1
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
2
|
Affiliation(s)
- Harold H. Kung
- Dept. of Chemical and Biological Engineering; Northwestern University; Evanston IL 60208
| |
Collapse
|
3
|
Muthuraman G, Ramu AG, Moon IS. Gaseous trichloroethylene removal using an electrochemically generated homogeneous low-valent ligand-free Co(I) electrocatalyst by electro-scrubbing. JOURNAL OF HAZARDOUS MATERIALS 2016; 311:210-217. [PMID: 26985874 DOI: 10.1016/j.jhazmat.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
The interest in heterogeneous Co(OH)2 electrocatalysts for energy applications has increased steadily. This study focused on a ligand-free homogeneous electrocatalyst for the degradation of gaseous trichloroethylene (TCE) in NaOH in a divided electrolytic cell. The initial electrolysis results revealed a change in the oxidation reduction potential (ORP) of [Co(II)(OH)4](2-) (Co(II)) from -267 mV to -800 mV on anodized Ti during electrolytic reduction identifies low-valent homogeneous [Co(I)(OH)4](3-)(Co(I)) formation in 10 M NaOH. Cyclic voltammetry analysis of Co(II) at different anodized electrodes, Ag, carbon and Ti, in a 10 M NaOH solution, showed no stripping like peak in the reverse scan only the Ti electrode, supporting the formation of low-valent Co(I). UV-vis spectral analysis of the electrolyzed solution showed an enhanced peak corresponding to metal-to-ligand transition, demonstrates Co(I) formation. Co(II) reduction reached a maximum yield of 18% at 30 mA cm(-2) on an anodized Ti cathode. For gaseous TCE removal, continuous mode electro-scrubbing was adopted and degradation was monitored using an online FTIR gas analyzer that showed 99.75% degradation of TCE in the presence of homogeneous Co(I). Three consecutive regenerations of Co(I) and degradation steps of TCE confirmed the possibility of industrial applications in a sustainable manner.
Collapse
Affiliation(s)
- G Muthuraman
- Department of Chemical Engineering, Sunchon National University, 315 Maegok Dong, Suncheon 540-742, Chonnam, South Korea
| | - A G Ramu
- Department of Chemical Engineering, Sunchon National University, 315 Maegok Dong, Suncheon 540-742, Chonnam, South Korea
| | - I S Moon
- Department of Chemical Engineering, Sunchon National University, 315 Maegok Dong, Suncheon 540-742, Chonnam, South Korea.
| |
Collapse
|
4
|
Galan A, Ballester P. Stabilization of reactive species by supramolecular encapsulation. Chem Soc Rev 2016; 45:1720-37. [DOI: 10.1039/c5cs00861a] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes and updated overview of the stabilization of reactive species and reaction intermediates by inclusion in nanocavities provided by covalent- and supra-molecular containers.
Collapse
Affiliation(s)
- Albano Galan
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- 43007 Tarragona
- Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- 43007 Tarragona
- Spain
- Catalan Institution for Research and Advanced Studies (ICREA)
| |
Collapse
|
5
|
Zhao Y, Chen G, Bian T, Zhou C, Waterhouse GIN, Wu LZ, Tung CH, Smith LJ, O'Hare D, Zhang T. Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7824-31. [PMID: 26509528 DOI: 10.1002/adma.201503730] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/07/2015] [Indexed: 05/19/2023]
Abstract
Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets are successfully prepared. Under UV-vis irradiation, these nanosheets are superior efficient catalysts for the photoreduction of CO2 to CO with water. The formed oxygen vacancies lead to the formation of coordinatively unsaturated Zn(+) centers within the nanosheets, responsible for the very high photocatalytic activities.
Collapse
Affiliation(s)
- Yufei Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guangbo Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Tong Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | | | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lorna J Smith
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dermot O'Hare
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|