1
|
Liu Q, Teng K, Zhang Y, Lv Y, Chi YR, Jin Z. Chemodivergent Parallel Kinetic Resolution of Paracyclophanes: Enantiomer Fishing with Different Substrates. Angew Chem Int Ed Engl 2024; 63:e202406386. [PMID: 39052016 DOI: 10.1002/anie.202406386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
An unprecedented chemodivergent strategy for parallel kinetic resolution (PKR) is disclosed through which two planar chiral products bearing different structures were simultaneously afforded with opposite stereoselectivities. Two achiral esters are activated by one single chiral N-heterocyclic carbene (NHC) catalyst to react with the different enantiomers of the racemic imine substrate in a parallel fashion. Two products bearing distinct structures and opposite stereoselectivities are respectively afforded from the same reaction system in good to excellent yields, enantio- and diastereoselectivities. Control experiments and kinetic studies are carried out to probe the kinetic and dynamic properties during the reaction progress. The planar chiral pyridine and lactam products show interesting applications in both asymmetric synthesis and pesticide development.
Collapse
Grants
- 2022YFD1700300 National Key Research and Development Program of China
- 22371057, 32172459 National Natural Science Foundation of China
- Qiankehejichu-ZK [2021]Key033 Science and Technology Department of Guizhou Province
- Qiankehezhongyindi (2024) 007, (2023)001 The Central Government Guides Local Science and Technology Development Fund Projects
- Qiankehechengguo(2024)zhongda007 The Program of Major Scientific and Technological, Guizhou Province
- 2021005 Yongjiang Plan for Innovation and Entrepreneurship Leading Talent Project in the City of Nanning
- Qianjiaohe KY number (2020)004 Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
- [2016]5649 The 10 Talent Plan (Shicengci) of Guizhou Province at at Guizhou University
- 111 Program, D20023 The Program of Introducing Talents of Discipline to Universities of China at Guizhou University
- NRF-NRFI2016-06, NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- RG7/20, RG5/19, MOE2019-T2-2-117, MOE2018-T3-1-003 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2 , and MOE AcRF Tier 3 Award.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kunpeng Teng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ya Lv
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Gao YL, Yang Y, Wu C, Xie MS, Guo HM. Chemoselectivity Switch between Enantioselective [2,3]-Wittig Rearrangement and Conia-Ene-Type Reactions of Propargyloxyoxindoles. Chemistry 2024; 30:e202402556. [PMID: 39051982 DOI: 10.1002/chem.202402556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Despite the existence of three competing reactions for propargyloxyoxindoles, we report a chemoselectivity switch between enantioselective propargyl [2,3]-Wittig rearrangement and Conia-ene-type reactions, with suppression of the [1,2]-Wittig-type rearrangement. Using C1-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand and Ni(acac)2 as the Lewis acid, diverse 3-hydroxy 3-substituted oxindoles containing allenyl groups were obtained in up to 98 % yield and 99 % ee via asymmetric propargyl [2,3]-Wittig rearrangement. In the presence of AgOTf-Duanphos, chiral spiro dihydrofuran oxindoles were given in up to 98 % yield and 91 % ee through a Conia-ene-type reaction.
Collapse
Affiliation(s)
- Yu-Lin Gao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chen Wu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Wu Z, Yang X, Zhang F, Liu Y, Feng X. Tandem catalytic allylic C-H amination and asymmetric [2,3]-rearrangement via bimetallic relay catalysis. Chem Sci 2024; 15:13299-13305. [PMID: 39183897 PMCID: PMC11339977 DOI: 10.1039/d4sc03315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
A bimetallic relay catalysis protocol for tandem allylic C-H amination and asymmetric [2,3]-sigmatropic rearrangement has been developed with the use of an achiral Pd0 catalyst and a chiral N,N'-dioxide-MgII complex in a one-pot operation. A series of anti-α-amino derivatives containing two stereogenic centers were prepared from readily available allylbenzenes and glycine pyrazolamide with good yields and high stereoselectivities. Moreover, the synthetic potential of this protocol was further demonstrated by the product transformations, and a catalytic cycle was proposed to illustrate the reaction process.
Collapse
Affiliation(s)
- Zhenwei Wu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xi Yang
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
| | - Yangbin Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
4
|
Lin Z, Yu Y, Liu R, Zi W. Design, Preparation, and Implementation of Axially Chiral Benzotetramisoles as Lewis Base Catalysts for Asymmetric Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202401181. [PMID: 38725281 DOI: 10.1002/anie.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/21/2024]
Abstract
Developing novel catalysts with potent activity is of great importance in organocatalysis. In this study, we designed and prepared a new class of benzotetramisole Lewis base catalysts (AxBTM) that have both central and axial chirality. This unique feature of these catalysts results in a three-dimensional microenvironment with multi-layers of chirality. The performance of the developed catalysts was tested in a series of cycloaddition reactions. These included the AxBTM-catalyzed (2+2) cycloaddition between α-fluoro-α-aryl anhydride with imines or oxindoles, and the sequential gold/AxBTM-catalyzed (4+2) cycloaddition of enynamides with pentafluorophenyl esters. The interplay between axial and central chirality had a collaborative effect in regulating the stereochemistry in these cycloadditions, leading to high levels of stereoselectivity that would otherwise be challenging to achieve using conventional BTM catalysts. However, the (2+2) and (4+2) cycloadditions have different predilections for axial and central chirality combinations.
Collapse
Affiliation(s)
- Zitong Lin
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ying Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Rixin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
5
|
De Oliveira Silva A, Masand SA, Farah AO, Laddusaw J, Urbina K, Rodríguez-Alvarado M, Lalancette RA, Cheong PHY, Brenner-Moyer SE. Organocatalytic Enantioselective [1,2]-Stevens Rearrangement of Azetidinium Salts. J Org Chem 2024; 89:9063-9067. [PMID: 38847523 DOI: 10.1021/acs.joc.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The first organocatalyzed enantioselective [1,2]-Stevens rearrangement is reported. 4-Alkylideneproline derivatives are produced in up to 86% yield and in up to 90:10 er, with recrystallization enhancing er up to >99.5:0.5. Product configuration was opposite that predicted by existing stereochemical models for this organocatalyst class, and DFT calculations revealed a novel mode of asymmetric induction. The adaptability of this catalytic strategy for asymmetric [1,2]-Stevens rearrangements of other heterocyclic amines was demonstrated.
Collapse
Affiliation(s)
- Ana De Oliveira Silva
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shruti A Masand
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Jacqueline Laddusaw
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Kelvin Urbina
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | | | - Roger A Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Stacey E Brenner-Moyer
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Su J, Guo Y, Li C, Song Q. Difluorocarbene-induced [1,2]- and [2,3]-Stevens rearrangement of tertiary amines. Nat Commun 2024; 15:4794. [PMID: 38839757 PMCID: PMC11153565 DOI: 10.1038/s41467-024-49054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
The [1,2]- and [2,3]-Stevens rearrangements are one of the most fascinating chemical bond reorganization strategies in organic chemistry, and they have been demonstrated in a wide range of applications, representing a fundamental reaction tactic for the synthesis of nitrogen compounds in chemical community. However, their applicabilities are limited by the scarcity of efficient, general, and straightforward methods for generating ammonium ylides. Herein, we report a general difluorocarbene-induced tertiary amine-involved [1,2]- and [2,3]-Stevens rearrangements stemmed from in situ generated difluoromethyl ammonium ylides, which allows for the rearrangements of versatile tertiary amines bearing either allyl, benzyl, or propargyl groups, resulting in the corresponding products in one reaction under the same reaction conditions with a general way. Broad substrate scope, simple operation, mild reaction conditions and late-stage modification of natural products highlight the advantages of this strategy, meanwhile, this general rearrangement reaction is believed to bring opportunities for the transformations of nitrogen ylides and the assembly of valuable tertiary amines and amino acids. This will further enrich the reaction repertoire of difluorocarbene species, facilitate the development of reactions involving difluoromethyl ammonium salts, and provide an avenue for the development of this type of rearrangement reactions.
Collapse
Affiliation(s)
- Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
7
|
Piringer M, Stockhammer L, Vogl L, Weinzierl D, Zebrowski P, Waser M. Enantioselective α-heterofunctionalization reactions of catalytically generated C1-Lewis base enolates. TETRAHEDRON CHEM 2024; 9:100063. [PMID: 38846753 PMCID: PMC7616070 DOI: 10.1016/j.tchem.2024.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Chiral Lewis base (LB) organocatalysis has emerged as a powerful covalent catalysis concept which allows for highly selective asymmetric C-C and C-heteroatom bond formations. Considering significant recent progress in the development of strategies to access α-heterofunctionalized carboxylic acid derivatives under chiral LB catalysis, we wish to summarize the most significant concepts and advances in this field within this mini review now.
Collapse
Affiliation(s)
| | | | | | | | | | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| |
Collapse
|
8
|
Wang H, Zhang Q, Zi W. Synergistic Catalysis Involving Palladium for Stereodivergent Csp3-Csp3 Coupling Reactions. Acc Chem Res 2024. [PMID: 38295513 DOI: 10.1021/acs.accounts.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
ConspectusTransition-metal-catalyzed coupling reactions of dienes (such as 1,3-dienes, alkoxyallenes, and aminoallenes) with carbon nucleophiles have proven to be a highly effective method for creating Csp3-Csp3 bonds. These reactions have perfect atom economy and typically occur under mild reaction conditions. By using chiral metal complexes as catalysts, it is possible to create enantioenriched molecules bearing allylic stereocenters with high enantioselectivities. However, challenges arise when Csp3-Csp3 bonds bearing two vicinal stereocenters are constructed through this type of coupling reaction. Due to the inherent diastereoselectivities, only the kinetically favored diastereoisomers (either the syn- or anti-product) are usually obtained through the transition-metal catalyst system. Achieving complementary stereoisomers with high selectivity, which require complete control of both absolute and relative configurations of multiple chiral centers in a single chemical transformation, is usually impossible.Over the past decade, significant advancements have been made in stereodivergent synthesis. Notably, iridium-related synergistic catalysis has been rapidly developed for stereodivergent allylic alkylation reactions. However, these systems were limited to using allylic alcohol derivatives as electrophilic partners. Finding ways to extend the use of synergistic catalysis to other types of stereodivergent reactions is a crucial issue that needs to be addressed.In 2019, we reported the first palladium-mediated synergistic system for the stereodivergent Csp3-Csp3 coupling between 1,3-dienes and aldimine esters. Lately, this strategy has proven successful in accessing stereodivergent coupling with diverse substrate patterns. In this Account, we will summarize our laboratory's efforts in developing a range of palladium-involved synergistic catalysis systems for the stereodivergent Csp3-Csp3 coupling reactions of dienes. We discovered several synergistic catalysis systems, including Pd/Cu(Ag), Pd/amine, Pd/Lewis base, and Pd/PTC. Additionally, we developed diverse dienes, such as 1,3-dienes, alkoxyallenes, and aminoallenes, to serve as suitable coupling partners for stereodivergent coupling. These processes provide an efficient method for constructing a range of chiral scaffolds bearing vicinal stereocenters. Density functional theory (DFT) calculations have been performed to elucidate the reaction mechanism and to rationalize the origins of the stereochemistry for some of the synergistic catalyst systems. Finally, the synthetic application of these methods has been demonstrated in the concise total synthesis of a number of natural products and bioactive molecules. It is anticipated that an increasing number of chemists will join in the research on stereodivergent Csp3-Csp3 coupling reactions and contribute to more elegant examples in this area. We believe future development will further push the boundary of asymmetric catalysis and find more innovative applications soon for synthesizing complex chiral molecules.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Jiangxi 330031, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
9
|
Savin JA, Ávila-Ortíz CG, Leyva-Ramírez MA, Juaristi E. X-ray crystallographic structure of a novel enantiopure chiral isothiourea with potential applications in enantioselective synthesis. Acta Crystallogr C Struct Chem 2024; 80:15-20. [PMID: 38180035 DOI: 10.1107/s2053229623010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The synthesis of a chiral isothiourea, namely, (4aR,8aR)-3-phenyl-4a,5,6,7,8,8a-hexahydrobenzo[4,5]imidazo[2,1-b]thiazol-9-ium bromide, C15H17N2S+·Br-, with potential organocatalytic and anti-inflammatory activity is reported. The preparation of the heterocycle of interest was carried out in two high-yielding steps. The hydrobromide salt of the isothiourea of interest provided suitable crystals for X-ray diffraction analysis, the results of which are reported. Salient observations from this analysis are the near perpendicular arrangement of the phenyl ring and the mean plane of the heterocycle. This conformational characteristic may be relevant with regard the stereoselectivity induced by the chiral isothiourea in asymmetric reactions. Furthermore, evidence was found for the existence of an S...Br- halogen bond.
Collapse
Affiliation(s)
- J Alejandro Savin
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN #2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - C Gabriela Ávila-Ortíz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN #2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Marco Antonio Leyva-Ramírez
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN #2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN #2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| |
Collapse
|
10
|
Liao JJ, Tian RG, Tian SK. Nickel-Catalyzed Reductive Cross-Coupling of Allylammonium Salts with Alkyl Iodides. J Org Chem 2023; 88:14781-14788. [PMID: 37769123 DOI: 10.1021/acs.joc.3c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
An unprecedented reductive cross-coupling reaction of allylammonium salts with alkyl electrophiles has been established through C-N bond cleavage. A range of allylammonium bromides smoothly participated in the nickel-catalyzed zinc-mediated allyl-alkyl cross-electrophile coupling reaction with alkyl iodides, delivering structurally diverse alkene products in moderate to good yields with high linear selectivity. Preliminary mechanistic experiments are consistent with the formation of an alkyl radical from the alkyl iodide.
Collapse
Affiliation(s)
- Jia-Jia Liao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Gui Tian
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shi-Kai Tian
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Nimmo AJ, Bitai J, Young CM, McLaughlin C, Slawin AMZ, Cordes DB, Smith AD. Enantioselective isothiourea-catalysed reversible Michael addition of aryl esters to 2-benzylidene malononitriles. Chem Sci 2023; 14:7537-7544. [PMID: 37449062 PMCID: PMC10337745 DOI: 10.1039/d3sc02101g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Catalytic enantioselective transformations usually rely upon optimal enantioselectivity being observed in kinetically controlled reaction processes, with energy differences between diastereoisomeric transition state energies translating to stereoisomeric product ratios. Herein, stereoselectivity resulting from an unusual reversible Michael addition of an aryl ester to 2-benzylidene malononitrile electrophiles using an isothiourea as a Lewis base catalyst is demonstrated. Notably, the basicity of the aryloxide component and reactivity of the isothiourea Lewis base both affect the observed product selectivity, with control studies and crossover experiments indicating the feasibility of a constructive reversible Michael addition from the desired product. When this reversible addition is coupled with a crystallisation-induced diastereomer transformation (CIDT) it allows isolation of products in high yield and stereocontrol (14 examples, up to 95 : 5 dr and 99 : 1 er). Application of this process to gram scale, plus derivatisations to provide further useful products, is demonstrated.
Collapse
Affiliation(s)
- Alastair J Nimmo
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Claire M Young
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
12
|
Stockhammer L, Craik R, Monkowius U, Cordes DB, Smith AD, Waser M. Isothiourea-Catalyzed Enantioselective Functionalisation of Glycine Schiff Base Aryl Esters via 1,6- and 1,4-Additions. CHEMISTRYEUROPE 2023; 1:e202300015. [PMID: 38882579 PMCID: PMC7616101 DOI: 10.1002/ceur.202300015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/18/2024]
Abstract
The enantioselective α-functionalisation of glycine Schiff base aryl esters through isothiourea catalysis is successfully demonstrated for 1,6-additions to para-quinone methides (21 examples, up to 95:5 dr and 96:4 er) and 1,4-additions to methylene substituted dicarbonyl or disulfonyl Michael acceptors (17 examples, up to 98:2 er). This nucleophilic organocatalysis approach gives access to a range of α-functionalised α-amino acid derivatives and further transformations of the activated aryl ester group provide a straightforward entry to advanced amino acid-based esters, amides or thioesters.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - Rebecca Craik
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| |
Collapse
|
13
|
Stagel K, Pálvölgyi ÁM, Delmas C, Schnürch M, Bica‐Schröder K. Supported Ionic Liquid Phase (SILP) Allylic Alkylation of Amines in Continuous Flow. ChemCatChem 2023; 15:e202300381. [PMID: 38504938 PMCID: PMC10947303 DOI: 10.1002/cctc.202300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Indexed: 03/21/2024]
Abstract
We present the use of Pd-complex-containing supported ionic liquid phases (SILPs) as a novel approach for continuous-flow allylic alkylation of N-nucleophiles. This immobilization strategy gave simple access to air-tolerating catalyst frameworks, providing rapid and convenient access to various achiral and chiral N-allylation products. Under optimized conditions, the flow-reaction could be maintained for 3.5 hours with constant product output; meanwhile, only a marginal 0.7 wt % of ionic liquid leaching and no detectable palladium-complex leaching could be observed.
Collapse
Affiliation(s)
- Kristof Stagel
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060WienAustria
| | - Ádám Márk Pálvölgyi
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060WienAustria
| | - Clémence Delmas
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060WienAustria
| | - Michael Schnürch
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060WienAustria
| | | |
Collapse
|
14
|
Lu X, Huang G, Liang F, Sun S, Chen Y, Liang Z. A highly efficient method to access unprotected C-3 bifunctional quaternary 3-allyl-3-(amino)oxindoles. Org Biomol Chem 2023; 21:3547-3551. [PMID: 37060142 DOI: 10.1039/d3ob00478c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
A highly efficient Rh(II) catalyzed non-radical protocol to access NH-free C-3 bifunctional oxindoles, which possess 3-allyl and 3-amino simultaneously, was first achieved by employing an intermolecular [2,3]-sigmatropic rearrangement reaction between diazooxindoles and tertiary allylic amines. Utilizing readily available allylamines as the nitrogen and allyl source concurrently, a wide range of bio-active 3-allyl-3-(amino)oxindoles were obtained in excellent yields under very mild reaction conditions; meanwhile, the TON can be up to 90 000. Our study addresses a gap in the literature by investigating intermolecular rearrangements of ammonium ylides with diazoamides, which have been relatively understudied.
Collapse
Affiliation(s)
- Xunbo Lu
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Guoling Huang
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Fangpeng Liang
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Siyu Sun
- Qiqihar Medical University, Qiqihar, 161006, P. R. China
| | - Yalin Chen
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Zi Liang
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| |
Collapse
|
15
|
Wang Y, Young CM, Liu H, Hartley WC, Wienhold M, Cordes DB, Slawin AMZ, Smith AD. A Desilylative Approach to Alkyl Substituted C(1)-Ammonium Enolates: Application in Enantioselective [2+2] Cycloadditions. Angew Chem Int Ed Engl 2022; 61:e202208800. [PMID: 35833471 PMCID: PMC9543305 DOI: 10.1002/anie.202208800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/22/2022]
Abstract
The catalytic generation of C(1)-ammonium enolates from the corresponding α-silyl-α-alkyl substituted carboxylic acids using the isothiourea HyperBTM is reported. This desilylative approach grants access to α-unsubstituted and α-alkyl substituted C(1)-ammonium enolates, which are typically difficult to access through traditional methods reliant upon deprotonation. The scope and limitations of this process is established in enantioselective [2+2]-cycloaddition processes with perfluoroalkylketones (31 examples, up to 96 % yield and >99 : 1 er), as well as selective [2+2]-cycloaddition with trifluoromethyl enones (4 examples, up to 75 % yield and >99 : 1 er). Preliminary mechanistic studies indicate this process proceeds through an initial kinetic resolution of an in situ prepared (±)-α-silyl-α-alkyl substituted anhydride, while the reaction process exhibits overall pseudo zero-order kinetics.
Collapse
Affiliation(s)
- Yihong Wang
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Claire M. Young
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Honglei Liu
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Will C. Hartley
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Max Wienhold
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - David. B. Cordes
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | | | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| |
Collapse
|
16
|
Xi S, Jiang Y, Yang J, Yang J, Miao D, Chen B, Huang W, He L, Qiu H, Zhang M. Generation and [2,3]-Sigmatropic Rearrangement of Ammonium Ylides from Cyclopropyl Ketones for Chiral Indolizidines with Bridgehead Quaternary Stereocenters. Org Lett 2022; 24:6957-6961. [DOI: 10.1021/acs.orglett.2c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Song Xi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaojiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dingyin Miao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Baoyi Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Wanqiu Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
17
|
Cromwell S, Sutio R, Zhang C, Such GK, Lupton DW. Lewis Base Catalyzed Synthesis of Sulfur Heterocycles via the C1‐Pyridinium Enolate. Angew Chem Int Ed Engl 2022; 61:e202206647. [PMID: 35718884 PMCID: PMC9545057 DOI: 10.1002/anie.202206647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 12/25/2022]
Abstract
While the addition of C1‐Lewis base enolates to carbonyls and related structures are well established, the related addition to thiocarbonyls compounds are unknown. Herein, we report a reaction cascade in which a C1‐pyridinium enolate undergos addition to dithioesters, trithiocarbonates and xanthates. The reaction provides access to a range of dihydrothiophenes and dihydrothiopyrans (28‐examples). Mechanistic investigations, including isolation of intermediates, electronic correlation, and kinetic isotope effect studies support the viability of an activated acid intermediate giving rise to the C1‐pyridinium enolate which undergoes turnover limiting cyclization. Subsequent formation of a β‐thiolactone regenerates the catalyst with loss of carbon oxysulfide providing the observed products.
Collapse
Affiliation(s)
- Simon Cromwell
- School of Chemistry Monash University Clayton 3800, Victoria Australia
| | - Randy Sutio
- School of Chemistry Monash University Clayton 3800, Victoria Australia
| | - Changhe Zhang
- School of Chemistry University of Melbourne Parkville Victoria Australia
| | - Georgina K. Such
- School of Chemistry University of Melbourne Parkville Victoria Australia
| | - David W. Lupton
- School of Chemistry Monash University Clayton 3800, Victoria Australia
| |
Collapse
|
18
|
Zhu M, Wang P, Zhang Q, Tang W, Zi W. Diastereodivergent Aldol-Type Coupling of Alkoxyallenes with Pentafluorophenyl Esters Enabled by Synergistic Palladium/Chiral Lewis Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207621. [PMID: 35713176 DOI: 10.1002/anie.202207621] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/15/2022]
Abstract
As a fundamental and synthetically useful C-C bond formation reaction, the aldol reaction is one of the most versatile transformations in organic synthesis. However, despite extensive research on asymmetric versions of the reaction, a unified method for stereoselective access to the complementary syn and anti diastereomeric products remains to be developed. In this study, we developed a synergistic palladium/chiral Lewis base system that overcomes the inherent diastereoselectivity bias of aldol reactions and, as a result, allowed us to achieve the first diastereodivergent coupling reactions of alkoxyallenes with pentafluorophenol esters. Computational studies suggest a mechanism involving an intermolecular protonative hydropalladation pathway rather than a palladium-hydride migratory insertion pathway. The origin of the stereochemistry for this synergistic catalysis system is rationalized by DFT calculations.
Collapse
Affiliation(s)
- Minghui Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peixin Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
19
|
Zhang Q, Zhu M, Zi W. Synergizing palladium with Lewis base catalysis for stereodivergent coupling of 1,3-dienes with pentafluorophenyl acetates. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
20
|
Smith AD, Wang Y, Young CM, Liu H, Hartley WC, Wienhold M, Cordes DB, Slawin AMZ. A Desilylative Approach to Alkyl Substituted C(1)‐Ammonium Enolates: Application in Enantioselective [2+2] Cycloadditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew David Smith
- University of St Andrews School of Chemistry North Haugh FIFE, KY10 3TH St. Andrews UNITED KINGDOM
| | - Yihong Wang
- University of St Andrews School of Chemistry UNITED KINGDOM
| | | | - Honglei Liu
- University of St Andrews School of Chemistry UNITED KINGDOM
| | | | - Max Wienhold
- University of St Andrews School of Chemistry UNITED KINGDOM
| | | | | |
Collapse
|
21
|
Bitai J, Nimmo AJ, Slawin AMZ, Smith AD. Cooperative Palladium/Isothiourea Catalyzed Enantioselective Formal (3+2) Cycloaddition of Vinylcyclopropanes and α,β-Unsaturated Esters. Angew Chem Int Ed Engl 2022; 61:e202202621. [PMID: 35389553 PMCID: PMC9324207 DOI: 10.1002/anie.202202621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/15/2022]
Abstract
A protocol for the enantioselective synthesis of substituted vinylcyclopentanes has been realised using cooperative palladium and isothiourea catalysis. Treatment of vinylcyclopropanes with Pd(PPh3 )4 generates a zwitterionic π-allyl palladium intermediate that intercepts a catalytically generated α,β-unsaturated acyl ammonium species prepared from the corresponding α,β-unsaturated para-nitrophenyl ester and the isothiourea (R)-BTM. Intermolecular formal (3+2) cycloaddition between these reactive intermediates generates functionalised cyclopentanes in generally good yields and excellent diastereo- and enantiocontrol (up to >95 : 5 dr, 97 : 3 er), with the use of LiCl as an additive proving essential for optimal stereocontrol. To the best of our knowledge a dual transition metal/organocatalytic process involving α,β-unsaturated acyl ammonium intermediates has not been demonstrated previously.
Collapse
Affiliation(s)
- Jacqueline Bitai
- EaStCHEM, School of ChemistryUniversity of St AndrewsSt Andrews, FifeKY16 9STUK
| | - Alastair J. Nimmo
- EaStCHEM, School of ChemistryUniversity of St AndrewsSt Andrews, FifeKY16 9STUK
| | | | - Andrew D. Smith
- EaStCHEM, School of ChemistryUniversity of St AndrewsSt Andrews, FifeKY16 9STUK
| |
Collapse
|
22
|
Cromwell S, Sutio R, Zhang C, Such GK, Lupton DW. Lewis Base Catalyzed Synthesis of Sulfur Heterocycles via the C1‐Pyridinium Enolate.**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Randy Sutio
- Monash University School of Chemistry AUSTRALIA
| | - Changhe Zhang
- University of Melbourne School of Chemistry School of Chemistry AUSTRALIA
| | - Georgina K. Such
- University of Melbourne School of Chemistry School of Chemistry AUSTRALIA
| | - David W Lupton
- Monash University School of Chemistry Science RoadClayton 3800 Melbourne AUSTRALIA
| |
Collapse
|
23
|
Zhu M, Wang P, Zhang Q, Tang W, Zi W. Diastereodivergent Aldol‐Type Coupling of Alkoxyallenes with Pentafluorophenyl Esters Enabled by Synergistic Palladium/Chiral Lewis Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minghui Zhu
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Peixin Wang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Qinglong Zhang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry 94 Weijin Road 300071 Tianjin CHINA
| | - Wenjun Tang
- Chinese Academy of Sciences Shanghai Institute of Organic Chemistry State Key Laboratory of Bio-Organic and Natural Products Chemistry CHINA
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry Chemistry Department of Nankai University 94 Weijin Rd. 300071 Tianjin CHINA
| |
Collapse
|
24
|
Lapetaje JE, Young CM, Shu C, Smith AD. Isothiourea-catalyzed formal enantioselective conjugate addition of benzophenone imines to β-fluorinated α,β-unsaturated esters. Chem Commun (Camb) 2022; 58:6886-6889. [PMID: 35635248 DOI: 10.1039/d2cc01936a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isothiourea-catalyzed formal enantioselective conjugate addition of 2-hydroxybenzophenone imine derivatives to α,β-unsaturated para-nitrophenyl esters has been developed. Investigations of the scope and limitations of this procedure showed that β-electron withdrawing substituents within the α,β-unsaturated ester component are required for good product yield, giving rise to a range of β-imino ester and amide derivatives in moderate to good isolated yields with excellent enantioselectivity (20 examples, up to 81% yield and 97 : 3 er).
Collapse
Affiliation(s)
- Jerson E Lapetaje
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St. Andrews KY16 9ST, UK.
| | - Claire M Young
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St. Andrews KY16 9ST, UK.
| | - Chang Shu
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St. Andrews KY16 9ST, UK.
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St. Andrews KY16 9ST, UK.
| |
Collapse
|
25
|
Nair VN, Tambar UK. Catalytic rearrangements of onium ylides in aromatic systems. Org Biomol Chem 2022; 20:3427-3439. [PMID: 35388871 PMCID: PMC10124236 DOI: 10.1039/d2ob00218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Onium ylides are reactive intermediates that undergo versatile chemical transformations to give structurally interesting compounds. Rearrangement reactions of onium ylides are of great importance to synthetic organic chemists, as they provide efficient methods for C-C bond formations as well as installation of new stereogenic centers in molecules. Traditionally, onium ylides have been shown to undergo two types of rearrangements, namely, [2,3]- and [1,2]-rearrangements. In recent years, there have been tremendous developments in the field of metal-catalyzed onium ylide rearrangements through catalytic generation of ylide intermediates from diazocompounds. Several examples of selective catalytic onium ylide rearrangements involving sulfonium, oxonium, ammonium, as well as iodonium ylides have been developed over the years especially in allylic and propargylic systems. However, when the π-system that takes part in the rearrangement is part of an aromatic ring, the selectivity for rearrangements of reactive onium ylides is more challenging. In this review, we discuss recent advances in catalyst control of onium ylide rearrangements of aromatic systems.
Collapse
Affiliation(s)
- Vaishnavi N Nair
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA.
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA.
| |
Collapse
|
26
|
Bitai J, Nimmo AJ, Slawin AMZ, Smith AD. Cooperative Palladium/Isothiourea Catalyzed Enantioselective Formal (3+2) Cycloaddition of Vinylcyclopropanes and a,b‐Unsaturated Esters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Andrew David Smith
- University of St Andrews School of Chemistry North Haugh FIFE, KY10 3TH St. Andrews UNITED KINGDOM
| |
Collapse
|
27
|
Pupo G, Gouverneur V. Hydrogen Bonding Phase-Transfer Catalysis with Alkali Metal Fluorides and Beyond. J Am Chem Soc 2022; 144:5200-5213. [PMID: 35294171 PMCID: PMC9084554 DOI: 10.1021/jacs.2c00190] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phase-transfer catalysis (PTC) is one of the most powerful catalytic manifolds for asymmetric synthesis. Chiral cationic or anionic PTC strategies have enabled a variety of transformations, yet studies on the use of insoluble inorganic salts as nucleophiles for the synthesis of enantioenriched molecules have remained elusive. A long-standing challenge is the development of methods for asymmetric carbon-fluorine bond formation from readily available and cost-effective alkali metal fluorides. In this Perspective, we describe how H-bond donors can provide a solution through fluoride binding. We use examples, primarily from our own research, to discuss how hydrogen bonding interactions impact fluoride reactivity and the role of H-bond donors as phase-transfer catalysts to bring solid-phase alkali metal fluorides in solution. These studies led to hydrogen bonding phase-transfer catalysis (HB-PTC), a new concept in PTC, originally crafted for alkali metal fluorides but offering opportunities beyond enantioselective fluorination. Looking ahead, the unlimited options that one can consider to diversify the H-bond donor, the inorganic salt, and the electrophile, herald a new era in phase-transfer catalysis. Whether abundant inorganic salts of lattice energy significantly higher than those studied to date could be considered as nucleophiles, e.g., CaF2, remains an open question, with solutions that may be found through synergistic PTC catalysis or beyond PTC.
Collapse
Affiliation(s)
- Gabriele Pupo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
28
|
Zhao JQ, Rao HW, Qian HL, Zhang XM, Zhou S, Zhang YP, You Y, Wang ZH, Yuan WC. Palladium-catalyzed stereoselective decarboxylative allylation of azlactones: access to ( Z)-trisubstituted allylic amino acid derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed stereoselective decarboxylative allylation of azlactones with vinyl methylene cyclic carbonates affords a series of trisubstituted allylic amino acid derivatives in good yields with an exclusive (Z)-configuration.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xue-Man Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
29
|
Menard T, Laverny A, Denmark SE. Synthesis of Enantioenriched 3,4-Disubstituted Chromans through Lewis Base Catalyzed Carbosulfenylation. J Org Chem 2021; 86:14290-14310. [PMID: 34672591 DOI: 10.1021/acs.joc.1c02290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method for the catalytic, enantioselective, carbosulfenylation of alkenes to construct 3,4-disubstituted chromans is described. Alkene activation proceeds through the intermediacy of enantioenriched, configurationally stable thiiranium ions generated from catalytic, Lewis base activation of an electrophilic sulfenylating agent. The transformation affords difficult-to-generate, enantioenriched, 3,4-disubstituted chromans in moderate to high yields and excellent enantioselectivities. A variety of substituents are compatible including electronically diverse functional groups as well as several functional handles such as aryl halides, esters, anilines, and phenols. The resulting thioether moiety is amenable to a number of functional group manipulations and transformations. Notably, the pendant sulfide was successfully cleaved to furnish a free thiol which readily provides access to most sulfur-containing functional groups which are present in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Travis Menard
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Aragorn Laverny
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Arokianathar JN, Hartley WC, McLaughlin C, Greenhalgh MD, Stead D, Ng S, Slawin AMZ, Smith AD. Isothiourea-Catalyzed Enantioselective α-Alkylation of Esters via 1,6-Conjugate Addition to para-Quinone Methides. Molecules 2021; 26:6333. [PMID: 34770741 PMCID: PMC8588318 DOI: 10.3390/molecules26216333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/21/2023] Open
Abstract
The isothiourea-catalyzed enantioselective 1,6-conjugate addition of para-nitrophenyl esters to 2,6-disubstituted para-quinone methides is reported. para-Nitrophenoxide, generated in situ from initial N-acylation of the isothiourea by the para-nitrophenyl ester, is proposed to facilitate catalyst turnover in this transformation. A range of para-nitrophenyl ester products can be isolated, or derivatized in situ by addition of benzylamine to give amides at up to 99% yield. Although low diastereocontrol is observed, the diastereoisomeric ester products are separable and formed with high enantiocontrol (up to 94:6 er).
Collapse
Affiliation(s)
- Jude N. Arokianathar
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (J.N.A.); (W.C.H.); (C.M.); (M.D.G.); (A.M.Z.S.)
| | - Will C. Hartley
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (J.N.A.); (W.C.H.); (C.M.); (M.D.G.); (A.M.Z.S.)
| | - Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (J.N.A.); (W.C.H.); (C.M.); (M.D.G.); (A.M.Z.S.)
| | - Mark D. Greenhalgh
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (J.N.A.); (W.C.H.); (C.M.); (M.D.G.); (A.M.Z.S.)
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Darren Stead
- AstraZeneca, Oncology R&D, Research & Early Development, Darwin Building, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK;
| | - Sean Ng
- Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Alexandra M. Z. Slawin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (J.N.A.); (W.C.H.); (C.M.); (M.D.G.); (A.M.Z.S.)
| | - Andrew D. Smith
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (J.N.A.); (W.C.H.); (C.M.); (M.D.G.); (A.M.Z.S.)
| |
Collapse
|
31
|
McLaughlin C, Bitai J, Barber LJ, Slawin AMZ, Smith AD. Catalytic enantioselective synthesis of 1,4-dihydropyridines via the addition of C(1)-ammonium enolates to pyridinium salts. Chem Sci 2021; 12:12001-12011. [PMID: 34667566 PMCID: PMC8457386 DOI: 10.1039/d1sc03860e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
The regio- and stereoselective addition of C(1)-ammonium enolates - generated in situ from aryl esters and the isothiourea catalyst (R)-BTM - to pyridinium salts bearing an electron withdrawing substituent in the 3-position allows the synthesis of a range of enantioenriched 1,4-dihydropyridines. This represents the first organocatalytic approach to pyridine dearomatisation using pronucleophiles at the carboxylic acid oxidation level. Optimisation studies revealed a significant solvent dependency upon product enantioselectivity, with only toluene providing significant asymmetric induction. Using DABCO as a base also proved beneficial for product enantioselectivity, while investigations into the nature of the counterion showed that co-ordinating bromide or chloride substrates led to higher product er than the corresponding tetrafluoroborate or hexafluorophosphate. The scope and limitations of this process are developed, with enantioselective addition to 3-cyano- or 3-sulfonylpyridinium salts giving the corresponding 1,4-dihydropyridines (15 examples, up to 95 : 5 dr and 98 : 2 er).
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Lydia J Barber
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
32
|
Stockhammer L, Weinzierl D, Bögl T, Waser M. Enantioselective α-Chlorination Reactions of in Situ Generated C1 Ammonium Enolates under Base-Free Conditions. Org Lett 2021; 23:6143-6147. [PMID: 34319102 PMCID: PMC8353620 DOI: 10.1021/acs.orglett.1c02256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
The asymmetric α-chlorination
of activated aryl acetic acid
esters can be carried out with high levels of enantioselectivities
utilizing commercially available isothiourea catalysts under base-free
conditions. The reaction, which proceeds via the in situ formation
of chiral C1 ammonium enolates, is best carried out under cryogenic
conditions combined with a direct trapping of the activated α-chlorinated
ester derivative to prevent epimerization, thus allowing for enantioselectivities
of up to e.r. 99:1.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - David Weinzierl
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Thomas Bögl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| |
Collapse
|
33
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
34
|
Ye F, Ge Y, Spannenberg A, Neumann H, Xu LW, Beller M. 3,3-Difluoroallyl ammonium salts: highly versatile, stable and selective gem-difluoroallylation reagents. Nat Commun 2021; 12:3257. [PMID: 34059673 PMCID: PMC8167079 DOI: 10.1038/s41467-021-23504-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
The selective synthesis of fluorinated organic molecules continues to be of major importance for the development of bioactive compounds (agrochemicals and pharmaceuticals) as well as unique materials. Among the established synthetic toolbox for incorporation of fluorine-containing units, efficient and general reagents for introducing -CF2- groups have been largely neglected. Here, we present the synthesis of 3,3-difluoropropen-1-yl ammonium salts (DFPAs) as stable, and scalable gem-difluoromethylation reagents, which allow for the direct reaction with a wide range of fascinating nucleophiles. DFPAs smoothly react with N-, O-, S-, Se-, and C-nucleophiles under mild conditions without necessity of metal catalysts with exclusive regioselectivity. In this way, the presented reagents also permit the straightforward preparation of many analogues of existing pharmaceuticals.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, PR China
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Yao Ge
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Anke Spannenberg
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Helfried Neumann
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, PR China
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock, 18059, Germany.
| |
Collapse
|
35
|
Zhao F, Shu C, Young CM, Carpenter‐Warren C, Slawin AMZ, Smith AD. Enantioselective Synthesis of α-Aryl-β 2 -Amino-Esters by Cooperative Isothiourea and Brønsted Acid Catalysis. Angew Chem Int Ed Engl 2021; 60:11892-11900. [PMID: 33646631 PMCID: PMC8252622 DOI: 10.1002/anie.202016220] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 01/07/2023]
Abstract
The synthesis of α-aryl-β2 -amino esters through enantioselective aminomethylation of an arylacetic acid ester in high yields and enantioselectivity via cooperative isothiourea and Brønsted acid catalysis is demonstrated. The scope and limitations of this process are explored (25 examples, up to 94 % yield and 96:4 er), with applications to the synthesis of (S)-Venlafaxine⋅HCl and (S)-Nakinadine B. Mechanistic studies are consistent with a C(1)-ammonium enolate pathway being followed rather than an alternative dynamic kinetic resolution process. Control studies indicate that (i) a linear effect between catalyst and product er is observed; (ii) an acyl ammonium ion can be used as a precatalyst; (iii) reversible isothiourea addition to an in situ generated iminium ion leads to an off-cycle intermediate that can be used as a productive precatalyst.
Collapse
Affiliation(s)
- Feng Zhao
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Chang Shu
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Claire M. Young
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | | | | | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
36
|
Zhao F, Shu C, Young CM, Carpenter‐Warren C, Slawin AMZ, Smith AD. Enantioselective Synthesis of α‐Aryl‐β
2
‐Amino‐Esters by Cooperative Isothiourea and Brønsted Acid Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Zhao
- EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| | - Chang Shu
- EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| | - Claire M. Young
- EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| | | | | | - Andrew D. Smith
- EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
37
|
Ng W, Lam Y, Hu R, Ng W, Yeung Y. Zwitterion‐Catalyzed Amino‐Dibromination of Nitroalkenes: Scope, Mechanism, and Application to The Synthesis of Glycinamides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wing‐Hin Ng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Ying‐Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Rong‐Bin Hu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Wing‐Lok Ng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Ying‐Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| |
Collapse
|
38
|
Bitai J, Westwood MT, Smith AD. α,β-Unsaturated acyl ammonium species as reactive intermediates in organocatalysis: an update. Org Biomol Chem 2021; 19:2366-2384. [PMID: 33650626 DOI: 10.1039/d0ob02208j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
α,β-Unsaturated acyl ammonium species are versatile intermediates that have been applied in a variety of transformations including Michael additions, domino reactions and cycloadditions. Many of these transformations are promoted by chiral Lewis base catalysts, enabling the rapid generation of molecular complexity with high stereochemical control. This review highlights recent developments in the generation and application of α,β-unsaturated acyl ammonium intermediates reported since a previous review of this area in 2016. Particular emphasis will be placed on reports providing mechanistic insight into catalytic transformations and observed selectivities. A perspective on current challenges and potential future developments in the field of α,β-unsaturated acyl ammonium catalysis is also provided.
Collapse
Affiliation(s)
- Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK.
| | | | | |
Collapse
|
39
|
McLaughlin C, Smith AD. Generation and Reactivity of C(1)-Ammonium Enolates by Using Isothiourea Catalysis. Chemistry 2021; 27:1533-1555. [PMID: 32557875 PMCID: PMC7894297 DOI: 10.1002/chem.202002059] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/17/2022]
Abstract
C(1)-Ammonium enolates are powerful, catalytically generated synthetic intermediates applied in the enantioselective α-functionalisation of carboxylic acid derivatives. This minireview describes the recent developments in the generation and application of C(1)-ammonium enolates from various precursors (carboxylic acids, anhydrides, acyl imidazoles, aryl esters, α-diazoketones, alkyl halides) using isothiourea Lewis base organocatalysts. Their synthetic utility in intra- and intermolecular enantioselective C-C and C-X bond forming processes on reaction with various electrophiles will be showcased utilising two distinct catalyst turnover approaches.
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| |
Collapse
|
40
|
Laconsay CJ, Tantillo DJ. Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Croix J. Laconsay
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| |
Collapse
|
41
|
Kim B, Kim Y, Lee SY. Stereodivergent Carbon-Carbon Bond Formation between Iminium and Enolate Intermediates by Synergistic Organocatalysis. J Am Chem Soc 2020; 143:73-79. [PMID: 33356216 DOI: 10.1021/jacs.0c11077] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report here a stereodivergent method for the Michael addition of aryl acetic acid esters to α,β-unsaturated aldehydes catalyzed by a combination of a chiral pyrrolidine and a chiral Lewis base. This reaction proceeds through a synergistic catalytic cycle which consists of one cycle leading to a chiral iminium electrophile and a second cycle generating a nucleophilic chiral enolate for the construction of a carbon-carbon bond. By varying the combinations of catalyst enantiomers, all four stereoisomers of the products with two vicinal stereocenters are accessible with high enantio- and diastereoselectivity. The products of the Michael addition, 1,5-aldehyde esters, can be readily transformed into a variety of other valuable enantioenriched structures, including those bearing three contiguous stereocenters in an acyclic system, thus providing an efficient route to an array of structural and stereochemical diversity.
Collapse
Affiliation(s)
- Byungjun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongjae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
42
|
Ye F, Ge Y, Spannenberg A, Neumann H, Beller M. The role of allyl ammonium salts in palladium-catalyzed cascade reactions towards the synthesis of spiro-fused heterocycles. Nat Commun 2020; 11:5383. [PMID: 33097719 PMCID: PMC7584656 DOI: 10.1038/s41467-020-19110-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
There is a continuous need for designing new and improved synthetic methods aiming at minimizing reaction steps while increasing molecular complexity. In this respect, catalytic, one-pot cascade methodologies constitute an ideal tool for the construction of complex molecules with high chemo-, regio-, and stereoselectivity. Herein, we describe two general and efficient cascade procedures for the synthesis of spiro-fused heterocylces. This transformation combines selective nucleophilic substitution (SN2′), palladium-catalyzed Heck and C–H activation reactions in a cascade manner. The use of allylic ammonium salts and specific Pd catalysts are key to the success of the transformations. The synthetic utility of these methodologies is showcased by the preparation of 48 spiro-fused dihydrobenzofuranes and indolines including a variety of fluorinated derivatives. Synthetic methods aiming at minimizing reaction steps while increasing molecular complexity are highly sought after by organic chemists. Here, the authors report two cascade procedures combining nucleophilic substitution, palladium-catalyzed Heck and C–H activation reactions for the synthesis of spiro-fused heterocycles.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, 311121, Hangzhou, PR China.,Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yao Ge
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.
| |
Collapse
|
43
|
Peng Q, Guo D, Zhang B, Liu L, Wang J. Benzotetramisole catalyzed kinetic resolution of 2H-azirines. Chem Commun (Camb) 2020; 56:12427-12430. [PMID: 32939521 DOI: 10.1039/d0cc05379a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An unprecedented benzotetramisole (BTM)-catalyzed kinetic resolution for the efficient synthesis of chiral 2H-azirines is described. This protocol provides two chiral isomers in one step with broad scope, good yield and high enantioselectivity. In addition, the optically pure 2H-azirine products have proven to be useful building blocks for further synthetic transformations.
Collapse
Affiliation(s)
- Qiupeng Peng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | | | | | | | | |
Collapse
|
44
|
Enantioselective Intramolecular [2,3]‐Sigmatropic Rearrangement of Aldehydes via a Sulfonium Enamine Intermediate. Angew Chem Int Ed Engl 2020; 59:20904-20908. [DOI: 10.1002/anie.202010234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/05/2020] [Indexed: 11/07/2022]
|
45
|
Li L, Chen B, Chen J, Huang Y. Enantioselective Intramolecular [2,3]‐Sigmatropic Rearrangement of Aldehydes via a Sulfonium Enamine Intermediate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Li Li
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Baoli Chen
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518055 China
- Shenzhen Public Platform of Drug Screening and Preclinical Evaluation Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiean Chen
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518055 China
- Shenzhen Public Platform of Drug Screening and Preclinical Evaluation Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yong Huang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| |
Collapse
|
46
|
Roagna G, Ascough DMH, Ibba F, Vicini AC, Fontana A, Christensen KE, Peschiulli A, Oehlrich D, Misale A, Trabanco AA, Paton RS, Pupo G, Gouverneur V. Hydrogen Bonding Phase-Transfer Catalysis with Ionic Reactants: Enantioselective Synthesis of γ-Fluoroamines. J Am Chem Soc 2020; 142:14045-14051. [PMID: 32608977 PMCID: PMC7441491 DOI: 10.1021/jacs.0c05131] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Ammonium
salts are used as phase-transfer catalysts for fluorination
with alkali metal fluorides. We now demonstrate that these organic
salts, specifically azetidinium triflates, are suitable substrates
for enantioselective ring opening with CsF and a chiral bis-urea catalyst. This process, which highlights the ability of hydrogen
bonding phase-transfer catalysts to couple two ionic reactants, affords
enantioenriched γ-fluoroamines in high yields. Mechanistic studies
underline the role of the catalyst for phase-transfer, and computed
transition state structures account for the enantioconvergence observed
for mixtures of achiral azetidinium diastereomers. The N-substituents
in the electrophile influence the reactivity, but the configuration
at nitrogen is unimportant for the enantioselectivity.
Collapse
Affiliation(s)
- Giulia Roagna
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - David M H Ascough
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Francesco Ibba
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Anna Chiara Vicini
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alberto Fontana
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., Calle Jarama 75A, 45007 Toledo, Spain
| | - Kirsten E Christensen
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Aldo Peschiulli
- Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Daniel Oehlrich
- Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Antonio Misale
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., Calle Jarama 75A, 45007 Toledo, Spain
| | - Andrés A Trabanco
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., Calle Jarama 75A, 45007 Toledo, Spain
| | - Robert S Paton
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gabriele Pupo
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
47
|
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| |
Collapse
|
48
|
Exploring the Scope of Tandem Palladium and Isothiourea Relay Catalysis for the Synthesis of α-Amino Acid Derivatives. Molecules 2020; 25:molecules25102463. [PMID: 32466341 PMCID: PMC7287902 DOI: 10.3390/molecules25102463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
The scope and limitations of a tandem N-allylation/[2,3]-rearrangement protocol are investigated through the incorporation of a variety of functional groups within an allylic phosphate precursor. This method uses readily accessible N,N-dimethylglycine aryl esters and functionalized allylic phosphates, forming quaternary ammonium salts in situ in the presence of a palladium catalyst. Subsequent enantioselective [2,3]-sigmatropic rearrangement, promoted by the chiral isothiourea tetramisole, generates α-amino acid derivatives with two contiguous stereocenters. The incorporation of electron-withdrawing ester and amide groups gave the best results, furnishing the desired products in moderate to good yields (29–70%), with low diastereocontrol (typically 60:40 dr) but high enantioselectivity (up to 90:10 er). These results indicate that substrate–catalyst interactions in the proposed transition state are sensitive to the substitution pattern of the substrates.
Collapse
|
49
|
Lin Q, Hu B, Xu X, Dong S, Liu X, Feng X. Chiral N, N'-dioxide/Mg(OTf) 2 complex-catalyzed asymmetric [2,3]-rearrangement of in situ generated ammonium salts. Chem Sci 2020; 11:3068-3073. [PMID: 34122811 PMCID: PMC8157646 DOI: 10.1039/c9sc06342k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
Catalytic enantioselective [2,3]-rearrangements of in situ generated ammonium ylides from glycine pyrazoleamides and allyl bromides were achieved by employing a chiral N,N'-dioxide/MgII complex as the catalyst. This protocol provided a facile and efficient synthesis route to a series of anti-α-amino acid derivatives in good yields with high stereoselectivities. Moreover, a possible catalytic cycle was proposed to illustrate the reaction process and the origin of stereoselectivity.
Collapse
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Bowen Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
50
|
Knox GJ, Hutchings-Goetz LS, Pearson CM, Snaddon TN. Tertiary Amine Lewis Base Catalysis in Combination with Transition Metal Catalysis. Top Curr Chem (Cham) 2020; 378:16. [PMID: 31942682 DOI: 10.1007/s41061-020-0279-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/02/2020] [Indexed: 01/03/2023]
Abstract
The cooperation between two orthogonal catalytic events during the formation of carbon-carbon and carbon-heteroatom bonds has emerged as an effective strategy for enantioselective chemical synthesis. In recent years, a number of pioneering investigations have described useful chemical synthesis methods whereby the reactivity or nucleophile-electrophile combinations can be fine-tuned or extended far beyond the effect and influence of a single catalyst. The recognition of this has had profound implications for the development cooperative catalysis as a field and has provided a foundation for the development of broadly useful chemical synthesis methods. This chapter focuses on the combination of tertiary amine Lewis base and transition metal catalysts, which the authors hope will simulate further developments and advances.
Collapse
Affiliation(s)
- Gary J Knox
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Luke S Hutchings-Goetz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Colin M Pearson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Thomas N Snaddon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|