1
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Yan L, Lan J, Cheng H, Li Y, Zhang M, Wu D, You J. Regioselective addition/annulation of ferrocenyl thioamides with 1,3-diynes via a sulfur-transfer rearrangement to construct extended π-conjugated ferrocenes with luminescent properties. Chem Sci 2020; 11:11030-11036. [PMID: 34123193 PMCID: PMC8162306 DOI: 10.1039/d0sc04597g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022] Open
Abstract
Herein a regioselective addition/annulation strategy of ferrocenyl (Fc) thioamides with alkynes to construct thienylferrocene (ThienylFc) structures, involving a rhodium-catalyzed C-H activation, an unusual C2-selective addition of 1,3-diyne, and an unexpected intramolecular sulfur-transfer rearrangement process is described. In this protocol, thioamide not only serves as a directing group to activate the ortho-C-H bond of the ferrocene, but also as a sulfur source to form the thiophene ring. The resulting carboxylic ester group after sulfur transfer can act as a linkage to construct extended π-conjugated ferrocenes (OCTFc) with luminescent properties. ThienylFc displays effective fluorescence quenching due to the photoinduced electron transfer (PET) from the Fc unit to the excited luminophore, which turns out to be a promising type of redox molecular switch. OCTFc exhibit relatively strong emission owing to their intramolecular charge transfer (ICT) characteristics. The ring-fused strategy is herein employed for the first time to construct luminescent materials based on ferrocenes, which provides inspiration for the development of novel organic optoelectronic materials, such as electroluminescent materials based on ferrocenes.
Collapse
Affiliation(s)
- Lipeng Yan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Hu Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Yihang Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Mangang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
4
|
A novel method to regulate the morphology of silver nanostructure by galvanic replacement reaction with boric acid. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01339-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Wen BY, Lin JS, Zhang YJ, Radjenovic PM, Zhang XG, Tian ZQ, Li JF. Probing Electric Field Distributions in the Double Layer of a Single-Crystal Electrode with Angstrom Spatial Resolution using Raman Spectroscopy. J Am Chem Soc 2020; 142:11698-11702. [PMID: 32551614 DOI: 10.1021/jacs.0c05162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The electrical double layer (EDL) is the extremely important interfacial region involved in many electrochemical reactions, and it is the subject of significant study in electrochemistry and surface science. However, the direct measurement of interfacial electric fields in the EDL is challenging. In this work, both electrochemical resonant Raman spectroscopy and theoretical calculations were used to study electric field distributions in the EDL of an atomically flat single-crystal Au(111) electrode with self-assembled monolayer molecular films. This was achieved using a series of redox-active molecules containing the 4,4'-bipyridinium moiety as a Raman marker that were located at different precisely controlled distances away from the electrode surface. It was found that the electric field and the dipole moment of the probe molecule both directly affected its Raman signal intensity, which in turn could be used to map the electric field distribution at the interface. Also, by variation of the electrolyte anion concentration, the Raman intensity was found to decrease when the electric field strength increased. Moreover, the distance between adjacent Raman markers was ∼2.1 Å. Thus, angstrom-level spatial resolution in the mapping of electric field distributions at the electrode-electrolyte interface was realized. These results directly evidence the EDL structure, bridging the gap between the theoretical and experimental understandings of the interface.
Collapse
Affiliation(s)
- Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Pichugov AV, Bushkov NS, Erkhova LV, Zhizhko PA, Gagieva SC, Zarubin DN, Ustynyuk NA, Lemenovskii DA, Yu H, Wang L. Synthesis of 1,1′-diacetylferrocene imines via catalytic oxo/imido heterometathesis. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Wu Y, Li J, Zha B, Miao X, Ying L, Deng W. Intermolecular H···O═C bonds induced 2D self-assembly of thiophene based diketopyrrolopyrrole derivative. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yican Wu
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Jinxing Li
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Bao Zha
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xinrui Miao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lei Ying
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Wenli Deng
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
8
|
Lee S, Hirsch BE, Liu Y, Dobscha JR, Burke DW, Tait SL, Flood AH. Multifunctional Tricarbazolo Triazolophane Macrocycles: One-Pot Preparation, Anion Binding, and Hierarchical Self-Organization of Multilayers. Chemistry 2015; 22:560-9. [PMID: 26593327 DOI: 10.1002/chem.201503161] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 01/23/2023]
Abstract
Programming the synthesis and self-assembly of molecules is a compelling strategy for the bottom-up fabrication of ordered materials. To this end, shape-persistent macrocycles were designed with alternating carbazoles and triazoles to program a one-pot synthesis and to bind large anions. The macrocycles bind anions that were once considered too weak to be coordinated, such as PF6 (-) , with surprisingly high affinities (β2 =10(11) M(-2) in 80:20 chloroform/methanol) and positive cooperativity, α=(4 K2 /K1 )=1200. We also discovered that the macrocycles assemble into ultrathin films of hierarchically ordered tubes on graphite surfaces. The remarkable surface-templated self-assembly properties, as was observed by using scanning tunneling microscopy, are attributed to the complementary pairing of alternating triazoles and carbazoles inscribed into both the co-facial and edge-sharing seams that exist between shape-persistent macrocycles. The multilayer assembly is also consistent with the high degree of molecular self-association observed in solution, with self-association constants of K=300 000 M(-1) (chloroform/methanol 80:20). Scanning tunneling microscopy data also showed that surface assemblies readily sequester iodide anions from solution, modulating their assembly. This multifunctional macrocycle provides a foundation for materials composed of hierarchically organized and nanotubular self-assemblies.
Collapse
Affiliation(s)
- Semin Lee
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA).,Current Address: Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801 (USA)
| | - Brandon E Hirsch
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Yun Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - James R Dobscha
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - David W Burke
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Steven L Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| |
Collapse
|
9
|
Lebedeva MA, Chamberlain TW, Khlobystov AN. Harnessing the Synergistic and Complementary Properties of Fullerene and Transition-Metal Compounds for Nanomaterial Applications. Chem Rev 2015; 115:11301-51. [DOI: 10.1021/acs.chemrev.5b00005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria A. Lebedeva
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Nottingham Nanotechnology & Nanoscience Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
10
|
Okulov VN, Dyadchenko MA, Churakov AV, Polunin EV, Lemenovskii DA, Yu H, Wang L, Dyadchenko VP. Rod-like derivatives of ferrocenylacetylene: syntheses and structure. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Wang WY, Wang L, Ma NN, Zhu CL, Qiu YQ. Ferrocene/fullerene hybrids showing large second-order nonlinear optical activities: impact of the cage unit size. Dalton Trans 2015; 44:10078-88. [DOI: 10.1039/c5dt01134e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferrocene/fullerene complexes through face-to-face fusion enjoy the merits of both ferrocene and fullerene due to their strong donor–acceptor interactions.
Collapse
Affiliation(s)
- Wen-Yong Wang
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Li Wang
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Na-Na Ma
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- People's Republic of China
| | - Chang-Li Zhu
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Yong-Qing Qiu
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| |
Collapse
|