1
|
The Activation Parameters of a Cold-Adapted Short Chain Dehydrogenase Are Insensitive to Enzyme Oligomerization. Biochemistry 2022; 61:514-522. [PMID: 35229609 PMCID: PMC8988307 DOI: 10.1021/acs.biochem.2c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The structural principles
of enzyme cold adaptation are of fundamental
interest both for understanding protein evolution and for biotechnological
applications. It has become clear in recent years that structural
flexibility plays a major role in tuning enzyme activity at low temperatures,
which is reflected by characteristic changes in the thermodynamic
activation parameters for psychrophilic enzymes, compared to those
of mesophilic and thermophilic ones. Hence, increased flexibility
of the enzyme surface has been shown to lead to a lower enthalpy and
a more negative entropy of activation, which leads to higher activity
in the cold. This immediately raises the question of how enzyme oligomerization
affects the temperature dependence of catalysis. Here, we address
this issue by computer simulations of the catalytic reaction of a
cold-adapted bacterial short chain dehydrogenase in different oligomeric
states. Reaction free energy profiles are calculated at different
temperatures for the tetrameric, dimeric, and monomeric states of
the enzyme, and activation parameters are obtained from the corresponding
computational Arrhenius plots. The results show that the activation
free energy, enthalpy, and entropy are remarkably insensitive to the
oligomeric state, leading to the conclusion that assembly of the subunit
interfaces does not compromise cold adaptation, even though the mobilities
of interfacial residues are indeed affected.
Collapse
|
2
|
Adesina AS, Luk LYP, Allemann RK. Cryo-kinetics Reveal Dynamic Effects on the Chemistry of Human Dihydrofolate Reductase. Chembiochem 2021; 22:2410-2414. [PMID: 33876533 PMCID: PMC8360168 DOI: 10.1002/cbic.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/16/2021] [Indexed: 12/03/2022]
Abstract
Effects of isotopic substitution on the rate constants of human dihydrofolate reductase (HsDHFR), an important target for anti-cancer drugs, have not previously been characterized due to its complex fast kinetics. Here, we report the results of cryo-measurements of the kinetics of the HsDHFR catalyzed reaction and the effects of protein motion on catalysis. Isotopic enzyme labeling revealed an enzyme KIE (kHLE /kHHE ) close to unity above 0 °C; however, the enzyme KIE was increased to 1.72±0.15 at -20 °C, indicating that the coupling of protein motions to the chemical step is minimized under optimal conditions but enhanced at non-physiological temperatures. The presented cryogenic approach provides an opportunity to probe the kinetics of mammalian DHFRs, thereby laying the foundation for characterizing their transition state structure.
Collapse
Affiliation(s)
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | | |
Collapse
|
3
|
Mhashal AR, Major DT. Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations. J Phys Chem B 2021; 125:1369-1377. [PMID: 33522797 PMCID: PMC7883348 DOI: 10.1021/acs.jpcb.0c10318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Indexed: 11/28/2022]
Abstract
Calculation of temperature-dependent kinetic isotope effects (KIE) in enzymes presents a significant theoretical challenge. Additionally, it is not trivial to identify enzymes with available experimental accurate intrinsic KIEs in a range of temperatures. In the current work, we present a theoretical study of KIEs in the primitive R67 dihydrofolate reductase (DHFR) enzyme and compare with experimental work. The advantage of R67 DHFR is its significantly lower kinetic complexity compared to more evolved DHFR isoforms. We employ mass-perturbation-based path-integral simulations in conjunction with umbrella sampling and a hybrid quantum mechanics-molecular mechanics Hamiltonian. We obtain temperature-dependent KIEs in good agreement with experiments and ascribe the temperature-dependent KIEs primarily to zero-point energy effects. The active site in the primitive enzyme is found to be poorly preorganized, which allows excessive water access to the active site and results in loosely bound reacting ligands.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
4
|
Maffucci I, Laage D, Sterpone F, Stirnemann G. Thermal Adaptation of Enzymes: Impacts of Conformational Shifts on Catalytic Activation Energy and Optimum Temperature. Chemistry 2020; 26:10045-10056. [DOI: 10.1002/chem.202001973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Irene Maffucci
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
- Present address: Centre de recherche Royallieu Université de Technologie de Compiègne, UPJV CNRS, Enzyme and Cell Engineering CS 60319-60203 Compiègne Cedex France
| | - Damien Laage
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
5
|
Ju M, Wang X, Long X, Yang S. Recent advances in transition metal based compound catalysts for water splitting from the perspective of crystal engineering. CrystEngComm 2020. [DOI: 10.1039/c9ce01533g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A review of the recent progress on the transition metal based catalysts for water splitting with emphasis on crystal engineering.
Collapse
Affiliation(s)
- Min Ju
- Guangdong Key Lab of Nano-Micro Material Research
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xiaoting Wang
- Guangdong Key Lab of Nano-Micro Material Research
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xia Long
- Guangdong Key Lab of Nano-Micro Material Research
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|
6
|
Maffucci I, Laage D, Stirnemann G, Sterpone F. Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes. Phys Chem Chem Phys 2020; 22:18361-18373. [DOI: 10.1039/d0cp02738c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The thermal resistance of two homolog enzymes is investigated, with an emphasis on their local stability and flexibility, and on the possible implications regarding their reactivity.
Collapse
Affiliation(s)
- Irene Maffucci
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Damien Laage
- PASTEUR
- Département de chimie
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| |
Collapse
|
7
|
Scott AF, Luk LY, Tuñón I, Moliner V, Allemann RK. Heavy Enzymes and the Rational Redesign of Protein Catalysts. Chembiochem 2019; 20:2807-2812. [PMID: 31016852 PMCID: PMC6900096 DOI: 10.1002/cbic.201900134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 11/21/2022]
Abstract
An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled "heavy" dihydrofolate reductases and their natural-abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present as hotspots for mutagenesis. Detailed understanding of the biophysics of enzyme catalysis based on insights gained from analysis of "heavy" enzymes might eventually allow routine engineering of enzymes to catalyse reactions of choice.
Collapse
Affiliation(s)
- Alan F. Scott
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Louis Y.‐P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Iñaki Tuñón
- Departament de Química FísicaUniversitat de Valencia46100BurjassotSpain
| | - Vicent Moliner
- Department of Physical and Analytical ChemistryUniversitat Jaume IAvenida de Vicent Sos Baynat, s/n12071CastellonSpain
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
8
|
Crystal Structure and Biophysical Analysis of Furfural-Detoxifying Aldehyde Reductase from Clostridium beijerinckii. Appl Environ Microbiol 2019; 85:AEM.00978-19. [PMID: 31101612 DOI: 10.1128/aem.00978-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Many aldehydes, such as furfural, are present in high quantities in lignocellulose lysates and are fermentation inhibitors, which makes biofuel production from this abundant carbon source extremely challenging. Cbei_3974 has recently been identified as an aldo-keto reductase responsible for partial furfural resistance in Clostridium beijerinckii Rational engineering of this enzyme could enhance the furfural tolerance of this organism, thereby improving biofuel yields. We report an extensive characterization of Cbei_3974 and a single-crystal X-ray structure of Cbei_3974 in complex with NADPH at a resolution of 1.75 Å. Docking studies identified residues involved in substrate binding, and an activity screen revealed the substrate tolerance of the enzyme. Hydride transfer, which is partially rate limiting under physiological conditions, occurs from the pro-R hydrogen of NADPH. Enzyme isotope labeling revealed a temperature-independent enzyme isotope effect of unity, indicating that the enzyme does not use dynamic coupling for catalysis and suggesting that the active site of the enzyme is optimally configured for catalysis with the substrate tested.IMPORTANCE Here we report the crystal structure and biophysical properties of an aldehyde reductase that can detoxify furfural, a common inhibitor of biofuel fermentation found in lignocellulose lysates. The data contained here will serve as a guide for protein engineers to develop improved enzyme variants that would impart furfural resistance to the microorganisms used in biofuel production and thus lead to enhanced biofuel yields from this sustainable resource.
Collapse
|
9
|
Ruiz-Pernía JJ, Tuñón I, Moliner V, Allemann RK. Why are some Enzymes Dimers? Flexibility and Catalysis in Thermotoga Maritima Dihydrofolate Reductase. ACS Catal 2019; 9:5902-5911. [PMID: 31289693 PMCID: PMC6614790 DOI: 10.1021/acscatal.9b01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Dihydrofolate
reductase from Thermotoga maritima (TmDFHFR) is a
dimeric thermophilic enzyme that catalyzes the hydride
transfer from the cofactor NADPH to dihydrofolate less efficiently
than other DHFR enzymes, such as the mesophilic analogue Escherichia
coli DHFR (EcDHFR). Using QM/MM potentials, we show that
the reduced catalytic efficiency of TmDHFR is most likely due to differences
in the amino acid sequence that stabilize the M20 loop in an open
conformation, which prevents the formation of some interactions in
the transition state and increases the number of water molecules in
the active site. However, dimerization provides two advantages to
the thermophilic enzyme: it protects its structure against denaturation
by reducing thermal fluctuations and it provides a less negative activation
entropy, toning down the increase of the activation free energy with
temperature. Our molecular picture is confirmed by the analysis of
the temperature dependence of enzyme kinetic isotope effects in different
DHFR enzymes.
Collapse
Affiliation(s)
- J. Javier Ruiz-Pernía
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Vicent Moliner
- Departamento de Química Física y Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
10
|
Behiry EM, Ruiz-Pernia JJ, Luk L, Tuñón I, Moliner V, Allemann RK. Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Enas M. Behiry
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | | | - Louis Luk
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | - Iñaki Tuñón
- Departament de Química Física; Universitat de València; 46100 Burjassot Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica; Universitat Jaume I; 12071 Castelló Spain
| | | |
Collapse
|
11
|
Behiry EM, Ruiz‐Pernia JJ, Luk L, Tuñón I, Moliner V, Allemann RK. Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State. Angew Chem Int Ed Engl 2018; 57:3128-3131. [PMID: 29341402 PMCID: PMC5861672 DOI: 10.1002/anie.201712826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/10/2022]
Abstract
The origin of substrate preference in promiscuous enzymes was investigated by enzyme isotope labelling of the alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH). At physiological temperature, protein dynamic coupling to the reaction coordinate was insignificant. However, the extent of dynamic coupling was highly substrate-dependent at lower temperatures. For benzyl alcohol, an enzyme isotope effect larger than unity was observed, whereas the enzyme isotope effect was close to unity for isopropanol. Frequency motion analysis on the transition states revealed that residues surrounding the active site undergo substantial displacement during catalysis for sterically bulky alcohols. BsADH prefers smaller substrates, which cause less protein friction along the reaction coordinate and reduced frequencies of dynamic recrossing. This hypothesis allows a prediction of the trend of enzyme isotope effects for a wide variety of substrates.
Collapse
Affiliation(s)
- Enas M. Behiry
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | | | - Louis Luk
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Iñaki Tuñón
- Departament de Química FísicaUniversitat de València46100BurjassotSpain
| | - Vicent Moliner
- Departament de Química Física i AnalíticaUniversitat Jaume I12071CastellóSpain
| | | |
Collapse
|
12
|
Ranasinghe C, Guo Q, Sapienza PJ, Lee AL, Quinn DM, Cheatum CM, Kohen A. Protein Mass Effects on Formate Dehydrogenase. J Am Chem Soc 2017; 139:17405-17413. [PMID: 29083897 PMCID: PMC5800309 DOI: 10.1021/jacs.7b08359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isotopically labeled enzymes (denoted as "heavy" or "Born-Oppenheimer" enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein's higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intrinsic kinetic isotope effects of the enzyme formate dehydrogenase is used to examine the distribution of H-donor to H-acceptor distance as a function of the protein's mass. The protein dynamics are altered in the heavy enzyme to diminish motions that determine the transition state sampling in the native enzyme, in accordance with a Born-Oppenheimer-like effect on bond activation. Findings of this work suggest components related to fast frequencies that can be explained by Born-Oppenheimer enzyme hypothesis (vibrational) and also slower time scale events that are non-Born-Oppenheimer in nature (electrostatic), based on evaluations of protein mass dependence of donor-acceptor distance and forward commitment to catalysis along with steady state and single turnover measurements. Together, the findings suggest that the mass modulation affected both local, fast, protein vibrations associated with the catalyzed chemistry and the protein's macromolecular electrostatics at slower time scales; that is, both Born-Oppenheimer and non-Born-Oppenheimer effects are observed. Comparison to previous studies leads to the conclusion that isotopic labeling of the protein may have different effects on different systems, however, making heavy enzyme studies a very exciting technique for exploring the dynamics link to catalysis in proteins.
Collapse
Affiliation(s)
- Chethya Ranasinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Qi Guo
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel M. Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| |
Collapse
|
13
|
Abstract
Enzyme isotope effects, or the kinetic effects of "heavy" enzymes, refer to the effect of isotopically labeled protein residues on the enzyme's activity or physical properties. These effects are increasingly employed in the examination of the possible contributions of protein dynamics to enzyme catalysis. One hypothesis assumed that isotopic substitution of all 12C, 14N, and nonexchangeable 1H by 13C, 15N, and 2H, would slow down protein picosecond to femtosecond dynamics without any effect on the system's electrostatics following the Born-Oppenheimer approximation. It was suggested that reduced reaction rates reported for several "heavy" enzymes accords with that hypothesis. However, numerous deviations from the predictions of that hypothesis were also reported. Current studies also attempt to test the role of individual residues by site-specific labeling or by labeling a pattern of residues on activity. It appears that in several systems the protein's fast dynamics are indeed reduced in "heavy" enzymes in a way that reduces the probability of barrier crossing of its chemical step. Other observations, however, indicated that slower protein dynamics are electrostatically altered in isotopically labeled enzymes. Interestingly, these effects appear to be system dependent, thus it might be premature to suggest a general role of "heavy" enzymes' effect on catalysis.
Collapse
|
14
|
Halophilic mechanism of the enzymatic function of a moderately halophilic dihydrofolate reductase from Haloarcula japonica strain TR-1. Extremophiles 2017; 21:591-602. [PMID: 28349498 DOI: 10.1007/s00792-017-0928-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Dihydrofolate (DHF) reductase coded by a plasmid of the extremely halophilic archaeon Haloarcula japonica strain TR-1 (HjDHFR P1) shows moderate halophilicity on enzymatic activity at pH 6.0, although there is no significant effect of NaCl on its secondary structure. To elucidate the salt-activation and -inactivation mechanisms of this enzyme, we investigated the effects of pH and salt concentration, deuterium isotope effect, steady-state kinetics, and rapid-phase ligand-binding kinetics. Enzyme activity was increased eightfold by the addition of 500 mM NaCl at pH 6.0, fourfold by 250 mM at pH 8.0, and became independent of salt concentration at pH 10.0. Full isotope effects observed at pH 10.0 under 0-1000 mM NaCl indicated that the rate of hydride transfer, which was the rate-determining step at the basic pH region, was independent of salt concentration. Conversely, rapid-phase ligand-binding experiments showed that the amplitude of the DHF-binding reaction increased and the tetrahydrofolate (THF)-releasing rate decreased with increasing NaCl concentration. These results suggested that the salt-activation mechanism of HjDHFR P1 is via the population change of the anion-unbound and anion-bound conformers, which are binding-incompetent and -competent conformations for DHF, respectively, while that of salt inactivation is via deceleration of the THF-releasing rate, which is the rate-determining step at the neutral pH region.
Collapse
|
15
|
Luk LYP, Loveridge EJ, Allemann RK. Protein motions and dynamic effects in enzyme catalysis. Phys Chem Chem Phys 2016; 17:30817-27. [PMID: 25854702 DOI: 10.1039/c5cp00794a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
16
|
Ruiz-Pernía JJ, Behiry E, Luk LYP, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Minimization of dynamic effects in the evolution of dihydrofolate reductase. Chem Sci 2016; 7:3248-3255. [PMID: 29997817 PMCID: PMC6006479 DOI: 10.1039/c5sc04209g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Protein isotope labeling is a powerful technique to probe functionally important motions in enzyme catalysis and can be applied to investigate the conformational dynamics of proteins. Previous investigations have indicated that dynamic coupling is detrimental to catalysis by dihydrofolate reductase (DHFR) from the mesophile Escherichia coli (EcDHFR). Comparison of DHFRs from organisms adapted to survive at a wide range of temperatures suggests that dynamic coupling in DHFR catalysis has been minimized during evolution; it arises from reorganizational motions needed to facilitate charge transfer events. Contrary to the behaviour observed for the DHFR from the moderate thermophile Geobacillus stearothermophilus (BsDHFR), the chemical transformation catalyzed by the cold-adapted bacterium Moritella profunda (MpDHFR) is only weakly affected by protein isotope substitutions at low temperatures, but the isotopically substituted enzyme is a substantially inferior catalyst at higher, non-physiological temperatures. QM/MM studies revealed that this behaviour is caused by the enzyme's structural sensitivity to temperature changes, which enhances unfavorable dynamic coupling at higher temperatures by promoting additional recrossing trajectories on the transition state dividing surface. We postulate that these motions are minimized by fine-tuning DHFR flexibility through optimization of the free energy surface of the reaction, such that a nearly static reaction-ready configuration with optimal electrostatic properties is maintained under physiological conditions.
Collapse
Affiliation(s)
- J Javier Ruiz-Pernía
- Departament de Química Física i Analítica , Universitat Jaume I , 12071 Castelló , Spain .
| | - Enas Behiry
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - Louis Y P Luk
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - E Joel Loveridge
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - Iñaki Tuñón
- Departament de Química Física , Universitat de València , 46100 Burjassot , Spain .
| | - Vicent Moliner
- Departament de Química Física i Analítica , Universitat Jaume I , 12071 Castelló , Spain .
| | - Rudolf K Allemann
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| |
Collapse
|
17
|
Katava M, Kalimeri M, Stirnemann G, Sterpone F. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J Phys Chem B 2016; 120:2721-30. [DOI: 10.1021/acs.jpcb.6b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Katava
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Department
of Physics, Tampere University of Technology, Tampere, Finland
| | - Guillaume Stirnemann
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
18
|
Pinpointing dynamic coupling in enzymes for efficient drug design. Future Sci OA 2016; 2:FSO95. [PMID: 28031945 PMCID: PMC5137909 DOI: 10.4155/fsoa.2015.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
|
19
|
Luk LYP, Ruiz-Pernía JJ, Adesina AS, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase. Angew Chem Int Ed Engl 2015; 54:9016-20. [PMID: 26079622 PMCID: PMC4985705 DOI: 10.1002/anie.201503968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 11/21/2022]
Abstract
Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (UK)
| | - J Javier Ruiz-Pernía
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló (Spain)
| | | | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (UK)
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot (Spain).
| | - Vincent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló (Spain).
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (UK).
| |
Collapse
|
20
|
Luk LYP, Ruiz-Pernía JJ, Adesina AS, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Abstract
![]()
The active
site of an enzyme is surrounded by a fluctuating environment of protein
and solvent conformational states, and a realistic calculation of
chemical reaction rates and kinetic isotope effects of enzyme-catalyzed
reactions must take account of this environmental diversity. Ensemble-averaged
variational transition state theory with multidimensional tunneling
(EA-VTST/MT) was developed as a way to carry out such calculations.
This theory incorporates ensemble averaging, quantized vibrational
energies, energy, tunneling, and recrossing of transition state dividing
surfaces in a systematic way. It has been applied successfully to
a number of hydrogen-, proton-, and hydride-transfer reactions. The
theory also exposes the set of effects that should be considered in
reliable rate constants calculations. We first review the basic
theory and the steps in the calculation. A key role is played by the
generalized free energy of activation profile, which is obtained by
quantizing the classical potential of mean force as a function of
a reaction coordinate because the one-way flux through the transition
state dividing surface can be written in terms of the generalized
free energy of activation. A recrossing transmission coefficient accounts
for the difference between the one-way flux through the chosen transition
state dividing surface and the net flux, and a tunneling transmission
coefficient converts classical motion along the reaction coordinate
to quantum mechanical motion. The tunneling calculation is multidimensional,
accounting for the change in vibrational frequencies along the tunneling
path and shortening of the tunneling path with respect to the minimum
energy path (MEP), as promoted by reaction-path curvature. The generalized
free energy of activation and the transmission coefficients both involve
averaging over an ensemble of reaction paths and conformations, and
this includes the coupling of protein motions to the rearrangement
of chemical bonds in a statistical mechanically correct way. The standard
deviations of the transmissions coefficients provide information on
the diversity of the distribution of reaction paths, barriers, and
protein conformations along the members of an ensemble of reaction
paths passing through the transition state. We first illustrate
the theory by discussing the application to both wild-type and mutant Escherichia coli dihydrofolate reductase and hyperthermophilic Thermotoga maritima dihydrofolate reductase (DHFR); DHFR
is of special interest because the protein conformational changes
have been widely studied. Then we present shorter discussions of several
other applications of EA-VTST/MT to transfer of protons, hydrogen
atoms, and hydride ions and their deuterated analogs. Systems discussed
include hydride transfer in alcohol dehydrogenase, xylose isomerase,
and thymidylate synthase, proton transfer in methylamine dehydrogenase,
hydrogen atom transfer in methylmalonyl-CoA mutase, and nucleophilic
substitution in haloalkane dehalogenase and two-dimensional potentials
of mean force for potentially coupled proton and hydride transfer
in the β-oxidation of butyryl-coenzyme A catalyzed by short-chain
acyl-CoA dehydrogenase and in the pyruvate to lactate transformation
catalyzed by lactate dehydrogenase.
Collapse
Affiliation(s)
- Laura Masgrau
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
22
|
Johannissen LO, Hay S, Scrutton NS. Nuclear quantum tunnelling in enzymatic reactions – an enzymologist's perspective. Phys Chem Chem Phys 2015; 17:30775-82. [DOI: 10.1039/c5cp00614g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The roles of nuclear quantum tunnelling and dynamics in enzyme reactions are discussed in this perspective on H-transfer reactions.
Collapse
Affiliation(s)
- Linus O. Johannissen
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| | - Sam Hay
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| | - Nigel S. Scrutton
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| |
Collapse
|
23
|
Luk LYP, Ruiz-Pernía JJ, Dawson WM, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant. J Am Chem Soc 2014; 136:17317-23. [PMID: 25396728 DOI: 10.1021/ja5102536] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Catalysis by dihydrofolate reductase from the moderately thermophilic bacterium Geobacillus stearothermophilus (BsDHFR) was investigated by isotope substitution of the enzyme. The enzyme kinetic isotope effect for hydride transfer was close to unity at physiological temperatures but increased with decreasing temperatures to a value of 1.65 at 5 °C. This behavior is opposite to that observed for DHFR from Escherichia coli (EcDHFR), where the enzyme kinetic isotope effect increased slightly with increasing temperature. These experimental results were reproduced in the framework of variational transition-state theory that includes a dynamical recrossing coefficient that varies with the mass of the protein. Our simulations indicate that BsDHFR has greater flexibility than EcDHFR on the ps-ns time scale, which affects the coupling of the environmental motions of the protein to the chemical coordinate and consequently to the recrossing trajectories on the reaction barrier. The intensity of the dynamic coupling in DHFRs is influenced by compensatory temperature-dependent factors, namely the enthalpic barrier needed to achieve an ideal transition-state configuration with minimal nonproductive trajectories and the protein disorder that disrupts the electrostatic preorganization required to stabilize the transition state. Together with our previous studies of other DHFRs, the results presented here provide a general explanation why protein dynamic effects vary between enzymes. Our theoretical treatment demonstrates that these effects can be satisfactorily reproduced by including a transmission coefficient in the rate constant calculation, whose dependence on temperature is affected by the protein flexibility.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry and ∥Cardiff Catalysis Institute, School of Chemistry, Cardiff University , Park Place, Cardiff, CF10 3AT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|