1
|
Sing L, Dutta J, Ghosh S, De Sarkar S. Electrosynthesis of Cyclic Isoureas and Ureas Through Contiguous Heterofunctionalizations. J Org Chem 2024; 89:11323-11333. [PMID: 39067008 DOI: 10.1021/acs.joc.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
An efficient synthetic protocol for the selenylated cyclic isoureas was developed using electrochemical activation of diselenides. This sustainable approach permitted transition metal and chemical oxidant-free difunctionalization of olefins and overall access to distinct 1,2,3 triheterofunctionalized carbon skeletons. Excellent functional group tolerance was noticed, allowing the synthesis of a series of cyclic isourea derivatives. In addition, an acid-triggered skeletal isomerization facilitated the synthesis of cyclic urea derivatives from the corresponding cyclic isoureas. Mechanistic investigations, along with voltammetric studies, enabled the postulation of the reaction mechanism.
Collapse
Affiliation(s)
- Laxmikanta Sing
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Jhilik Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sayan Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Behnia A, Fard MA, Blacquiere JM, Puddephatt RJ. Hydroxopalladium(IV) complexes prepared using oxygen or hydrogen peroxide as oxidants. Dalton Trans 2024; 53:10901-10911. [PMID: 38885094 DOI: 10.1039/d4dt01202j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The cycloneophylpalladium(II) complexes [Pd(CH2CMe2C6H4)(κ2-N,N'-L)], 1 or 2, with L = RO(CH2)3N(CH2-2-C5H4N)2, with R = H or Me, respectively, react with either dioxygen or hydrogen peroxide in the presence of NH4[PF6] to give rare examples of the corresponding hydroxopalladium(IV) complexes [Pd(OH)(CH2CMe2C6H4)(κ3-N,N',N''-L)][PF6], 3 or 4. The complexes 3 and 4 are stable at room temperature and have been structurally characterized. On heating a solution of 3 or 4 in moist dimethylsulphoxide, selective reductive elimination with C(sp2)-O bond formation is observed, followed by hydrolysis, to give the corresponding pincer complex [Pd(OH)(κ3-N,N',N''-L)][PF6] and 2-t-butylphenol as major products. A more complex reaction occurs in chloroform solution. The mechanisms of reaction are discussed, supported by DFT calculations.
Collapse
Affiliation(s)
- Ava Behnia
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7.
| | - Mahmood A Fard
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7.
| | | | | |
Collapse
|
3
|
Su S, Zhang Y, Liu P, Wink DJ, Lee D. Intramolecular Carboxyamidation of Alkyne-Tethered O-Acylhydroxamates through Formation of Fe(III)-Nitrenoids. Chemistry 2024; 30:e202303428. [PMID: 38050744 DOI: 10.1002/chem.202303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
We developed intramolecular carboxyamidations of alkyne-tethered O-acylhydroxamates followed by either thermally induced spontaneous or 4-(dimethylamino)pyridine-catalyzed O→O or O→N acyl group migration. Under iron-catalyzed conditions, the carboxyamidation products were generated in high yield from both Z-alkene and arene-tethered substrates. DFT calculations indicate that the iron-catalyzed carboxyamidation proceeds via a stepwise mechanism involving iron-imidyl radical cyclization followed by intramolecular acyloxy transfer from the iron center to the alkenyl radical center to furnish the cis-carboxyamidation product. Upon treatment with 4-(dimethylamino)pyridine, the Z-alkene-tethered carboxyamidation products underwent selective O→O acyl migration to generate 2-acyloxy-5-acyl pyrroles. Thermal O→N acyl migration occurs during carboxyamidation if the Z-alkene linker contains an alkyl or an aryl substituent at the β-position of the carbonyl group. On the other hand, the arene linker-containing compounds selectively undergo O→N acyl migration to generate N-acyl-3-acylisoindolinones, and the corresponding O→O acyl migration forming isoindole derivatives was not observed.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
4
|
Kumar R, Mahata B, Gayathridevi S, Vipin Raj K, Vanka K, Sen SS. Lanthanide Mimicking by Magnesium for Oxazolidinone Synthesis. Chemistry 2024; 30:e202303478. [PMID: 37897110 DOI: 10.1002/chem.202303478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
In the last decade, magnesium complexes have emerged as a viable alternative to transition-metal catalysts for the hydrofunctionalization of unsaturated bonds. However, their potential for advanced catalytic reactions has not been thoroughly investigated. To address this gap, we have developed a novel magnesium amide compound (3) using a PNP framework that is both bulky and flexible. Our research demonstrates that compound 3 can effectively catalyze the synthesis of biologically significant oxazolidinone derivatives. This synthesis involves a tandem reaction of hydroalkoxylation and cyclohydroamination of isocyanate using propargyl alcohol. Furthermore, we conducted comprehensive theoretical calculations to gain insights into the reaction mechanism. It is important to note that these types of transformations have not been reported for magnesium and would significantly enhance the catalytic portfolio of the 7th most abundant element.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Biplab Mahata
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Gayathridevi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Doan SH, Mai BK, Nguyen TV. Moisture-Assisted Hydroboration of Nitriles and Conversion Thereof to N-Heterocyles and N-Containing Derivatives. Org Lett 2023; 25:8981-8986. [PMID: 38081763 DOI: 10.1021/acs.orglett.3c03533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The recent revelation of hidden-borane catalysis has revolutionized the field of catalytic hydroboration in organic synthesis. Many nucleophilic reaction promoters, previously believed to be the catalysts, in fact primarily facilitated the formation of borane (BH3), which subsequently acted as the true catalyst. This revelation prompted us to explore the untapped potential of these unexpected transformations, with a view to simplify hydroboration using more cost-effective and environmentally friendly nucleophilic precatalysts. Via computational studies, we were able to identify that water can actually undertake that role. Herein, we report a study on the simple hydroboration of nitriles, a notoriously challenging yet synthetically valuable class of substrates, using nothing more than moisture as an activating agent. This moisture-assisted nitrile hydroboration process can seamlessly integrate with a range of downstream transformations in a one-pot fashion to produce valuable N-containing products such as symmetrical imines, thioureas, and bis(alcohol)amines as well as N-heterocycles such as pyrroles, pyridines, pyridinium salts, 2-iminothiazolines, and carbazoles.
Collapse
Affiliation(s)
- Son Hoai Doan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Iron-Catalyzed Intermolecular Oxyamination of Terminal Alkenes Promoted by HFIP Using Hydroxylamine Derivatives. J Org Chem 2023; 88:4720-4729. [PMID: 36939110 DOI: 10.1021/acs.joc.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
An atom-economical intermolecular iron-catalyzed oxyamination of alkenes is described herein. The insertion of oxygenated and nitrogenated moieties from the hydroxylamine substrate was observed with full regio- and chemo-selectivity for terminal alkenes in good yields. HFIP as a solvent appeared to have a synergistic effect with the iron catalyst to promote the formation of the oxyaminated products. Preliminary mechanistic studies suggest a pathway going through an aziridination reaction followed by an in situ ring opening.
Collapse
|
7
|
Su S, Wu T, Xia Y, Wink DJ, Lee D. Cycloisomerization of Alkyne-Tethered N-Acyloxycarbamates to 2-(3H)Oxazolones through Nitrenoid-Mediated Carboxyamidation. Chemistry 2023; 29:e202203371. [PMID: 36628950 DOI: 10.1002/chem.202203371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
The cycloisomerization of alkyne-tethered N-benzoyloxycarbamates to 2-(3H)oxazolones is described. Two catalytic systems are tailored for intramolecular 5-exo-alkyne carboxyamidation and concomitant alkene isomerization. PtCl2 /CO (5 mol%, toluene, 100 °C) promotes both carboxyamidation and alkene isomerization but has a limited substrate scope. On the other hand, FeCl3 (5 mol%, CH3 CN, 100 °C) promotes carboxyamidation effectively but a cocatalyst is required for the exocyclic alkene isomerization. Thus, a two-step one-pot protocol has been developed for a broader reaction scope, which involves FeCl3 -catalyzed carboxyamidation and base-induced alkene isomerization. Crossover experiments suggest that these reactions proceed mainly through a mechanism involving acylnitrenoid intermediates rather than carbenoid intermediates.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Tongtong Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
8
|
Das A, Waser J. Pd-catalyzed functionalization of alkenes and alkynes using removable tethers. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Yang X, Chen P, Liu G. Asymmetric Palladium-Catalyzed Aza-Wacker Reaction of Alkenes: Efficient Synthesis of Chiral 1,3-Oxazinan-2-ones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Broggini G, Loro C, Oble J, Foschi F, Papis M, Beccalli EM, Giofrè S, Poli G. Acid-Mediated Decarboxylative C–H Coupling between Arenes and O-Allyl Carbamates. Org Chem Front 2022. [DOI: 10.1039/d2qo00114d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of O-allyl N-tosyl carbamates with aromatic compounds in the presence of Cu(OTf)2 or TMSOTf as promoters, affords N-substituted 1-arylpropan-2-amines, 1,2-diarylpropanes, 1,1-diarylpropanes, or indanes, depending on the nature of the...
Collapse
|
11
|
Wang JL, Liu ML, Zou JY, Sun WH, Liu XY. Copper-Catalyzed Aminoarylation of Alkenes via Aminyl Radical Addition and Aryl Migration. Org Lett 2021; 24:309-313. [PMID: 34931822 DOI: 10.1021/acs.orglett.1c03973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a new strategy for aminoarylation of alkenes by copper-catalyzed smiles rearrangement using O-benzoylhydroxylamines as the amine reagent. This method affords various β-amino amide derivatives possessing a quaternary carbon center with wide functional group tolerance and high regioselectivity. The mechanistic studies indicate that the transformation can involve aminyl radical intermediates under acid-free condition.
Collapse
Affiliation(s)
- Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Mei-Ling Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jian-Yu Zou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wen-Hui Sun
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
|
13
|
Rostami A, Ebrahimi A, Sakhaee N, Golmohammadi F, Al-Harrasi A. Microwave-Assisted Electrostatically Enhanced Phenol-Catalyzed Synthesis of Oxazolidinones. J Org Chem 2021; 87:40-55. [PMID: 34581567 DOI: 10.1021/acs.joc.1c01686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An electrostatically enhanced phenol is utilized as a straightforward, sustainable, and potent one-component organocatalyst for the atom-economic transformation of epoxides to oxazolidinones under microwave irradiation. Integrating a positively charged center into phenols over a modular one-step preparation gives rise to a bifunctional system with improved acidity and activity, competent in rapid assembly of epoxides and isocyanates under microwave irradiation in a short reaction time (20-60 min). A careful assessment of the efficacy of various positively charged phenols and anilines and the impact of several factors, such as catalyst loading, temperature, and the kind of nucleophile, on catalytic reactivity were examined. Under neat conditions, this one-component catalytic platform was exploited to prepare more than 40 examples of oxazolidinones from a variety of aryl- and alkyl-substituted epoxides and isocyanates within minutes, where up to 96% yield and high degree of selectivity were attained. DFT calculations to achieve reaction barriers for different catalytic routes were conducted to provide mechanistic understanding and corroborated the experimental findings in which concurrent epoxide ring-opening and isocyanate incorporation were proposed.
Collapse
Affiliation(s)
- Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Nader Sakhaee
- Roger Adams Laboratory, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Farhad Golmohammadi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| |
Collapse
|
14
|
Zhou X, Wan N, Li Y, Ma R, Cui B, Han W, Chen Y. Stereoselective Synthesis of Enantiopure Oxazolidinones via Biocatalytic Asymmetric Aminohydroxylation of Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Ying Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ying‐Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Bao‐Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| |
Collapse
|
15
|
Toda Y, Shishido M, Aoki T, Sukegawa K, Suga H. Switchable synthesis of cyclic carbamates by carbon dioxide fixation at atmospheric pressure. Chem Commun (Camb) 2021; 57:6672-6675. [PMID: 34132256 DOI: 10.1039/d1cc02493k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The base-promoted switchable synthesis of five- and six-membered cyclic carbamates using atmospheric pressure carbon dioxide as the C1 source was developed. The chemoselectivity of products was simply controlled by changing bases and solvents. The reaction proceeds effectively under mild conditions, affording valuable cyclic carbamates. Experimental results and DFT studies revealed the reaction mechanism.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Minoru Shishido
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Tatsuya Aoki
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kimiya Sukegawa
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
16
|
Papa Spadafora B, Moreira Ribeiro FW, Matsushima JE, Ariga EM, Omari I, Soares PMA, de Oliveira-Silva D, Vinhato E, McIndoe JS, Carita Correra T, Rodrigues A. Regio- and diastereoselective Pd-catalyzed aminochlorocyclization of allylic carbamates: scope, derivatization, and mechanism. Org Biomol Chem 2021; 19:5595-5606. [PMID: 34096563 DOI: 10.1039/d1ob00670c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regio- and diastereoselective synthesis of oxazolidinones via a Pd-catalyzed vicinal C-N/C-Cl bond-forming reaction from internal alkenes of allylic carbamates is reported. The oxazolidinones are obtained in yields of 44 to 95% with high to excellent diastereoselectivities (from 6 : 1 to >20 : 1 dr) from readily available precursors. This process is scalable, and the products are suitable for the synthesis of useful amino alcohols. A detailed theoretical and experimental mechanistic study was carried out to describe that the reaction proceeds through an anti-aminopalladation of the alkene followed by an oxidative C-Pd(ii) cleavage with retention of the carbon stereochemistry to yield the major diastereomer. The role of Cu(ii) in a C-Cl bond-forming mechanism step has also been proposed.
Collapse
Affiliation(s)
- Bruna Papa Spadafora
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Francisco Wanderson Moreira Ribeiro
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, Sao Paulo, SP, Brazil and Department of Chemistry, University of Victoria, P. O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Jullyane Emi Matsushima
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Elaine Miho Ariga
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Isaac Omari
- Department of Chemistry, University of Victoria, P. O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Priscila Machado Arruda Soares
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Diogo de Oliveira-Silva
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Elisângela Vinhato
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, P. O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Thiago Carita Correra
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, Sao Paulo, SP, Brazil
| | - Alessandro Rodrigues
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
17
|
Das M, Rodríguez A, Lo PKT, Moran WJ. Synthesis of Oxazolidinones by a Hypervalent Iodine Mediated Cyclization of
N
‐Allylcarbamates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirdyul Das
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| | - Arantxa Rodríguez
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| | - Pui Kin Tony Lo
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| | - Wesley J. Moran
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| |
Collapse
|
18
|
Hemric BN. Beyond osmium: progress in 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes. Org Biomol Chem 2021; 19:46-81. [PMID: 33174579 DOI: 10.1039/d0ob01938k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olefin 1,2-difunctionalization has emerged as a popular strategy within modern synthetic chemistry for the synthesis of vicinal amino alcohols and derivatives. The advantage of this approach is the single-step simplicity for rapid diversification, feedstock nature of the olefin starting materials, and the possible modularity of the components. Although there is a vast number of possible iterations of 1,2-olefin difunctionalization, 1,2-amino oxygenation is of particular interest due to the prevalence of both oxygen and nitrogen within pharmaceuticals, natural products, agrochemicals, and synthetic ligands. The Sharpless amino hydroxylation provided seminal results in this field and displayed the value in achieving methods of this nature. However, a vast number of new and novel methods have emerged in recent decades. This review provides a comprehensive review of modern advances in accomplishing 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes that move beyond osmium to a range of other transition metals and more modern strategies such as electrochemical, photochemical, and biochemical reactivity.
Collapse
Affiliation(s)
- Brett N Hemric
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
19
|
Kwon Y, Wang Q. Copper-Catalyzed 1,2-Aminocyanation of Unactivated Alkenes via Cyano Migration. Org Lett 2020; 22:4141-4145. [PMID: 32383382 DOI: 10.1021/acs.orglett.0c01217] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed aminocyanation of alkenes has been achieved through distal cyano migration using O-benzoylhydroxylamines and N-fluorobenzenesulfonimides. This method offers a rapid approach to generate diverse β-amino and β-sulfonimido nitriles. These reactions feature mild conditions, tolerance of sensitive functional groups, and excellent regioselectivity. Mechanistic studies suggest that these transformations are initiated by a copper-catalyzed amination step followed by a cyano migration step.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
20
|
Rostami A, Ebrahimi A, Husband J, Anwar MU, Csuk R, Al-Harrasi A. Squaramide-Quaternary Ammonium Salt as an Effective Binary Organocatalytic System for Oxazolidinone Synthesis from Isocyanates and Epoxides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - John Husband
- Department of Chemistry; College of Science; Sultan Qaboos University; PO Box 36, Al-Khod 123 Muscat Sultanate of Oman
| | - Muhammad Usman Anwar
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Kurt-Mothes-str. 2; College of Science; Martin-Luther-University Halle-Wittenberg; 06120 Halle Saale Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| |
Collapse
|
21
|
Foschi F, Loro C, Sala R, Oble J, Lo Presti L, Beccalli EM, Poli G, Broggini G. Intramolecular Aminoazidation of Unactivated Terminal Alkenes by Palladium-Catalyzed Reactions with Hydrogen Peroxide as the Oxidant. Org Lett 2020; 22:1402-1406. [DOI: 10.1021/acs.orglett.0c00010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Francesca Foschi
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Camilla Loro
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Roberto Sala
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Julie Oble
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005 Paris, France
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Egle M. Beccalli
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Giovanni Poli
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005 Paris, France
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100 Como, Italy
| |
Collapse
|
22
|
Raschmanová JŠ, Martinková M, Gonda J, Pilátová MB, Kuchár J, Jáger D. Synthesis and in vitro biological evaluation of 3-amino-3-deoxydihydrosphingosines and their analogues. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Huang J, Hu X, Chen F, Gui J, Zeng W. Rhodium(i)-catalyzed vinylation/[2 + 1] carbocyclization of 1,6-enynes with α-diazocarbonyl compounds. Org Biomol Chem 2019; 17:7042-7054. [PMID: 31304502 DOI: 10.1039/c9ob01028a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sequential Rh(i)-catalyzed vinylation/[2 + 1]carbocyclization between enynes and diazo compounds has been developed. This transformation features a wide range of enynes and acceptor/acceptor diazo compounds, providing easy access to versatile vinyl-substituted azabicyclo[3.1.0]hexanes having a broad tolerance to functional groups.
Collapse
Affiliation(s)
- Junmin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | | | |
Collapse
|
24
|
Romero AH. Fused Heteroaromatic Rings via Metal-Mediated/Catalyzed Intramolecular C–H Activation: A Comprehensive Review. Top Curr Chem (Cham) 2019; 377:21. [DOI: 10.1007/s41061-019-0246-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022]
|
25
|
Lei H, Conway JH, Cook CC, Rovis T. Ligand Controlled Ir-Catalyzed Regiodivergent Oxyamination of Unactivated Alkenes. J Am Chem Soc 2019; 141:11864-11869. [PMID: 31310537 DOI: 10.1021/jacs.9b06366] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An intramolecular Ir(III)-catalyzed regiodivergent oxyamination of unactivated alkenes provides valuable γ-lactams, γ-lactones and δ-lactams. The regioselectivity is controlled by the electronically tunable cyclopentadienyl Ir(III)-complexes enabling oxyamination via either 5-exo or 6-endo pathways. With respect to the mechanism, we propose a highly reactive [3.1.0] bicycle intermediate derived from Ir(V) nitrene-mediated aziridination to be a key intermediate toward the synthesis of γ-lactams.
Collapse
Affiliation(s)
- Honghui Lei
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - John H Conway
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Caleb C Cook
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Tomislav Rovis
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
26
|
Hu M, Wu W, Jiang H. Palladium-Catalyzed Oxidation Reactions of Alkenes with Green Oxidants. CHEMSUSCHEM 2019; 12:2911-2935. [PMID: 30989816 DOI: 10.1002/cssc.201900397] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Transition-metal-catalyzed oxidative functionalization of alkenes has emerged as a powerful and valuable tool in modern organic synthesis. Recently, many methods have been established for the assembly of C-C and C-heteroatom bonds, which provides tremendous possibility for application in biology, medicine, and materials science. However, the use of stoichiometric amounts of strong oxidants leads to poor selectivity, low atom economy, and a series of undesired waste products. By contrast, green oxidants, such as O2 , H2 O2 , or tert-butyl hydroperoxide (TBHP), have bright prospects due to their attributes of mild, low cost, and great sustainability in transition-metal-catalyzed oxidation reactions. Based on the great and unique potential for the development of aerobic reactions, this review mainly highlights homogenous palladium-catalyzed green oxidations of alkenes that have been reported in recent years. These methods provide new strategies for the transformation and functionalization of alkenes; some of them have also been successfully applied to the synthesis of the core structures of drugs and natural products. Additionally, through in-depth studies of the reaction mechanisms in this field, it is believed that palladium-catalyzed green oxidation reactions of alkenes with O2 , H2 O2 , or TBHP will create added value for organic synthetic chemistry.
Collapse
Affiliation(s)
- Miao Hu
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| |
Collapse
|
27
|
Xu T, Wang D, Tong X. Pd(II)-Catalyzed Intramolecular Acetoxylative (3 + 2) Annulation of Propargylic Alcohol and Alkene: Polycyclic Oxa-heterocycle Synthesis and Mechanistic Insight. Org Lett 2019; 21:5368-5372. [PMID: 31247755 DOI: 10.1021/acs.orglett.9b02096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Pd(II)-catalyzed intramolecular and highly selective acetxoylative (3 + 2) annulation of propargylic alcohol and alkene is reported. Mechanistically, a hydroxy-guided regioselective alkyne acetoxypalladation is followed by 6-exo-trig alkene insertion to form an alkyl-Pd(II) intermediate. After oxidation, the resulting cyclometalated alkoxy-Pd(IV)-alkyl undergoes direct reductive elimination to afford a polycyclic oxa-heterocycle. When an additional coordinating site or ligand accessible by palladium is present, an SN2-type C-C reductive elimination of alkyl-Pd(IV) instead occurs along with hydroxy acetylation, affording 3-bicyclo[4.1.0]heptan-5-one products.
Collapse
Affiliation(s)
- Tong Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering Changzhou University , 1 Gehu Road , Changzhou 213164 , China
| | - Dong Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering Changzhou University , 1 Gehu Road , Changzhou 213164 , China
| | - Xiaofeng Tong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering Changzhou University , 1 Gehu Road , Changzhou 213164 , China
| |
Collapse
|
28
|
Čonková M, Martinková M, Gonda J, Jacková D, Pilátová MB, Kupka D, Jáger D. Stereoselective synthesis and antiproliferative activity of the isomeric sphinganine analogues. Carbohydr Res 2019; 472:76-85. [PMID: 30529492 DOI: 10.1016/j.carres.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
A flexible synthetic approach to biologically active sphingoid base-like compounds with a 3-amino-1,2-diol framework was achieved through a [3,3]-sigmatropic rearrangement and late stage olefin cross-metathesis as the key transformations. The stereochemistry of the newly created stereogenic centre was assigned via a single crystal X-ray analysis of the (4S,5R)-5-(hydroxymethyl)-4-vinyloxazolidine-2-thione. In order to rationalise the observed stereoselectivity of the aza-Claisen rearrangement, DFT calculations were carried out. The targeted isomeric sphingoid bases were screened in vitro for anticancer activity on a panel of seven human malignant cell lines. Cell viability experiments revealed that C17-homologues are more active than their C12 congeners.
Collapse
Affiliation(s)
- Miroslava Čonková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Jozef Gonda
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Dominika Jacková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Martina Bago Pilátová
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Daniel Kupka
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| | - Dávid Jáger
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| |
Collapse
|
29
|
Toda Y, Tanaka S, Gomyou S, Kikuchi A, Suga H. 4-Hydroxymethyl-substituted oxazolidinone synthesis by tetraarylphosphonium salt-catalyzed reactions of glycidols with isocyanates. Chem Commun (Camb) 2019; 55:5761-5764. [DOI: 10.1039/c9cc01983a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A tetraarylphosphonium catalyst enables efficient coupling reactions between glycidols and isocyanates to afford 4-hydroxymethyl-substituted oxazolidinones.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Shoya Tanaka
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Shuto Gomyou
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Ayaka Kikuchi
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| |
Collapse
|
30
|
Li Y, Wu Z, Ling Z, Chen H, Zhang W. Mechanistic study of the solvent-controlled Pd(ii)-catalyzed chemoselective intermolecular 1,2-aminooxygenation and 1,2-oxyamination of conjugated dienes. Org Chem Front 2019. [DOI: 10.1039/c8qo01288a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The different coordination modes in MeCN and DMSO solvents could clarify the origin of chemoselectivity.
Collapse
Affiliation(s)
- Yunyi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Zheng Ling
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Hongjin Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| |
Collapse
|
31
|
Pratap K, Kumar A. Palladium-Catalyzed Intermolecular Dehydrogenative Carboamination of Alkenes with Amines and N-Substituted Isatin. Org Lett 2018; 20:7451-7454. [DOI: 10.1021/acs.orglett.8b03196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kemant Pratap
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow-226031, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Atul Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow-226031, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
32
|
Sen A, Takenaka K, Sasai H. Enantioselective Aza-Wacker-Type Cyclization Promoted by Pd-SPRIX Catalyst. Org Lett 2018; 20:6827-6831. [DOI: 10.1021/acs.orglett.8b02946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Abhijit Sen
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Kazuhiro Takenaka
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
33
|
Xu J, Zhang Y, Qin T, Zhao X. Catalytic Regio- and Enantioselective Oxytrifluoromethylthiolation of Aliphatic Internal Alkenes by Neighboring Group Assistance. Org Lett 2018; 20:6384-6388. [DOI: 10.1021/acs.orglett.8b02672] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jia Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
34
|
Abrams R, Lefebvre Q, Clayden J. Transition Metal Free Cycloamination of Prenyl Carbamates and Ureas Promoted by Aryldiazonium Salts. Angew Chem Int Ed Engl 2018; 57:13587-13591. [DOI: 10.1002/anie.201809323] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Quentin Lefebvre
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
35
|
Abrams R, Lefebvre Q, Clayden J. Transition Metal Free Cycloamination of Prenyl Carbamates and Ureas Promoted by Aryldiazonium Salts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Quentin Lefebvre
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
36
|
Ouerfelli O, Tabarki MA, Pytkowicz J, Arfaoui Y, Brigaud T, Besbes R. Stereoselective synthesis of 4-hydroxymethyl-1,3-oxazolidin-2-one derivatives from novel 2-hydroxymethylaziridines. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1490771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Oussema Ouerfelli
- Faculty of Sciences of Tunis, Laboratory of Analytical Chemistry and Electrochemistry, University of Tunis El Manar, Tunis El Manar, Tunisia
- Laboratoire de chimie biologique (LCB), Université de Cergy-Pontoise, Cergy-Pontoise cedex, France
| | - Mohamed Ali Tabarki
- Faculty of Sciences of Tunis, Laboratory of Analytical Chemistry and Electrochemistry, University of Tunis El Manar, Tunis El Manar, Tunisia
| | - Julien Pytkowicz
- Laboratoire de chimie biologique (LCB), Université de Cergy-Pontoise, Cergy-Pontoise cedex, France
| | - Youssef Arfaoui
- Faculty of Sciences of Tunis, Laboratory of Physical Chemistry of Condensed Matter, University of Tunis El Manar, Tunis El Manar, Tunisia
| | - Thierry Brigaud
- Laboratoire de chimie biologique (LCB), Université de Cergy-Pontoise, Cergy-Pontoise cedex, France
| | - Rafâa Besbes
- Faculty of Sciences of Tunis, Laboratory of Analytical Chemistry and Electrochemistry, University of Tunis El Manar, Tunis El Manar, Tunisia
| |
Collapse
|
37
|
Jiao JW, Bi HY, Zou PS, Wang ZX, Liang C, Mo DL. Copper-Mediated Difunctionalization of Alkenylboronic Acids: Synthesis of ɑ-Imino Ketones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ji-Wen Jiao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Hong-Yan Bi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Pei-Sen Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Zhi-Xin Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| |
Collapse
|
38
|
Toda Y, Gomyou S, Tanaka S, Komiyama Y, Kikuchi A, Suga H. Tetraarylphosphonium Salt-Catalyzed Synthesis of Oxazolidinones from Isocyanates and Epoxides. Org Lett 2018; 19:5786-5789. [PMID: 29039956 DOI: 10.1021/acs.orglett.7b02722] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of a range of oxazolidinones, including enantioenriched N-aryl-substituted oxazolidinones, in which tetraarylphosphonium salts (TAPS) catalyze the [3 + 2] coupling reaction of isocyanates and epoxides effectively, is described. The key finding is a Brønsted acid/halide ion bifunctional catalyst that can accelerate epoxide ring opening with high regioselectivity. Mechanistic studies disclosed that the ylide generated from TAPS, along with the formation of halohydrins, plays a crucial role in the reaction with isocyanates.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University , 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Shuto Gomyou
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University , 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Shoya Tanaka
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University , 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Yutaka Komiyama
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University , 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Ayaka Kikuchi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University , 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University , 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
39
|
Kou X, Shao Q, Ye C, Yang G, Zhang W. Asymmetric Aza-Wacker-Type Cyclization of N-Ts Hydrazine-Tethered Tetrasubstituted Olefins: Synthesis of Pyrazolines Bearing One Quaternary or Two Vicinal Stereocenters. J Am Chem Soc 2018; 140:7587-7597. [PMID: 29804449 DOI: 10.1021/jacs.8b02865] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed an asymmetric aza-Wacker-type cyclization of N-Ts hydrazine-tethered tetrasubstituted olefins, affording optically active pyrazolines bearing chiral tetrasubstituted carbon stereocenters. This reaction is tolerant to a broad range of substrates under mild reaction conditions, giving the desired chiral products with high enantioselectivities. Generation of two vicinal stereocenters on the C═C double bonds was also achieved with high selectivities, a process which has been rarely studied for Wacker-type reactions. A mechanistic study revealed that this aza-Wacker-type cyclization undergoes a syn-aminopalladation process. It was also found that for substrates bearing two linear alkyl substituents on the outer carbon atom of the olefin, both of which are larger than a methyl group, the alkyl substituent that is cis to the intranucleophilic group participates more readily in β-hydride elimination. When one of the two alkyl substituents on the outer carbon atom of the olefin is a methyl group, β-hydride elimination proceeds selectively at the methylene side, thus both diastereomers can be prepared via switching the configuration of the olefin. Furthermore, the product can be converted to a pharmaceutical compound in high yields over three steps.
Collapse
Affiliation(s)
- Xuezhen Kou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Qihang Shao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Chenghao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
40
|
Qi X, Chen C, Hou C, Fu L, Chen P, Liu G. Enantioselective Pd(II)-Catalyzed Intramolecular Oxidative 6-endo Aminoacetoxylation of Unactivated Alkenes. J Am Chem Soc 2018; 140:7415-7419. [DOI: 10.1021/jacs.8b03767] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxu Qi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chaohuang Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chuanqi Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
41
|
Tao L, Shi M. Pd(II)-Catalyzed Cyclization-Oxidation of Urea-Tethered Alkylidenecyclopropanes. Org Lett 2018; 20:3017-3020. [PMID: 29722991 DOI: 10.1021/acs.orglett.8b01047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A Pd(OAc)2-catalyzed intramolecular oxidative cyclization of urea-tethered alkylidenecyclopropanes with urea as a nitrogen source through a Pd(II)/Pd(IV) catalytic cycle has been presented, giving the corresponding cyclobuta[ b]indoline derivatives in moderate to good yields with a broad substrate scope. The reaction proceeds through a ring expansion of alkylidenecyclopropane along with the nucleophilic attack of nitrogen atom onto the in situ generated palladium carbenoid species as well as an oxidation process.
Collapse
Affiliation(s)
- Leyi Tao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
42
|
Wen K, Wu Z, Huang B, Ling Z, Gridnev ID, Zhang W. Solvent-Controlled Pd(II)-Catalyzed Aerobic Chemoselective Intermolecular 1,2-Aminooxygenation and 1,2-Oxyamination of Conjugated Dienes for the Synthesis of Functionalized 1,4-Benzoxazines. Org Lett 2018; 20:1608-1612. [PMID: 29481092 DOI: 10.1021/acs.orglett.8b00352] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pd(II)-catalyzed intermolecular 1,2-aminooxygenation and 1,2-oxyamination of conjugated dienes have been developed. The chemoselective preparation of a variety of 2-functionalized and 3-functionalized 1,4-benzoxazine derivatives was accomplished via the adjustment of a coordinating solvent. Oxygen was successfully used in this oxidative difunctionalization of alkenes. Good yields and selectivities were obtained for most products. A product bearing a spiro structure was also obtained from a 2,3-disubstituted-1,3-diene.
Collapse
Affiliation(s)
- Ke Wen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Banruo Huang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zheng Ling
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ilya D Gridnev
- Department of Chemistry, Graduate School of Science , Tohoku University , Aramaki 3-6, Aoba-ku , Sendai 980-8578 , Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
43
|
Neat Synthesis of Substituted Benzoic Acids Employing TBHP/Oxone Catalyst and Study of Their Anti-oxidant Activity. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2018. [DOI: 10.1007/s40010-016-0334-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Canty AJ, Ariafard A, Camasso NM, Higgs AT, Yates BF, Sanford MS. Computational study of C(sp 3)-O bond formation at a Pd IV centre. Dalton Trans 2018; 46:3742-3748. [PMID: 28262888 DOI: 10.1039/c7dt00096k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This report describes a computational study of C(sp3)-OR bond formation from PdIV complexes of general structure PdIV(CH2CMe2-o-C6H4-C,C')(F)(OR)(bpy-N,N') (bpy = 2,2'-bipyridine). Dissociation of -OR from the different octahedral PdIV starting materials results in a common square-pyramidal PdIV cation. An SN2-type attack by -OR (-OR = phenoxide, acetate, difluoroacetate, and nitrate) then leads to C(sp3)-OR bond formation. In contrast, when -OR = triflate, concerted C(sp3)-C(sp2) bond-forming reductive elimination takes place, and the calculations indicate this outcome is the result of thermodynamic rather than kinetic control. The energy requirements for the dissociation and SN2 steps with different -OR follow opposing trends. The SN2 transition states exhibit "PdCO" angles in a tight range of 151.5 to 153.0°, resulting from steric interactions between the oxygen atom and the gem-dimethyl group of the ligand. Conformational effects for various OR ligands and isomerisation of the complexes were also examined as components of the solution dynamics in these systems. In all cases, the trends observed computationally agree with those observed experimentally.
Collapse
Affiliation(s)
- Allan J Canty
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Alireza Ariafard
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Nicole M Camasso
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA.
| | - Andrew T Higgs
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA.
| | - Brian F Yates
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Abstract
Aryl sulfonyl isocyanates are important intermediates in organic synthesis. They are used as electrophilic reagents and easily react with nucleophiles to form amides, sulfonyl ureas, pyrrolidine derivatives, lactams, oxazolidinones, and so on. Although there are some reviews on the applications of isocyanates in chemistry, few are concerned about aryl sulfonyl isocyanates. This review focuses on recent advances related to aryl sulfonyl isocyanates in organic synthesis, mainly including three special characteristics. The mechanisms of the typical reactions are also discussed.
Collapse
Affiliation(s)
- Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Guobing Yan
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
46
|
Shen HC, Wu YF, Zhang Y, Fan LF, Han ZY, Gong LZ. Palladium-Catalyzed Asymmetric Aminohydroxylation of 1,3-Dienes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Yu-Feng Wu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Lian-Feng Fan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
47
|
Shen HC, Wu YF, Zhang Y, Fan LF, Han ZY, Gong LZ. Palladium-Catalyzed Asymmetric Aminohydroxylation of 1,3-Dienes. Angew Chem Int Ed Engl 2018; 57:2372-2376. [DOI: 10.1002/anie.201712350] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Yu-Feng Wu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Lian-Feng Fan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
48
|
Escudero J, Bellosta V, Cossy J. Rhodium-Catalyzed Cyclization of O,ω-Unsaturated Alkoxyamines: Formation of Oxygen-Containing Heterocycles. Angew Chem Int Ed Engl 2018; 57:574-578. [PMID: 29219227 DOI: 10.1002/anie.201710895] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/09/2022]
Abstract
O,ω-Unsaturated N-tosyl alkoxyamines undergo unexpected RhIII -catalyzed intramolecular cyclization by oxyamination to produce oxygen-containing heterocycles. Mechanistic studies show that an aziridine intermediate seems to be responsible for the formation of the heterocycles, possibly via a RhV species.
Collapse
Affiliation(s)
- Julien Escudero
- Laboratory of Organic Chemistry, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Véronique Bellosta
- Laboratory of Organic Chemistry, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Janine Cossy
- Laboratory of Organic Chemistry, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| |
Collapse
|
49
|
Abstract
The reductive difunctionalization strategy was successfully applied in the Ni-catalyzed 1,2-iminoacylation reaction of oxime ester-tethered olefins with electrophilic acylating reagents, providing an efficient entry to diverse pyrrolines under safe and mild reaction conditions.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry
- Center for Excellence in Molecular Synthesis
- Hefei National Laboratory for Physical Science at the Microscale
- University of Science and Technology of China
- Hefei
| | - Chuan Wang
- Department of Chemistry
- Center for Excellence in Molecular Synthesis
- Hefei National Laboratory for Physical Science at the Microscale
- University of Science and Technology of China
- Hefei
| |
Collapse
|
50
|
Escudero J, Bellosta V, Cossy J. Rhodium-Catalyzed Cyclization of O
,ω-Unsaturated Alkoxyamines: Formation of Oxygen-Containing Heterocycles. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Julien Escudero
- Laboratory of Organic Chemistry; CNRS, ESPCI Paris; PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Véronique Bellosta
- Laboratory of Organic Chemistry; CNRS, ESPCI Paris; PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Janine Cossy
- Laboratory of Organic Chemistry; CNRS, ESPCI Paris; PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| |
Collapse
|