1
|
Catania R, Heath GR, Rappolt M, Muench SP, Beales PA, Jeuken LJC. Solid-supported polymer-lipid hybrid membrane for bioelectrochemistry of a membrane redox enzyme. RSC APPLIED INTERFACES 2025:d4lf00362d. [PMID: 39980607 PMCID: PMC11834424 DOI: 10.1039/d4lf00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Hybrid membranes, consisting of phospholipids and amphiphilic block polymers, offer enhanced stability compared to liposomes and greater biocompatibility than polymersomes. These qualities make them a versatile platform for a wide range of applications across various fields. In this study, we have investigated the ability of solid-supported polymer-lipid hybrid membranes (SSHM) to act as a platform for bioelectrochemistry of membrane proteins. The redox enzyme, cytochrome bo 3 (cyt bo 3 ), a terminal oxidase in Escherichia coli, was reconstituted into hybrid vesicles (HVs), which were subsequently tested for their ability to form SSHMs on different self-assembled monolayers (SAMs) on gold electrodes. SSHM formation was monitored with electrochemical impedance spectroscopy (EIS), quartz crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). SSHMs were successfully formed on gold electrodes with mixed SAMs of 6-mercapto-1-hexanol and 1-hexanethiol at a 1 : 1 ratio. The activity of cyt bo 3 was confirmed using cyclic voltammetry (CV), with electron transfer to cyt bo 3 mediated by a lipophilic substrate-analogue decylubiquinone (DQ). SSHMs formed with HVs-cyt bo 3 samples, stored for more than one year before use, remain bioelectrocatalytically active, confirming our previously established longevity and stability of HV systems.
Collapse
Affiliation(s)
- Rosa Catania
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - George R Heath
- Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds Leeds LS2 9JT UK
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT UK
| | - Paul A Beales
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
2
|
Kambar N, Go YK, Snyder C, Do MN, Leal C. Structural characterization of lateral phase separation in polymer-lipid hybrid membranes. Methods Enzymol 2024; 700:235-273. [PMID: 38971602 DOI: 10.1016/bs.mie.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Hierarchic self-assembly is the main mechanism used to create diverse structures using soft materials. This is a case for both synthetic materials and biomolecular systems, as exemplified by the non-covalent organization of lipids into membranes. In nature, lipids often assemble into single bilayers, but other nanostructures are encountered, such as bilayer stacks and tubular and vesicular aggregates. Synthetic block copolymers can be engineered to recapitulate many of the structures, forms, and functions of lipid systems. When block copolymers are amphiphilic, they can be inserted or co-assembled into hybrid membranes that exhibit synergistic structural, permeability, and mechanical properties. One example is the emergence of lateral phase separation akin to the raft formation in biomembranes. When higher-order structures, such as hybrid membranes, are formed, this lateral phase separation can be correlated across membranes in the stack. This chapter outlines a set of important methods, such as X-ray Scattering, Atomic Force Microscopy, and Cryo-Electron Microscopy, that are relevant to characterizing and evaluating lateral and correlated phase separation in hybrid membranes at the nano and mesoscales. Understanding the phase behavior of polymer-lipid hybrid materials could lead to innovative advancements in biomimetic membrane separation systems.
Collapse
Affiliation(s)
- Nurila Kambar
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yoo Kyung Go
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Corey Snyder
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Minh N Do
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
3
|
Anosov A, Astanina P, Proskuryakov I, Koplak O, Morgunov R. Surface and Structure of Phosphatidylcholine Membranes Reconstructed with CoFe 2O 4 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14517-14526. [PMID: 36383134 DOI: 10.1021/acs.langmuir.2c02659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Structural changes in phosphatidylcholine lipid membranes caused by the introduction of insoluble CoFe2O4 nanoparticles (NPs) are analyzed. Changes in nuclear magnetic resonance spectrum, infrared spectrum, and ionic conductivity of membranes are observed with the addition of NPs. The presence of NPs in membranes is proved by atomic force and magnetic force microscopy. Structural changes in the membranes in the vicinity of the lipid C-O bonds caused by NPs are observed by Scanning near-field optical microscopy. Analysis of nuclear magnetic resonance (NMR) spectra allowed us to identify the affected atomic groups in the membrane surface layers. Conductivity measurements of the bilayer membranes were performed in DC as well as in time-resolved modes. Hydrophobic NPs stimulate surface distortion and creation of pores, which depending on NP concentration leads to an increase in the ionic conductivity of membranes. Concentration dependence demonstrating percolation threshold was analyzed in the frame of the fractal theory approach.
Collapse
Affiliation(s)
- Andrey Anosov
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Polina Astanina
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Ivan Proskuryakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia
| | - Oksana Koplak
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Roman Morgunov
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| |
Collapse
|
4
|
Koner S, Tawfik J, Mashali F, Kennison KB, McClintic WT, Heberle FA, Tu YM, Kumar M, Sarles SA. Homogeneous hybrid droplet interface bilayers assembled from binary mixtures of DPhPC phospholipids and PB-b-PEO diblock copolymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183997. [PMID: 35718208 DOI: 10.1016/j.bbamem.2022.183997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Hybrid membranes built from phospholipids and amphiphilic block copolymers seek to capitalize on the benefits of both constituents for constructing biomimetic interfaces with improved performance. However, hybrid membranes have not been formed or studied using the droplet interface bilayer (DIB) method, an approach that offers advantages for revealing nanoscale changes in membrane structure and mechanics and offers a path toward assembling higher-order tissues. We report on hybrid droplet interface bilayers (hDIBs) formed in hexadecane from binary mixtures of synthetic diphytanoyl phosphatidylcholine (DPhPC) lipids and low molecular weight 1,2 polybutadiene-b-polyethylene oxide (PBPEO) amphiphilic block copolymers and use electrophysiology measurements and imaging to assess the effects of PBPEO in the membrane. This work reveals that hDIBs containing up to 15 mol% PBPEO plus DPhPC are homogeneously mixtures of lipids and polymers, remain highly resistive to ion transport, and are stable-including under applied voltage. Moreover, they exhibit hydrophobic thicknesses similar to DPhPC-only bilayers, but also have significantly lower values of membrane tension. These characteristics coincide with reduced energy of adhesion between droplets and the formation of alamethicin ion channels at significantly lower threshold voltages, demonstrating that even moderate amounts of amphiphilic block copolymers in a lipid bilayer provide a route for tuning the physical properties of a biomimetic membrane.
Collapse
Affiliation(s)
- Subhadeep Koner
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Joseph Tawfik
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Farzin Mashali
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kristen B Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Yu-Ming Tu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Sarles
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Goodband R, Bain CD, Staykova M. Comparative Study of Lipid- and Polymer-Supported Membranes Obtained by Vesicle Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5674-5681. [PMID: 35471971 PMCID: PMC9097520 DOI: 10.1021/acs.langmuir.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
We compare the fusion of giant lipid and block-copolymer vesicles on glass and poly(dimethylsiloxane) substrates. Both types of vesicles are similar in their ability to fuse to hydrophilic substrates and form patches with distinct heart or circular shapes. We use epifluorescence/confocal microscopy and atomic force microscopy on membrane patches to (i) characterize bilayer fluidity and patch-edge stability and (ii) follow the intermediate stages in the formation of continuous supported bilayers. Polymer membranes show much lower membrane fluidity and, unlike lipids, an inability of adjacent patches to fuse spontaneously into continuous membranes. We ascribe this effect to hydration repulsion forces acting between the patch edges, which can be diminished by increasing the sample temperature. We show that large areas of supported polymer membranes can be created by fusing giant vesicles on glass or poly(dimethylsiloxane) substrates and annealing their edges.
Collapse
Affiliation(s)
| | - Colin D. Bain
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | | |
Collapse
|
6
|
Cai N, Lai ACK, Liao K, Corridon PR, Graves DJ, Chan V. Recent Advances in Fluorescence Recovery after Photobleaching for Decoupling Transport and Kinetics of Biomacromolecules in Cellular Physiology. Polymers (Basel) 2022; 14:1913. [PMID: 35567083 PMCID: PMC9105003 DOI: 10.3390/polym14091913] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Among the new molecular tools available to scientists and engineers, some of the most useful include fluorescently tagged biomolecules. Tools, such as green fluorescence protein (GFP), have been applied to perform semi-quantitative studies on biological signal transduction and cellular structural dynamics involved in the physiology of healthy and disease states. Such studies focus on drug pharmacokinetics, receptor-mediated endocytosis, nuclear mechanobiology, viral infections, and cancer metastasis. In 1976, fluorescence recovery after photobleaching (FRAP), which involves the monitoring of fluorescence emission recovery within a photobleached spot, was developed. FRAP allowed investigators to probe two-dimensional (2D) diffusion of fluorescently-labelled biomolecules. Since then, FRAP has been refined through the advancements of optics, charged-coupled-device (CCD) cameras, confocal microscopes, and molecular probes. FRAP is now a highly quantitative tool used for transport and kinetic studies in the cytosol, organelles, and membrane of a cell. In this work, the authors intend to provide a review of recent advances in FRAP. The authors include epifluorescence spot FRAP, total internal reflection (TIR)/FRAP, and confocal microscope-based FRAP. The underlying mathematical models are also described. Finally, our understanding of coupled transport and kinetics as determined by FRAP will be discussed and the potential for future advances suggested.
Collapse
Affiliation(s)
- Ning Cai
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Wuhan 430073, China;
| | - Alvin Chi-Keung Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China;
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Peter R. Corridon
- Department of Physiology and Immunology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - David J. Graves
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
7
|
Abstract
Hierarchic self-assembly underpins much of the form and function seen in synthetic or biological soft materials. Lipids are paramount examples, building themselves in nature or synthetically in a variety of meso/nanostructures. Synthetic block copolymers capture many of lipid's structural and functional properties. Lipids are typically biocompatible and high molecular weight polymers are mechanically robust and chemically versatile. The development of new materials for applications like controlled drug/gene/protein delivery, biosensors, and artificial cells often requires the combination of lipids and polymers. The emergent composite material, a "polymer-lipid hybrid membrane", displays synergistic properties not seen in pure components. Specific examples include the observation that hybrid membranes undergo lateral phase separation that can correlate in registry across multiple layers into a three-dimensional phase-separated system with enhanced permeability of encapsulated drugs. It is timely to underpin these emergent properties in several categories of hybrid systems ranging from colloidal suspensions to supported hybrid films. In this review, we discuss the form and function of a vast number of polymer-lipid hybrid systems published to date. We rationalize the results to raise new fundamental understanding of hybrid self-assembling soft materials as well as to enable the design of new supramolecular systems and applications.
Collapse
Affiliation(s)
- Yoo Kyung Go
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Manzer ZA, Ghosh S, Jacobs ML, Krishnan S, Zipfel WR, Piñeros M, Kamat NP, Daniel S. Cell-Free Synthesis of a Transmembrane Mechanosensitive Channel Protein into a Hybrid-Supported Lipid Bilayer. ACS APPLIED BIO MATERIALS 2021; 4:3101-3112. [DOI: 10.1021/acsabm.0c01482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zachary A. Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Surajit Ghosh
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Miranda L. Jacobs
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Warren R. Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Miguel Piñeros
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, United States
- Boyce Thompson Institute, Ithaca, New York 14853, United States
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture—Agricultural Research Service, Ithaca, New York 14853, United States
| | - Neha P. Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. NANOSCALE HORIZONS 2021; 6:78-94. [PMID: 33400747 DOI: 10.1039/d0nh00605j] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liposomes are a unique platform for drug delivery, and a number of liposomal formulations have already been commercialized. Doxil is a representative example, which uses PEGylated liposomes to load doxorubicin for cancer therapy. Its delivery relies on the enhanced permeability and retention (EPR) effect or passive targeting. Drug loading can be achieved using both standard liposomes and also those containing a solid core such as mesoporous silica and poly(lactide-co-glycolide) (PLGA). Developments have also been made on active targeted delivery using bioaffinity ligands such as small molecules, antibodies, peptides and aptamers. Compared to other types of nanoparticles, the surface of liposomes is fluid, allowing dynamic organization of targeting ligands to achieve optimal binding to cell surface receptors. This review article summarizes development of liposomal targeted drug delivery systems, with an emphasis on the biophysical properties of lipids. In both passive and active targeting, the effects of liposome size, charge, fluidity, rigidity, head-group chemistry and PEGylation are discussed along with recent examples. Most of the examples are focused on targeting tumors or cancer cells. Finally, a few examples of commercialized formulations are described, and some future research opportunities are discussed.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | |
Collapse
|
10
|
Balestri A, Chiappisi L, Montis C, Micciulla S, Lonetti B, Berti D. Organized Hybrid Molecular Films from Natural Phospholipids and Synthetic Block Copolymers: A Physicochemical Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10941-10951. [PMID: 32852955 DOI: 10.1021/acs.langmuir.0c01544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the last few years, hybrid lipid-copolymer assemblies have attracted increasing attention as possible two-dimensional (2D) membrane platforms, combining the biorelevance of the lipid building blocks with the stability and chemical tunability of copolymers. The relevance of these systems varies from fundamental studies on biological membrane-related phenomena to the construction of 2D complex devices for material science and biosensor technology. Both the fundamental understanding and the application of hybrid lipid-copolymer-supported bilayers require thorough physicochemical comprehension and structural control. Herein, we report a comprehensive physicochemical and structural characterization of hybrid monolayers at the air/water interface and of solid-supported hybrid membranes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the block copolymer poly(butadiene-b-ethyleneoxide) (PBD-b-PEO). Hybrid lipid-copolymer supported bilayers (HSLBs) with variable copolymer contents were prepared through spontaneous rupture and fusion of hybrid vesicles onto a hydrophilic substrate. The properties of the thin films and the parent vesicles were probed through dynamic light scattering (DLS), differential scanning calorimetry (DSC), optical ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and confocal scanning laser microscopy (CSLM). Stable, hybrid lipid/copolymer systems were obtained for a copolymer content of 10-65 mol %. In particular, DSC and CSLM show lateral phase separation in these hybrid systems. These results improve our fundamental understanding of HSLBs, which is necessary for future applications of hybrid systems as biomimetic membranes or as drug delivery systems, with additional properties with respect to phospholipid liposomes.
Collapse
Affiliation(s)
- Arianna Balestri
- Department of Chemistry "Ugo Schiff" and CSGI, via della Lastruccia 3-13, 50019 Florence, Italy
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | | | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, via della Lastruccia 3-13, 50019 Florence, Italy
| | | | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III- Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, Cedex 9, France
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, via della Lastruccia 3-13, 50019 Florence, Italy
| |
Collapse
|
11
|
Bello G, Cavallini F, Dailey LA, Ehmoser EK. Supported polymer/lipid hybrid bilayers formation resembles a lipid-like dynamic by reducing the molecular weight of the polymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183472. [PMID: 32941874 DOI: 10.1016/j.bbamem.2020.183472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Amphiphilic block copolymers form self-assembled bilayers even in combination with phospholipids. They represent an attractive alternative to native lipid-based membrane systems for supported bilayer formation with applications in biomedical research, sensoring and drug delivery. Their enhanced stability and excellent mechanical properties are linked to their higher molecular weight which generates thicker bilayers. Hypothesis: It is hypothesized that reducing the molecular weight of the polymer facilitates the formation of a thinner, more homogeneous polymer/lipid hybrid bilayer which would benefit the formation of supported bilayers on silicon oxide. Experiment: We investigated hybrid bilayers composed of mixtures of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and increasing amounts of a low molecular weight polybutadiene-b-polyethylene oxide copolymer (1050 g/mol). By assessing the bilayer thickness and the molecular packing behavior we sought to demonstrate how reducing the polymer molecular weight increases the tendency to form supported hybrid bilayers in a lipid-like manner. Findings: The formation of a supported hybrid bilayers occurs at polymer contents <70 mol% in a lipid-like fashion and is proportional to the cohesive forces between the bilayer components and inversely related to the bilayer hydrophobic core thickness and the extended brush regime of the PEGylated polymeric headgroup.
Collapse
Affiliation(s)
- Gianluca Bello
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria.
| | - Francesca Cavallini
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, via Torino 155, 30172 Mestre-Venezia, (Italy)
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Eva-Kathrin Ehmoser
- Department of Nanobiotechnology, Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Science (BOKU), Muthgasse 11/2 OG, 1190 Vienna, (Austria).
| |
Collapse
|
12
|
Go YK, Kambar N, Leal C. Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains. Polymers (Basel) 2020; 12:E1232. [PMID: 32485809 PMCID: PMC7362021 DOI: 10.3390/polym12061232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL-BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-b-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane.
Collapse
Affiliation(s)
| | | | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, IL 61801, USA; (Y.K.G.); (N.K.)
| |
Collapse
|
13
|
Di Leone S, Avsar SY, Belluati A, Wehr R, Palivan CG, Meier W. Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome c Interaction and Peroxidase-like Activity. J Phys Chem B 2020; 124:4454-4465. [DOI: 10.1021/acs.jpcb.0c02727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andrea Belluati
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Riccardo Wehr
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
14
|
Hybrid Lipid-Polymer Bilayers: pH-Mediated Interactions between Hybrid Vesicles and Glass. Polymers (Basel) 2020; 12:polym12040745. [PMID: 32231031 PMCID: PMC7240632 DOI: 10.3390/polym12040745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/03/2023] Open
Abstract
One practical approach towards robust and stable biomimetic platforms is to generate hybrid bilayers that incorporate both lipids and block co-polymer amphiphiles. The currently limited number of reports on the interaction of glass surfaces with hybrid lipid and polymer vesicles—DOPC mixed with amphiphilic poly(ethylene oxide-b-butadiene) (PEO-PBd)—describe substantially different conclusions under very similar conditions (i.e., same pH). In this study, we varied vesicle composition and solution pH in order to generate a broader picture of spontaneous hybrid lipid/polymer vesicle interactions with rigid supports. Using quartz crystal microbalance with dissipation (QCM-D), we followed the interaction of hybrid lipid-polymer vesicles with borosilicate glass as a function of pH. We found pH-dependent adsorption/fusion of hybrid vesicles that accounts for some of the contradictory results observed in previous studies. Our results show that the formation of hybrid lipid-polymer bilayers is highly pH dependent and indicate that the interaction between glass surfaces and hybrid DOPC/PEO-PBd can be tuned with pH.
Collapse
|
15
|
Khan S, McCabe J, Hill K, Beales PA. Biodegradable hybrid block copolymer – lipid vesicles as potential drug delivery systems. J Colloid Interface Sci 2020; 562:418-428. [DOI: 10.1016/j.jcis.2019.11.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022]
|
16
|
Czernohlavek C, Schuster B. Formation and characteristics of mixed lipid/polymer membranes on a crystalline surface-layer protein lattice. Biointerphases 2020; 15:011002. [PMID: 31948239 PMCID: PMC7116081 DOI: 10.1116/1.5132390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The implementation of self-assembled biomolecules on solid materials, in particular, sensor and electrode surfaces, gains increasing importance for the design of stable functional platforms, bioinspired materials, and biosensors. The present study reports on the formation of a planar hybrid lipid/polymer membrane on a crystalline surface layer protein (SLP) lattice. The latter acts as a connecting layer linking the biomolecules to the inorganic base plate. In this approach, chemically bound lipids provided hydrophobic anchoring moieties for the hybrid lipid/polymer membrane on the recrystallized SLP lattice. The rapid solvent exchange technique was the method of choice to generate the planar hybrid lipid/polymer membrane on the SLP lattice. The formation process and completeness of the latter were investigated by quartz crystal microbalance with dissipation monitoring and by an enzymatic assay using the protease subtilisin A, respectively. The present data provide evidence for the formation of a hybrid lipid/polymer membrane on an S-layer lattice with a diblock copolymer content of 30%. The hybrid lipid/polymer showed a higher stiffness compared to the pure lipid bilayer. Most interestingly, both the pure and hybrid membrane prevented the proteolytic degradation of the underlying S-layer protein by the action of subtilisin A. Hence, these results provide evidence for the formation of defect-free membranes anchored to the S-layer lattice.
Collapse
Affiliation(s)
- Christian Czernohlavek
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
17
|
Fauquignon M, Ibarboure E, Carlotti S, Brûlet A, Schmutz M, Le Meins JF. Large and Giant Unilamellar Vesicle(s) Obtained by Self-Assembly of Poly(dimethylsiloxane)- b-poly(ethylene oxide) Diblock Copolymers, Membrane Properties and Preliminary Investigation of their Ability to Form Hybrid Polymer/Lipid Vesicles. Polymers (Basel) 2019; 11:E2013. [PMID: 31817266 PMCID: PMC6960648 DOI: 10.3390/polym11122013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 01/17/2023] Open
Abstract
In the emerging field of hybrid polymer/lipid vesicles, relatively few copolymers have been evaluated regarding their ability to form these structures and the resulting membrane properties have been scarcely studied. Here, we present the synthesis and self-assembly in solution of poly(dimethylsiloxane)-block-poly(ethylene oxide) diblock copolymers (PDMS-b-PEO). A library of different PDMS-b-PEO diblock copolymers was synthesized using ring-opening polymerization of hexamethylcyclotrisiloxane (D3) and further coupling with PEO chains via click chemistry. Self-assembly of the copolymers in water was studied using Dynamic Light Scattering (DLS), Static Light Scattering (SLS), Small Angle Neutron Scattering (SANS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Giant polymersomes obtained by electroformation present high toughness compared to those obtained from triblock copolymer in previous studies, for similar membrane thickness. Interestingly, these copolymers can be associated to phospholipids to form Giant Hybrid Unilamellar Vesicles (GHUV); preliminary investigations of their mechanical properties show that tough hybrid vesicles can be obtained.
Collapse
Affiliation(s)
- Martin Fauquignon
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (M.F.); (E.I.); (S.C.)
| | - Emmanuel Ibarboure
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (M.F.); (E.I.); (S.C.)
| | - Stéphane Carlotti
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (M.F.); (E.I.); (S.C.)
| | - Annie Brûlet
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, CEA Saclay, F-91191 Gif-sur-Yvette CEDEX, France;
| | - Marc Schmutz
- Institut Charles Sadron, UPR 22 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg, France;
| | - Jean-François Le Meins
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (M.F.); (E.I.); (S.C.)
| |
Collapse
|
18
|
Porras-Gomez M, Leal C. Lipid-based Liquid Crystalline Films and Solutions for the Delivery of Cargo to Cells. LIQUID CRYSTALS REVIEWS 2019; 7:167-182. [PMID: 31942262 PMCID: PMC6961842 DOI: 10.1080/21680396.2019.1666752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 05/20/2023]
Abstract
A major challenge in the delivery of cargo (genes and/or drugs) to cells using nanostructured vehicles is the ability to safely penetrate plasma membranes by escaping the endosome before degradation, later releasing the payload into the cytoplasm or organelle of interest. Lipids are a class of bio-compatible molecules that self-assemble into a variety of liquid crystalline constructs. Most of these materials can be used to encapsulate drugs, proteins, and nucleic acids to deliver them safely into various cell types. Lipid phases offer a plethora of structures capable of forming complexes with biomolecules, most notably nucleic acids. The physichochemical characteristics of the lipid molecular building blocks, one might say the lipid primary structure, dictates how they collectively interact to assemble into various secondary structures. These include bilayers, lamellar stacks of bilayers, two-dimensional (2D) hexagonal arrays of lipid tubes, and even 3D cubic constructs. The liquid crystalline materials can be present in the form of aqueous suspensions, bulk materials or confined to a film configuration depending on the intended application (e.g. bolus vs surface-based delivery). This work compiles recent findings of different lipid-based liquid crystalline constructs both in films and particles for gene and drug delivery applications. We explore how lipid primary and secondary structures endow liquid crystalline materials with the ability to carry biomolecular cargo and interact with cells.
Collapse
Affiliation(s)
- Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign. Urbana, IL 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign. Urbana, IL 61801, USA
| |
Collapse
|
19
|
Wang X, Li X, Wang H, Zhang X, Zhang L, Wang F, Liu J. Charge and Coordination Directed Liposome Fusion onto SiO 2 and TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1672-1681. [PMID: 30558422 DOI: 10.1021/acs.langmuir.8b02979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
TiO2 and SiO2 are very useful materials for building biointerfaces. A particularly interesting aspect is their interaction with lipid bilayers. Many past research efforts focused on phosphocholine (PC) lipids, which form supported lipid bilayers (SLB) on SiO2 at physiological conditions but are adsorbed as intact liposomes on TiO2. Low pH was required to form PC SLBs on TiO2. This work intends to understand the surface forces and chemistry responsible for such differences. Two charge neutral lipids: 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 2-((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl ethyl phosphate (DOCPe) and two negatively charged lipids: 1,2-dioleoyl- sn-glycero-3-phospho-l-serine (DOPS) and 2-((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl hydrogen phosphate (DOCP) were used. Using calcein leakage assays, adsorption measurement, cryo-TEM, and washing, we concluded that charge is the dominating factor on SiO2. The two neutral lipids form SLB on SiO2 at pH 3 and 7, but the two negatively charged ones cannot form. On TiO2, both charge and coordination chemistry are important. The two anionic lipids formed SLB from pH 3 to 10. DOCP had stronger affinity than DOPS likely due to the tighter terminal phosphate binding of the former. The two neutral liposomes formed SLB only at pH 3, where phosphate interaction and van der Waals force are deemed important. The pH 3 prepared TiO2 DOPC SLBs are destabilized at neutral pH, indicating the reversible nature of the interaction. This work has provided new insights into two important materials interacting with common liposomes, which are important for reproducible biosensing, device fabrication, and drug delivery applications.
Collapse
Affiliation(s)
- Xiaoshun Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaoqiu Li
- Center of Intervention Radiology, Center of Precise Medicine , Zhuhai People's Hospital , No. 79 Kangning Road , Zhuhai , Guangdong Province 519000 , China
| | - Hui Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaohan Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Lei Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Feng Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
20
|
Mumtaz Virk M, Hofmann B, Reimhult E. Formation and Characteristics of Lipid-Blended Block Copolymer Bilayers on a Solid Support Investigated by Quartz Crystal Microbalance and Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:739-749. [PMID: 30580525 DOI: 10.1021/acs.langmuir.8b03597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liposomes grafted with polymer have long been used in drug delivery applications, and block copolymersomes have emerged as attractive and more robust alternatives for both drug delivery and artificial organelle applications. Hybrid membranes that could combine the respective advantages of fluid lipid and robust polymer bilayers are an attractive and enticing alternative. The properties of membranes in amphiphile vesicles are challenging to study and many applications benefit from surface-based access to the membrane. We therefore explore the self-assembly and mechanical properties of supported hybrid bilayers (SHBs) composed of polybutadiene- block-poly(ethylene oxide) block copolymers and zwitterionic phosphatidylcholine lipids on SiO2 supports. Quartz crystal microbalance with dissipation monitoring (QCM-D) measurements show that formation of SHB on SiO2 by vesicle fusion depends on the mass fractions of lipids and block copolymers. Atomic force microscopy was used to study the microscopic mixing of lipids in the SHB to reveal that lipid-phase separation is not observed in SHBs. Force spectroscopy was performed to extract information about thickness and mechanical properties of the hybrid membranes. SHBs are shown to combine the properties of lipid membranes and polymer brushes, and the tip force required to rupture the membrane decreases and the bilayer thickness increases as the block copolymer fraction is increased.
Collapse
Affiliation(s)
- Mudassar Mumtaz Virk
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology , University of Natural Resources and Life Sciences Vienna , Muthgasse 11 , 1190 Vienna , Austria
| | - Benedikt Hofmann
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology , University of Natural Resources and Life Sciences Vienna , Muthgasse 11 , 1190 Vienna , Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology , University of Natural Resources and Life Sciences Vienna , Muthgasse 11 , 1190 Vienna , Austria
| |
Collapse
|
21
|
Sanborn JR, Chen X, Yao YC, Hammons JA, Tunuguntla RH, Zhang Y, Newcomb CC, Soltis JA, De Yoreo JJ, Van Buuren A, Parikh AN, Noy A. Carbon Nanotube Porins in Amphiphilic Block Copolymers as Fully Synthetic Mimics of Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803355. [PMID: 30368926 DOI: 10.1002/adma.201803355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Biological membranes provide a fascinating example of a separation system that is multifunctional, tunable, precise, and efficient. Biomimetic membranes, which mimic the architecture of cellular membranes, have the potential to deliver significant improvements in specificity and permeability. Here, a fully synthetic biomimetic membrane is reported that incorporates ultra-efficient 1.5 nm diameter carbon nanotube porin (CNTPs) channels in a block-copolymer matrix. It is demonstrated that CNTPs maintain high proton and water permeability in these membranes. CNTPs can also mimic the behavior of biological gap junctions by forming bridges between vesicular compartments that allow transport of small molecules.
Collapse
Affiliation(s)
- Jeremy R Sanborn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- University of California Davis, Davis, CA, 95616, USA
| | - Xi Chen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Joshua A Hammons
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ramya H Tunuguntla
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Yuliang Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Christina C Newcomb
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jennifer A Soltis
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anthony Van Buuren
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Atul N Parikh
- University of California Davis, Davis, CA, 95616, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
22
|
Paxton WF, McAninch PT, Shin SHR, Brumbach MT. Adsorption and fusion of hybrid lipid/polymer vesicles onto 2D and 3D surfaces. SOFT MATTER 2018; 14:8112-8118. [PMID: 30206612 DOI: 10.1039/c8sm00343b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated the formation of hybrid lipid/polymer (1,2-dioleoyl-sn-glycero-3-phosphocholine and poly(ethylene oxide-b-butadiene); DOPC/EO22Bd37) films onto planar silica surfaces. Using laser scanning confocal microscopy, atomic force microscopy, and quartz crystal microbalance analysis, we monitored the adsorption and fusion of hybrid lipid/polymer vesicles onto planar borosilicate glass cleaned via chemical etching or RF/air plasma treatment. In addition we used cryo-electron microscopy to characterize film formation on mesoporous silica nanoparticles. As the polymer content in the vesicles increased, the resulting hybrid lipid/polymer films on borosilicate glass - cleaned by chemical etching or plasma treatment - were more heterogeneous, indicating a large number of adsorbed vesicles rather than continuous bilayer films at higher polymer loadings. The observed lateral fluidity of both DOPC and hybrid lipid/polymer films also decreased substantially with increasing polymer fraction and was found to be relatively insensitive to changes in pH. Films prepared from vesicles with higher polymer loadings were completely immobile. We also found that polymer vesicles did not interact with clean plasma-treated glass surfaces, which may be due to elevated OH and Si-OH on plasma-treated surfaces. Conformal hybrid lipid/polymer coatings consistent with bilayers could be formed on mesoporous silica nanoparticles and imaged via cryo-electron microscopy. These results expand the library of biocompatible materials that can be used for coating silica-based materials and nanoparticles.
Collapse
Affiliation(s)
- Walter F Paxton
- Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Patrick T McAninch
- Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Sun Hae Ra Shin
- Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Michael T Brumbach
- Materials Characterization and Performance, Sandia National Laboratories, Albuquerque, NM 87185, USA
| |
Collapse
|
23
|
Kakimoto Y, Tachihara Y, Okamoto Y, Miyazawa K, Fukuma T, Tero R. Morphology and Physical Properties of Hydrophilic-Polymer-Modified Lipids in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7201-7209. [PMID: 29788718 DOI: 10.1021/acs.langmuir.8b00870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lipid molecules such as glycolipids that are modified with hydrophilic biopolymers participate in the biochemical reactions occurring on cell membranes. Their functions and efficiency are determined by the formation of microdomains and their physical properties. We investigated the morphology and properties of domains induced by the hydrophilic-polymer-modified lipid applying a polyethylene glycol (PEG)-modified lipid as a model modified lipid. We formed supported lipid bilayers (SLBs) using a 0-10 mol % range of PEG-modified lipid concentration ( CPEG). We studied their morphology and fluidity by fluorescence microscopy, the fluorescence recovery after photobleaching method, and atomic force microscopy (AFM). Fluorescence images showed that domains rich in the PEG-modified lipid appeared and SLB fluidity decreased when CPEG ≥ 5%. AFM topographies showed that clusters of the PEG-modified lipid appeared prior to domain formation and the PEG-lipid-rich domains were observed as depressions. Frequency-modulation AFM revealed a force-dependent appearance of the PEG-lipid-rich domain.
Collapse
Affiliation(s)
- Yasuhiro Kakimoto
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Yoshihiro Tachihara
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Yoshiaki Okamoto
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Keisuke Miyazawa
- Division of Electrical Engineering and Computer Science , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
- Nano Life Science Institute (WPI-NanoLSI) , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Ryugo Tero
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| |
Collapse
|
24
|
Kang M, Tuteja M, Centrone A, Topgaard D, Leal C. Nanostructured Lipid-based Films for Substrate Mediated Applications in Biotechnology. ADVANCED FUNCTIONAL MATERIALS 2018; 28:10.1002/adfm.201704356. [PMID: 31080383 PMCID: PMC6508631 DOI: 10.1002/adfm.201704356] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amphiphilic in nature, lipids spontaneously self-assemble into a range of nanostructures in the presence of water. Among lipid self-assembled structures, liposomes and supported lipid bilayers have long held scientific interest for their main applications in drug delivery and plasma membrane models, respectively. In contrast, lipid-based multi-layered membranes on solid supports only recently begun drawing scientists' attention. New studies on lipid films show that the stacking of multiple bilayers on a solid support yields interestingly complex features to these systems. Namely, multiple layers exhibit cooperative structural and dynamic behavior. In addition, the materials enable compartmentalization, templating, and enhanced release of several molecules of interest. Importantly, supported lipid phases exhibit long-range periodic nano-scale order and orientation that is tunable in response to a changing environment. Herein, we summarize current and pertinent understanding of lipid-based film research focusing on how unique structural characteristics enable the emergence of new applications in biotechnology including label-free biosensors, macroscale drug delivery, and substrate-mediated gene delivery. Our very recent contributions to lipid-based films, focusing on the structural characterization at the meso, nano, and molecular-scale, using Small-Angle X-ray Scattering, Atomic Force Microscopy, Photothermal Induced Resonance, and Solid-State NMR will be also highlighted.
Collapse
Affiliation(s)
- Minjee Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mohit Tuteja
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- Maryland Nanocenter, University of Maryland, College Park, MD 20742, United States
| | - Andrea Centrone
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Liu Y, Liu J. Zn 2+ Induced Irreversible Aggregation, Stacking, and Leakage of Choline Phosphate Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14472-14479. [PMID: 29178805 DOI: 10.1021/acs.langmuir.7b03209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interaction between lipids and metal ions is important for metal sensing, cellular signal transduction, and oxidative lipid damage. While most previous work overlooked the phosphate group of lipids for metal binding, we herein highlight its importance. Phosphocholine (PC) and its headgroup inversed choline phosphate (CP) lipids were used to prepare liposomes. From dynamic light scattering (DLS), Zn2+ causes significant aggregation or fusion of the CP liposomes, but not PC liposomes. The size change induced by Zn2+ is not fully reversed by adding EDTA, implying liposome fusion induced by Zn2+. Isothermal titration calorimetry (ITC) shows that binding between Zn2+ and CP liposomes is endothermic with a Kd of 110 μM Zn2+, suggesting an entropy driven reaction likely due to the release of bound water. In comparison, no heat was detected by titrating Zn2+ into PC liposomes or Ca2+ into CP liposomes. Furthermore, Zn2+ causes a transient leakage of the CP liposomes, and further leakage is observed upon removing Zn2+ by EDTA. Transmission electron microscopy (TEM) with negative stained samples showed multilamellar CP lipid structures attributable to Zn2+ sandwiched between lipid bilayers, leading to a proposed reaction mechanism. This work provides an interesting system for studying metal interacting with terminal phosphate groups in liposomes, affecting the size, charge, and membrane integrity of the liposomes.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Kang M, Lee B, Leal C. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid-Polymer Hybrid Membranes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:9120-9132. [PMID: 31097879 PMCID: PMC6516788 DOI: 10.1021/acs.chemmater.7b02845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidence that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid-polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid-polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications.
Collapse
Affiliation(s)
- Minjee Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Wang F, Liu J. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition. NANOSCALE 2015; 7:15599-604. [PMID: 26372064 DOI: 10.1039/c5nr04805b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We herein report that the adsorption/desorption of citrate-capped gold nanoparticles (AuNPs) transiently causes leakage in fluid phase DOPC liposomes, while the liposomes do not leak with AuNPs capped with mercaptopropionic acid (MPA). Leakage also fails to occur for gel phase DPPC liposomes. Citrate-capped (but not MPA-capped) AuNPs raise the phase transition temperature of DPPC. We conclude that citrate-capped AuNPs interact with the PC liposomes very strongly, inducing a local fluid-to-gel lipid phase transition for DOPC. Leakage takes place during this transition, and the membrane integrity is resumed after the transition. Citrate-capped AuNPs allow stronger van der Waals forces than MPA-capped AuNPs with PC liposomes, since the latter are separated from the liposome surface by the ∼0.3 nm MPA layer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
28
|
Paxton WF, Bouxsein NF, Henderson IM, Gomez A, Bachand GD. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments. NANOSCALE 2015; 7:10998-11004. [PMID: 25939271 DOI: 10.1039/c5nr00826c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.
Collapse
Affiliation(s)
- Walter F Paxton
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | | | | | | | | |
Collapse
|
29
|
Itel F, Najer A, Palivan CG, Meier W. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch. NANO LETTERS 2015; 15:3871-8. [PMID: 26013972 DOI: 10.1021/acs.nanolett.5b00699] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.
Collapse
Affiliation(s)
- Fabian Itel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Adrian Najer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Kowal J, Wu D, Mikhalevich V, Palivan CG, Meier W. Hybrid polymer-lipid films as platforms for directed membrane protein insertion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4868-4877. [PMID: 25849126 DOI: 10.1021/acs.langmuir.5b00388] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hybrids composed of amphiphilic block copolymers and lipids constitute a new generation of biological membrane-inspired materials. Hybrid membranes resulting from self-assembly of lipids and polymers represent adjustable models for interactions between artificial and natural membranes, which are of key importance, e.g., when developing systems for drug delivery. By combining poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) amphiphilic copolymers (PDMS-b-PMOXA) with various phospholipids, we obtained hybrid films with modulated properties and topology, based on phase separation, and the formation of distinct domains. By understanding the factors driving the phase separation in these hybrid lipid-polymer films, we were able to use them as platforms for directed insertion of membrane proteins. Tuning the composition of the polymer-lipids mixtures favored successful insertion of membrane proteins with desired topological distributions (in polymer or/and lipid regions). Controlled insertion and location of membrane proteins in hybrid films make these hybrids ideal candidates for numerous applications where specific spatial functionality is required.
Collapse
Affiliation(s)
- Justyna Kowal
- Chemistry Department, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Dalin Wu
- Chemistry Department, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Viktoria Mikhalevich
- Chemistry Department, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Cornelia G Palivan
- Chemistry Department, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|