurea Series for Cross-Effect Dynamic Nuclear Polarization in Aqueous Media. Chemistry 2016; 22:5598-606. [PMID: 26992052 DOI: 10.1002/chem.201504693] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Indexed: 11/10/2022]
Abstract
A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ɛ ((1)H) in cross-effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP-optimized glycerol/water matrix ("DNP juice") have been studied. We observe that ɛ ((1)H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e-e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e-e distance or too long a T1e can dramatically limit ɛ ((1)H). Our study also shows that the molecular structure of AMUPol is not optimal and its ɛ ((1)H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ɛ ((1)H) than AMUPol itself (by a factor of ca. 1.2).
Collapse
Affiliation(s)
- Claire Sauvée
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille cedex 20, France
| | - Gilles Casano
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille cedex 20, France
| | - Sébastien Abel
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille cedex 20, France
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, Department of Physics, Budapest University of Technology and Economics and MTA-BME Condensed Matter Research Group, Budafoki ut 8, 1111, Budapest, Hungary
| | - Dimitry Akhmetzyanov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt-am-Main, Germany
| | - Hakim Karoui
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille cedex 20, France
| | - Didier Siri
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille cedex 20, France
| | - Fabien Aussenac
- Bruker BioSpin S.A.S., 34 rue de l'industrie, 67166, Wissembourg, France
| | - Werner Maas
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts, 01821, USA
| | - Ralph T Weber
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts, 01821, USA
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt-am-Main, Germany
| | - Mélanie Rosay
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts, 01821, USA
| | - Paul Tordo
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille cedex 20, France.
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille cedex 20, France.
| |
Collapse
|
15
|
Theis T, Ortiz GX, Logan AWJ, Claytor KE, Feng Y, Huhn WP, Blum V, Malcolmson SJ, Chekmenev EY, Wang Q, Warren WS. Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal (15)N2-diazirine molecular tags. SCIENCE ADVANCES 2016; 2:e1501438. [PMID: 27051867 PMCID: PMC4820385 DOI: 10.1126/sciadv.1501438] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/05/2016] [Indexed: 05/17/2023]
Abstract
Conventional magnetic resonance (MR) faces serious sensitivity limitations which can be overcome by hyperpolarization methods, but the most common method (dynamic nuclear polarization) is complex and expensive, and applications are limited by short spin lifetimes (typically seconds) of biologically relevant molecules. We use a recently developed method, SABRE-SHEATH, to directly hyperpolarize (15)N2 magnetization and long-lived (15)N2 singlet spin order, with signal decay time constants of 5.8 and 23 minutes, respectively. We find >10,000-fold enhancements generating detectable nuclear MR signals that last for over an hour. (15)N2-diazirines represent a class of particularly promising and versatile molecular tags, and can be incorporated into a wide range of biomolecules without significantly altering molecular function.
Collapse
Affiliation(s)
- Thomas Theis
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Corresponding author. E-mail: (W.S.W.); (Q.W.); (T.T.)
| | | | | | | | - Yesu Feng
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - William P. Huhn
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Volker Blum
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | | | - Eduard Y. Chekmenev
- Departments of Radiology and Biomedical Engineering, Vanderbilt University, Institute of Imaging Science, Nashville, TN 37232, USA
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Corresponding author. E-mail: (W.S.W.); (Q.W.); (T.T.)
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Physics, Duke University, Durham, NC 27708, USA
- Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Corresponding author. E-mail: (W.S.W.); (Q.W.); (T.T.)
| |
Collapse
|
16
|
Peat DT, Hirsch ML, Gadian DG, Horsewill AJ, Owers-Bradley JR, Kempf JG. Low-field thermal mixing in [1-13C] pyruvic acid for brute-force hyperpolarization. Phys Chem Chem Phys 2016; 18:19173-82. [DOI: 10.1039/c6cp02853e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We detail the process of low-field thermal mixing (LFTM) between 1H and 13C nuclei in neat [1-13C] pyruvic acid at cryogenic temperatures (4–15 K).
Collapse
Affiliation(s)
- David T. Peat
- School of Physics & Astronomy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | | | - David G. Gadian
- School of Physics & Astronomy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | | | | | | |
Collapse
|
17
|
Dale MW, Wedge CJ. Optically generated hyperpolarization for sensitivity enhancement in solution-state NMR spectroscopy. Chem Commun (Camb) 2016; 52:13221-13224. [DOI: 10.1039/c6cc06651h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using optical excitation to generate radical triplet pairs the sensitivity of solution-state NMR can be enhanced without microwave pumping.
Collapse
|
18
|
Kubicki DJ, Casano G, Schwarzwälder M, Abel S, Sauvée C, Ganesan K, Yulikov M, Rossini AJ, Jeschke G, Copéret C, Lesage A, Tordo P, Ouari O, Emsley L. Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem Sci 2015; 7:550-558. [PMID: 29896347 PMCID: PMC5952883 DOI: 10.1039/c5sc02921j] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/12/2015] [Indexed: 12/27/2022] Open
Abstract
A series of 37 dinitroxide biradicals have been prepared and their performance studied as polarizing agents in cross-effect DNP NMR experiments at 9.4 T and 100 K in 1,1,2,2-tetrachloroethane (TCE). We observe that in this regime the DNP performance is strongly correlated with the substituents on the polarizing agents, and electron and nuclear spin relaxation times, with longer relaxation times leading to better enhancements. We also observe that deuteration of the radicals generally leads to better DNP enhancement but with longer build-up time. One of the new radicals introduced here provides the best performance obtained so far under these conditions.
Collapse
Affiliation(s)
- Dominik J Kubicki
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Gilles Casano
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Martin Schwarzwälder
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Sébastien Abel
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Claire Sauvée
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Karthikeyan Ganesan
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Maxim Yulikov
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Aaron J Rossini
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Gunnar Jeschke
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Christophe Copéret
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Anne Lesage
- Université de Lyon , Institut de Sciences Analytiques (CNRS / ENS de Lyon / UCB-Lyon 1) , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Paul Tordo
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Olivier Ouari
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
19
|
Nucci NV, Valentine KG, Wand AJ. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:137-47. [PMID: 24656086 PMCID: PMC4127067 DOI: 10.1016/j.jmr.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/11/2013] [Indexed: 05/23/2023]
Abstract
High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the 'slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.
Collapse
Affiliation(s)
- Nathaniel V Nucci
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Kathleen G Valentine
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - A Joshua Wand
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|