1
|
Wang Q, Steinbock O. Shape-preserving conversion of calcium carbonate tubes to self-propelled micromotors. Phys Chem Chem Phys 2022; 24:14538-14544. [PMID: 35666107 DOI: 10.1039/d2cp01807a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The self-assembly of inorganic structures beyond the euhedral shape repertoire is a powerful approach to grow hierarchically ordered materials and mesoscopic devices. The hollow precipitate tubes in chemical gardens are a classic example, which we produce on Nafion membranes separating a CaCl2-containing gel from a Na2CO3 solution. The resulting CaCO3 microtubes are conical and consist of either pure vaterite or calcite. The process also forms branched T- and Y-shaped structures. The metastable vaterite polymorph can be converted to Mn-based structures without loss of the macroscopic shape. In H2O2 solution, the resulting tubes self-propel by the release of O2 bubbles, which for branched structures causes rotation. The tubes can contain multiple bubbles which are ejected in a quasi-periodic fashion (e.g. in groups of four). The addition of surfactants causes the accumulation of bubble trails and bubble rafts that interact with the moving tubes and give rise to distinct motion patterns.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.
| |
Collapse
|
2
|
Kumar P, Wang Q, Horváth D, Tóth Á, Steinbock O. Collective motion of self-propelled chemical garden tubes. SOFT MATTER 2022; 18:4389-4395. [PMID: 35616522 DOI: 10.1039/d2sm00395c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In H2O2 solutions, manganese-containing chemical garden tubes can self-propel due to the catalytic production and ejection of oxygen bubbles. Here, we investigate the collective behavior of these self-assembled precipitate tubes. In thin solution layers, the tubes show definite autonomous dynamics with only weak interactions that result from fluid motion around the moving units and directional changes during collisions. In thick solution layers with convex menisci forcing spatial confinement, the tubes undergo cycles of self-assembly and dispersion. This collective motion results from the rhythmic creation of a large master bubble around which the tubes align tangentially.
Collapse
Affiliation(s)
- Pawan Kumar
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Qingpu Wang
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Oliver Steinbock
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
3
|
Angelis G, Katsanou ME, Giannopoulos-Dimitriou A, Vizirianakis IS, Pampalakis G. Generation of chemobrionic jellyfishes that mechanically divide, grow and exhibit biomimetic “symbiosis”. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Georgios Angelis
- Aristotle University of Thessaloniki: Aristoteleio Panepistemio Thessalonikes Pharmacy GREECE
| | - Maria-Eleni Katsanou
- Aristoteleio Panepistimio Thessalonikis: Aristoteleio Panepistemio Thessalonikes Pharmacy GREECE
| | | | - Ioannis S. Vizirianakis
- Aristoteleio Panepistimio Thessalonikis: Aristoteleio Panepistemio Thessalonikes Pharmacy GREECE
| | - Georgios Pampalakis
- Aristotle University of Thessaloniki School of Pharmacy Pharmacy Panepistimioupolis 54124 Thessaloniki GREECE
| |
Collapse
|
4
|
Emmanuel M, Lantos E, Horváth D, Tóth Á. Formation and growth of lithium phosphate chemical gardens. SOFT MATTER 2022; 18:1731-1736. [PMID: 35156669 DOI: 10.1039/d1sm01808f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show that a chemical garden can be developed from an alkaline metal precipitate using a flow-driven setup. By injecting sodium phosphate solution into lithium chloride solution from below, a liquid jet appears, on which a precipitate grows forming a structure resembling a hydrothermal vent. The precipitate column continuously builds upward until a maximum height is reached. The vertical growth then significantly slows down while the tube diameter still increases. The analysis of the growth profiles has revealed a linear dependence of volume growth rate on the injection rate, hence yielding a universal growth profile. The expansion in diameter, localized at the tip of the structure, scales with a power law suggesting that the phenomenon is controlled by both diffusion and convection.
Collapse
Affiliation(s)
- Michael Emmanuel
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Emese Lantos
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| |
Collapse
|
5
|
Abstract
Synthetic autonomous locomotion shows great promise in many research fields, including biomedicine and environmental science, because it can allow targeted drug/cargo delivery and the circumvention of kinetic and thermodynamic limitations. Creating such self-moving objects often requires advanced production techniques as exemplified by catalytic, gas-forming microrockets. Here, we grow such structures via the self-organization of precipitate tubes in chemical gardens by simply injecting metal salts into silicate solutions. This method generates hollow, cylindrical objects rich in catalytic manganese oxide that also feature a partially insulating outer layer of inert silica. In dilute H2O2 solution, these structures undergo self-propulsion by ejecting streams of oxygen bubbles. Each emission event pushes the tube forward by 1-2 tube radii. The ejection frequency depends linearly on the peroxide concentration as quantified by acoustic measurements of bursting bubbles. We expect our facile method and key results to be applicable to a diverse range of materials and reactions.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Pamela Knoll
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
6
|
Liu J, Song B, Li J, Tian X, Ma Y, Yang K, Yuan B. Photoluminescence modulation of silicon nanoparticles via highly ordered arrangement with phospholipid membranes. Colloids Surf B Biointerfaces 2018; 170:656-662. [PMID: 29986261 DOI: 10.1016/j.colsurfb.2018.06.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Accepted: 06/30/2018] [Indexed: 11/18/2022]
Abstract
Highly ordered self-assembly of nanoparticles (NPs) in a large scale promises attractive potential in optical modulation of the NPs for illuminating, imaging and sensing applications. In this work, a type of multi-lamellar nanocomposite membranes composed of phospholipid multilayers and Si NPs sandwiched between each adjacent lipid layers was fabricated via a facile co-assembly method. X-ray reflectivity (XRR), grazing incident X-ray diffraction (GIXRD) and TEM measurements verified the highly ordered arrangement of NPs within the multilayers with a controlled in-plane inter-particle separation from ∼7 nm to ∼14 nm. Due to such an arrangement, the photoluminescence (PL) properties of the Si NPs were effectively modulated. Compared to the NPs in suspension or its pure film, the PL of the NPs in the membranes blue-shifted and remarkably narrowed, with the full-width-at-half-maximum (FWHM) value reduced from >110 nm of the pure Si NP film to below 43 nm. The radiative lifetime of the NPs was also significantly reduced from ∼16.7 ns to ∼3.3 ns depending on the inter-particle distance in the membrane. Meanwhile, the Si NPs within membranes maintained robust photostability under UV irradiation.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, PR China
| | - Bin Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, PR China
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | - Xiaodong Tian
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yuqiang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, PR China; National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, PR China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, PR China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, PR China.
| |
Collapse
|
7
|
Nakouzi E, Steinbock O. Self-organization in precipitation reactions far from the equilibrium. SCIENCE ADVANCES 2016; 2:e1601144. [PMID: 27551688 PMCID: PMC4991932 DOI: 10.1126/sciadv.1601144] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/18/2016] [Indexed: 05/20/2023]
Abstract
Far from the thermodynamic equilibrium, many precipitation reactions create complex product structures with fascinating features caused by their unusual origins. Unlike the dissipative patterns in other self-organizing reactions, these features can be permanent, suggesting potential applications in materials science and engineering. We review four distinct classes of precipitation reactions, describe similarities and differences, and discuss related challenges for theoretical studies. These classes are hollow micro- and macrotubes in chemical gardens, polycrystalline silica carbonate aggregates (biomorphs), Liesegang bands, and propagating precipitation-dissolution fronts. In many cases, these systems show intricate structural hierarchies that span from the nanometer scale into the macroscopic world. We summarize recent experimental progress that often involves growth under tightly regulated conditions by means of wet stamping, holographic heating, and controlled electric, magnetic, or pH perturbations. In this research field, progress requires mechanistic insights that cannot be derived from experiments alone. We discuss how mesoscopic aspects of the product structures can be modeled by reaction-transport equations and suggest important targets for future studies that should also include materials features at the nanoscale.
Collapse
Affiliation(s)
- Elias Nakouzi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| |
Collapse
|
8
|
Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Labs-on-a-chip meet self-propelled micromotors. LAB ON A CHIP 2016; 16:2397-2407. [PMID: 27250248 DOI: 10.1039/c6lc00467a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This frontier review covers recent advances in the field of nanomaterial-based micromotors for the development of novel labs-on-a-chip (LOCs). In this review, we will discuss how carbon nanomaterials "on-board" of micromotors offer particular promise for diverse LOC applications. New trends in the field, directed towards the use of quantum dots and nanoparticles as functional materials for sophisticated micromotors, will be reviewed. Micromotor strategies using functionalized catalytic microengines to capture and transport (bio)molecules between the different reservoirs of LOC devices will also be covered. These recent advances are bringing closer our hopes for personalized medicine and food safety assurance, among others.
Collapse
Affiliation(s)
- R Maria-Hormigos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | | | | |
Collapse
|
9
|
Abstract
The dissolution of metal salts in silicate solution can result in the growth of hollow precipitate tubes. These "chemical gardens" are a model of self-organization far from the equilibrium and create permanent macroscopic structures. The reproducibility of the growth process is greatly improved if the solid salt seed is replaced by a salt solution that is steadily injected by a pump; however, this modification of the original experiment eliminates the membrane-based osmotic pump at the base of conventional chemical gardens and does not allow for analyses in terms of the involved pressure. Here we describe a new experimental method that delivers the salt solution according to a controlled hydrostatic pressure. In one form of the experiment, this pressure slowly decreases as zinc sulfate solution flows into the silicate-containing reaction vessel, whereas a second version holds the respective solution heights constant. In addition to three known growth regimes (jetting, popping, budding), we observe single tubes that fill the vessel in a horizontally undulating but vertically layered fashion (crowding). The resulting, dried product has a cylindrical shape, very low density, and one continuous connection from top to bottom. We also present phase diagrams of these growth modes and show that the flow characteristics of our experiments follow a reaction-independent Hagen-Poiseuille equation.
Collapse
Affiliation(s)
- Megan R Bentley
- Florida State University , Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, United States
| | - Bruno C Batista
- Florida State University , Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Florida State University , Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
10
|
Bohner B, Endrődi B, Horváth D, Tóth Á. Flow-driven pattern formation in the calcium-oxalate system. J Chem Phys 2016; 144:164504. [PMID: 27131554 DOI: 10.1063/1.4947141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
Collapse
Affiliation(s)
- Bíborka Bohner
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary
| |
Collapse
|
11
|
Nakouzi E, Knoll P, Hendrix KB, Steinbock O. Systematic characterization of polycrystalline silica–carbonate helices. Phys Chem Chem Phys 2016; 18:23044-52. [DOI: 10.1039/c6cp04153a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomorphs are complex, life-like structures that emerge from the precipitation of barium carbonate and amorphous silica in alkaline media.
Collapse
Affiliation(s)
- Elias Nakouzi
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Pamela Knoll
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Kenzie B. Hendrix
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
12
|
Tóth–Szeles E, Schuszter G, Tóth Á, Kónya Z, Horváth D. Flow-driven morphology control in the cobalt–oxalate system. CrystEngComm 2016. [DOI: 10.1039/c5ce02459e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of fluid flow by maintaining the density gradient and controlling the flow rate provides a simple method to modify the microstructure of cobalt oxalate.
Collapse
Affiliation(s)
- Eszter Tóth–Szeles
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| | - Gábor Schuszter
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry
- University of Szeged
- Szeged, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry
- University of Szeged
- Szeged, Hungary
| |
Collapse
|
13
|
Mitsudome T, Urayama T, Yamazaki K, Maehara Y, Yamasaki J, Gohara K, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. Design of Core-Pd/Shell-Ag Nanocomposite Catalyst for Selective Semihydrogenation of Alkynes. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02518] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Kenji Yamazaki
- Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo 060-8628, Japan
| | - Yosuke Maehara
- Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo 060-8628, Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazutoshi Gohara
- Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo 060-8628, Japan
| | | | | | | | | |
Collapse
|
14
|
Lin Y, Wang C, Li L, Wang H, Liu K, Wang K, Li B. Tunable Fluorescent Silica-Coated Carbon Dots: A Synergistic Effect for Enhancing the Fluorescence Sensing of Extracellular Cu²⁺ in Rat Brain. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27262-70. [PMID: 26592139 DOI: 10.1021/acsami.5b08499] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon quantum dots (CDs) combined with self-assembly strategy have created an innovative way to fabricate novel hybrids for biological analysis. This study demonstrates a new fluorescence platform with enhanced selectivity for copper ion sensing in the striatum of the rat brain following the cerebral calm/sepsis process. Here, the fabrication of silica-coated CDs probes is based on the efficient hybridization of APTES which act as a precursor of organosilane self-assembly, with CDs to form silica-coated CDs probes. The fluorescent properties including intensity, fluorescence quantum yield, excitation-independent region, and red/blue shift of the emission wavelength of the probe are tunable through reliable regulation of the ratio of CDs and APTES, realizing selectivity and sensitivity-oriented Cu(2+) sensing. The as-prepared probes (i.e., 3.33% APTES-0.9 mg mL(-1) CDs probe) show a synergistic amplification effect of CDs and APTES on enhancing the fluorescence signal of Cu(2+) detection through fluorescent self-quenching. The underlying mechanism can be ascribed to the stronger interaction including chelation and electrostatic attraction between Cu(2+) and N and O atoms-containing as well as negatively charged silica-coated CDs than other interference. Interestingly, colorimetric assay and Tyndall effect can be observed and applied to directly distinguish the concentration of Cu(2+) by the naked eye. The proposed fluorescent platform here has been successfully applied to monitor the alteration of striatum Cu(2+) in rat brain during the cerebral calm/sepsis process. The versatile properties of the probe provide a new and effective fluorescent platform for the sensing method in vivo sampled from the rat brain.
Collapse
Affiliation(s)
- Yuqing Lin
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Chao Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Linbo Li
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Hao Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Kangyu Liu
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Keqing Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Bo Li
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| |
Collapse
|
15
|
Barge LM, Abedian Y, Doloboff IJ, Nuñez JE, Russell MJ, Kidd RD, Kanik I. Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems. J Vis Exp 2015:53015. [PMID: 26650915 PMCID: PMC4692733 DOI: 10.3791/53015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Here we report experimental simulations of hydrothermal chimney growth using injection chemical garden methods. The versatility of this type of experiment allows for testing of various proposed ocean / hydrothermal fluid chemistries that could have driven reactions toward the origin of life in environments on the early Earth, early Mars, or even other worlds such as the icy moons of the outer planets. We show experiments that include growth of chemical garden structures under anoxic conditions simulating the early Earth, inclusion of trace components of phosphates / organics in the injection solution to incorporate them into the structure, a switch of the injection solution to introduce a secondary precipitating anion, and the measurement of membrane potentials generated by chemical gardens. Using this method, self-assembling chemical garden structures were formed that mimic the natural chimneys precipitated at submarine hydrothermal springs, and these precipitates can be used successfully as flow-through reactors by feeding through multiple successive "hydrothermal" injections.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology; NASA Astrobiology Institute, Icy Worlds; Blue Marble Space Institute of Science;
| | - Yeghegis Abedian
- NASA Jet Propulsion Laboratory, California Institute of Technology; NASA Astrobiology Institute, Icy Worlds
| | - Ivria J Doloboff
- NASA Jet Propulsion Laboratory, California Institute of Technology; NASA Astrobiology Institute, Icy Worlds
| | - Jessica E Nuñez
- NASA Jet Propulsion Laboratory, California Institute of Technology; Blue Marble Space Institute of Science; Citrus College
| | - Michael J Russell
- NASA Jet Propulsion Laboratory, California Institute of Technology; NASA Astrobiology Institute, Icy Worlds
| | - Richard D Kidd
- NASA Jet Propulsion Laboratory, California Institute of Technology
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology; NASA Astrobiology Institute, Icy Worlds
| |
Collapse
|
16
|
Luminescent tubular precipitation structures from reactant-loaded pellets. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Batista BC, Steinbock O. Chemical gardens without silica: the formation of pure metal hydroxide tubes. Chem Commun (Camb) 2015; 51:12962-5. [PMID: 26172246 DOI: 10.1039/c5cc04724b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contrary to common belief, hollow precipitation tubes form in the absence of silicate if sodium hydroxide solution is injected into solutions of various metal ions. In many cases, the growth speed has a power law dependence on the flow rate. For vanadyl, we observe damped oscillations in the tube height.
Collapse
Affiliation(s)
- Bruno C Batista
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
| | | |
Collapse
|
18
|
Batista BC, Cruz P, Steinbock O. Self-Alignment of Beads and Cell Trapping in Precipitate Tubes. Chemphyschem 2015; 16:2299-303. [PMID: 26031212 DOI: 10.1002/cphc.201500368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 01/25/2023]
Abstract
Propagating reaction fronts allow the formation of materials in self-sustained, steep concentration gradients, which would otherwise rapidly decay. These conditions can result in macroscopic, noncrystallographic structures, such as tubes with large aspect ratios. For hollow silica/Zn(OH)2 tubes, we report the inclusion of diverse mesoscopic building blocks ranging from polymer beads to biological cells. For agarose beads, we observe spontaneous alignment along vertical tracks; the nearly periodic spacing of the beads along these tracks follows a log-normal distribution. We interpret this patterning in terms of hydrodynamic recruitment and discuss similarities to the adhesion dynamics of leukocytes in blood vessels. For diatoms and other cells, we observe novel surface textures, and yeast tagged with a green fluorescent protein shows strong fluorescence activity after trapping. The inclusion of these guest units should improve the possibilities for the application of these tubes in microfluidics and biotechnology.
Collapse
Affiliation(s)
- Bruno C Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390 (USA)
| | - Patrick Cruz
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390 (USA)
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390 (USA).
| |
Collapse
|
19
|
Barge LM, Cardoso SSS, Cartwright JHE, Cooper GJT, Cronin L, De Wit A, Doloboff IJ, Escribano B, Goldstein RE, Haudin F, Jones DEH, Mackay AL, Maselko J, Pagano JJ, Pantaleone J, Russell MJ, Sainz-Díaz CI, Steinbock O, Stone DA, Tanimoto Y, Thomas NL. From Chemical Gardens to Chemobrionics. Chem Rev 2015; 115:8652-703. [PMID: 26176351 DOI: 10.1021/acs.chemrev.5b00014] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura M Barge
- Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California 91109, United States
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge CB2 3RA, United Kingdom
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada , E-18100 Armilla, Granada, Spain
| | - Geoffrey J T Cooper
- WestCHEM School of Chemistry, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Leroy Cronin
- WestCHEM School of Chemistry, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Anne De Wit
- Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB) , B-1050 Brussels, Belgium
| | - Ivria J Doloboff
- Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California 91109, United States
| | - Bruno Escribano
- Basque Center for Applied Mathematics , E-48009 Bilbao, Spain
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge , Cambridge CB3 0WA, United Kingdom
| | - Florence Haudin
- Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB) , B-1050 Brussels, Belgium
| | - David E H Jones
- Department of Chemistry, University of Newcastle upon Tyne , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Alan L Mackay
- Birkbeck College, University of London , Malet Street, London WC1E 7HX, United Kingdom
| | - Jerzy Maselko
- Department of Chemistry, University of Alaska , Anchorage, Alaska 99508, United States
| | - Jason J Pagano
- Department of Chemistry, Saginaw Valley State University , University Center, Michigan 48710-0001, United States
| | - J Pantaleone
- Department of Physics, University of Alaska , Anchorage, Alaska 99508, United States
| | - Michael J Russell
- Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California 91109, United States
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada , E-18100 Armilla, Granada, Spain
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306-4390, United States
| | - David A Stone
- Iron Shell LLC , Tucson, Arizona 85717, United States
| | - Yoshifumi Tanimoto
- Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi 548-8540, Japan
| | - Noreen L Thomas
- Department of Materials, Loughborough University , Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
20
|
Haudin F, Brasiliense V, Cartwright JHE, Brau F, De Wit A. Genericity of confined chemical garden patterns with regard to changes in the reactants. Phys Chem Chem Phys 2015; 17:12804-11. [DOI: 10.1039/c5cp00068h] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Typical patterns emerging during the growth of chemical gardens in a confined geometry when the concentration of the reactants are changed. These patterns are robust to changes in the reactant ions.
Collapse
Affiliation(s)
- Florence Haudin
- Nonlinear Physical Chemistry Unit
- Faculté des Sciences
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
| | - V. Brasiliense
- Nonlinear Physical Chemistry Unit
- Faculté des Sciences
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
| | | | - Fabian Brau
- Nonlinear Physical Chemistry Unit
- Faculté des Sciences
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
| | - A. De Wit
- Nonlinear Physical Chemistry Unit
- Faculté des Sciences
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
| |
Collapse
|
21
|
Jurado-Sánchez B, Escarpa A, Wang J. Lighting up micromotors with quantum dots for smart chemical sensing. Chem Commun (Camb) 2015; 51:14088-91. [DOI: 10.1039/c5cc04726a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel “on-the-fly” chemical detection strategy based on coupling of the optical properties of QDs and the autonomous movement of micromachines is described.
Collapse
Affiliation(s)
| | - A. Escarpa
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- University of Alcala
- Alcala de Henares E-28871
- Madrid
| | - J. Wang
- Department of NanoEngineering
- University of California
- La Jolla
- USA
| |
Collapse
|
22
|
Abstract
Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space.
Collapse
|
23
|
Batista BC, Cruz P, Steinbock O. From hydrodynamic plumes to chemical gardens: the concentration-dependent onset of tube formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9123-9. [PMID: 25014675 DOI: 10.1021/la5020175] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many inorganic precipitation reactions self-organize macroscopic tubes known as chemical gardens. We study the nonequilibrium formation of these structures by injecting aqueous sodium sulfide solution into a reservoir of iron(II) chloride solution. Our experiments reveal a distinct, concentration-dependent transition from convective plumes of reaction-induced, colloidal particles to mechanically connected, hollow tubes. The transition concentration (0.1 mol/L) is widely independent of the injection rate and causes a discontinuous change from the radius of the plume stalk to the radius of the tube. In addition, tubes have lower growth speeds than plumes. At the transition concentration, one observes the initial formation of a plume followed by the growth of a mechanically weak tube around a jet of upward-moving precipitation particles. We find that the plumes' morphology and geometric scaling are similar to that of laminar starting plumes in nonreactive systems. The characterization of dried tubes by X-ray diffraction indicates the presence of greigite and lepidocrocite.
Collapse
Affiliation(s)
- Bruno C Batista
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306-4390, United States
| | | | | |
Collapse
|