1
|
Sharma P, Vishwakarma R, Rakheja R, Pasricha S, Hazra CK. A Regioselective, One-Pot, Transition-Metal-Free α-Alkylation of Quinone Monoacetals for Various Organic Transformations. Org Lett 2024; 26:9682-9688. [PMID: 39498640 DOI: 10.1021/acs.orglett.4c03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Regioselective reactions of biologically significant quinones are challenging. An unprecedented advancement in quinone monoacetal (QMA) chemistry is proposed for constructing regioselective and less explored α-alkylated QMAs through the Morita-Baylis-Hillman (MBH) reaction. Electrophilic QMAs were transformed to nucleophilic umpolung reagents for aldol-type condensation with several electrophiles. Mechanistic studies reveal that solvent (TFE:water (1:1)) and in situ-generated potassium acetate accelerate the reaction. The ensuing MBH adducts were scalable and underwent several post-synthetic transformations and late-stage functionalization.
Collapse
Affiliation(s)
- Pragya Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rahul Vishwakarma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Riya Rakheja
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sharda Pasricha
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Kumar S, Kanchupalli V. Synthesis of γ-Spirolactams via Rh(III)-Catalyzed C-H Activation/Directing Group Migration/Dearomatization/Spiroannulation of Indoles with 1,3-Enynes. Org Lett 2024; 26:8975-8981. [PMID: 39207739 DOI: 10.1021/acs.orglett.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
1,3-Enynes are valuable coupling partners in transition-metal-catalyzed C-H functionalizations. Certainly, aliphatic-substituted 1,3-enynes have been thoroughly investigated in C-H functionalizations, whereas aromatic-substituted 1,3-enynes remain underexplored. Herein, we report the realization of this goal, where we achieve an atom-economical protocol for the synthesis of γ-spirolactams via Rh(III)-catalyzed C-H functionalization of N-carbamoylindoles with 1,3-enynes. The reaction proceeds through a unique cascade strategy, such as C-H activation/directing group (DG) migration/indole dearomatization/spiroannulation, to access novel and synthetically challenging spiro[indoline-2,2'-pyrrolidin]-5'-one scaffolds. Moreover, the isolation of intermediate and mechanistic and ESI-HRMS studies further provide valuable insights into the proposed catalytic cycle.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
3
|
An S, Lai G, Liu WH. Catalytic dehydrogenative synthesis of α,β-unsaturated secondary amides without external oxidants. Chem Sci 2024:d4sc04419c. [PMID: 39246373 PMCID: PMC11376141 DOI: 10.1039/d4sc04419c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Direct dehydrogenative synthesis of α,β-unsaturated secondary amides still represents an elusive transformation. Herein we describe a palladium-catalyzed redox-neutral desaturation to prepare α,β-conjugated secondary amides. Without external oxidants, this approach relies on the N-O bond cleavage as the driving force to achieve formal dehydrogenation. Complementary to known protocols, this transformation is enabled by the unique reactivity of hydroxamate, thereby representing a novel strategy to accomplish carbonyl desaturation. Desired conjugated secondary amides can be efficiently synthesized in the presence of more reactive esters and even ketones, thus providing a solution to the long-standing issue of α,β-unsaturated secondary amides via C-C desaturation.
Collapse
Affiliation(s)
- Shaokang An
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Guoyin Lai
- Guangzhou Flower Flavours & Fragrances Co., Ltd Guangzhou 510442 China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
4
|
Lv L, Zheng J, Xiao Y, Ni D, Luo Z, Gao Y, Wei Y, He Y, Nie S. [4 + 2] Cyclization or Lossen Rearrangement: Rhodium-Catalyzed Divergent Synthesis of Carboline Derivatives with Anticancer Activity. Org Lett 2024; 26:4212-4217. [PMID: 38743309 DOI: 10.1021/acs.orglett.4c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unusual rhodium-catalyzed C-H activation/Lossen rearrangement/oxa-Michael addition tandem cyclization has been achieved along with a tunable well-known C-H activation/[4 + 2] annulation, leading to regio-, chemo-, and diastereoselective access to diverse pentacyclic α-carbolines and β-carboline-1-one derivatives in moderate to good yields with significant anticancer activity.
Collapse
Affiliation(s)
- Lijie Lv
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Jia Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Yijie Xiao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Dan Ni
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Zhangshun Luo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Yunyun Gao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Yue Wei
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Yi He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
| | - Shenyou Nie
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China
- Department of Urology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Liu W, Li W, Xu W, Wang M, Kong W. Nickel-catalyzed switchable arylative/endo-cyclization of 1,6-enynes. Nat Commun 2024; 15:2914. [PMID: 38575585 PMCID: PMC10995176 DOI: 10.1038/s41467-024-47200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Carbo- and heterocycles are frequently used as crucial scaffolds in natural products, fine chemicals, and biologically and pharmaceutically active compounds. Transition-metal-catalyzed cyclization of 1,6-enynes has emerged as a powerful strategy for constructing functionalized carbo- and heterocycles. Despite significant progress, the regioselectivity of alkyne functionalization is entirely substrate-dependent. And only exo-cyclization/cross-coupling products can be obtained, while endo-selective cyclization/cross-coupling remains elusive and still poses a formidable challenge. In this study, we disclose a nickel-catalyzed switchable arylation/cyclization of 1,6-enynes in which the nature of the ligand dictates the regioselectivity of alkyne arylation, while the electrophilic trapping reagents determine the selectivity of the cyclization mode. Specifically, using a commercially available 1,10-phenanthroline as a ligand facilitates trans-arylation/cyclization to obtain seven-membered ring products, while a 2-naphthyl-substituted bisbox ligand promotes cis-arylation/cyclization to access six-membered ring products. Diastereoselective cyclizations have also been developed for the synthesis of enantioenriched piperidines and azepanes, which are core structural elements of pharmaceuticals and natural products possessing important biological activities. Furthermore, experimental and density functional theory studies reveal that the regioselectivity of the alkyne arylation process is entirely controlled by the steric hindrance of the ligand; the reaction mechanism involves exo-cyclization followed by Dowd-Beckwith-type ring expansion to form endo-cyclization products.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Wei Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Patel RK, Jha P, Chauhan A, Kant R, Kumar R. Polycyclic Pyrazoles from Alkynyl Cyclohexadienones and Nonstabilized Diazoalkanes via [3 + 2]-Cycloaddition/[1,5]-Sigmatropic Rearrangement/Aza-Michael Reaction Cascade. Org Lett 2024; 26:839-844. [PMID: 38252505 DOI: 10.1021/acs.orglett.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
An efficient method for the stereoselective synthesis of "all center substituted" polycyclic pyrazoles from alkynyl cyclohexa-2,5-dienones and nonstabilized diazoalkanes via sequential [3 + 2]-cycloaddition/[1,5]-sigmatropic rearrangement and aza-Michael reactions is reported. The developed process is highly regioselective and stereoselective. It employs a wide substrate scope to furnish structurally diverse linear and bridged [4.4.n.0] ring-fused pyrazoles in moderate to good yields. One-pot and gram-scale syntheses and synthetic transformations have also been showcased.
Collapse
Affiliation(s)
- Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Rao WH, Li YG, Jiang LL, Li Q, Zou GD, Cao X. Metal-Free Selective Ortho-C-H Amidation of Hypervalent(III) Iodobezenes with N-Methoxy Amides under Mild Conditions. J Org Chem 2023; 88:13825-13837. [PMID: 37737590 DOI: 10.1021/acs.joc.3c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A metal-free selective ortho-C-H amidation of aryl iodines(III) with the use of N-methoxy amides as aminating reagents under mild conditions is described here. In the protocol, excellent chemoselectivity and high regioselectivity were obtained. Notably, the iodine substituent rendered the amidation product suitable to be used for further elaboration.
Collapse
Affiliation(s)
- Wei-Hao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Ying-Ge Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Li-Li Jiang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qi Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
8
|
Parammal A, Singh S, Kumar M, Xavier JS, Subramanian P. Robust Synthesis of Terpenoid Scaffolds under Mn(I)-Catalysis. J Org Chem 2023. [PMID: 37463248 DOI: 10.1021/acs.joc.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The 6/6/5-fused tricyclic scaffold is a central feature of structurally complex terpenoid natural products. A step-economical cascade transformation that leads to a complex molecular skeleton is regarded as a sustainable methodology. Therefore, we report the first Mn(I)-catalyzed C(sp2)-H chemoselective in situ dienylation and diastereoselective intramolecular Diels-Alder reaction using iso-pentadienyl carbonate to access 6/6/5-fused tricyclic scaffolds. To the best of our knowledge, there is no such report thus far to utilize iso-pentadienyl carbonate as a substrate in C-H activation catalysis. Extensive mechanistic studies, such as the isolation of catalytically active organo-manganese(I) complexes, 1,3-dienyl-intermediates, and isotopic labeling experiments have supported the proposed mechanism of this cascade reaction.
Collapse
Affiliation(s)
- Athira Parammal
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shubham Singh
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manoj Kumar
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Joe Sam Xavier
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
9
|
Mishra AK, Chauhan A, Kumar S, Kant R, Kumar R. Catalyst-Controlled Diastereoselective Synthesis of Bridged [3.3.1] Bis(Indolyl)-Oxanes and Oxepanes via Desymmetrization of Bis(Indolyl)-Cyclohexadienones. Org Lett 2023; 25:3034-3039. [PMID: 37092788 DOI: 10.1021/acs.orglett.3c00834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A catalyst-controlled divergent synthesis of bridged [3.3.1] bis(indolyl)-oxanes and cis-[6.7] fused bis(indolyl) oxepanes via diastereoselective desymmetrization of bis(indolyl)-cyclohexadienones is presented for the first time. The reaction is highly atom- and step-economic, furnishing sp3-rich functionalized bis(indolyl) derivatives in good to excellent yields with wide substrate scope. The reaction proceeds through Friedel-Crafts alkylation followed by catalyst-controlled selective C-C bond formation/rearrangement. Gram scale synthesis and synthetic utility to generate bis(indolyl) alkaloid-like molecular diversity were also illustrated.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
10
|
Garai B, Ali MR, Mandal R, Sundararaju B. Cp*Co(III)-Catalyzed C(8)-Nucleophilic Cascade Cyclization of Quinoline N-Oxide with 1,6-Enyne. Org Lett 2023; 25:2018-2023. [PMID: 36926924 DOI: 10.1021/acs.orglett.3c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The C(8)-selective nucleophilic cascade cyclization of quinoline N-oxide with easily derived 1,6-enyne from phenol derivatives is demonstrated. A variety of quinoline N-oxide and alkynes are discovered to be suitable for producing a library of quinoline N-oxide tethered cis-hydrobenzofurans with high yields and excellent functional group tolerance. The utility of the protocol has been accomplished by post-synthetic modification of the cyclized product. The mechanistic studies indicate a base-assisted internal electrophilic-type substitution (BIES)-type pathway for C-H bond activation, and electrospray ionization mass spectrometry (ESI-MS) analysis of the stoichiometric reaction confirmed the formation of a key five-membered cobaltacycle.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Molla Rahamat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
11
|
Pati BV, Puthalath NN, Banjare SK, Nanda T, Ravikumar PC. Transition metal-catalyzed C-H/C-C activation and coupling with 1,3-diyne. Org Biomol Chem 2023; 21:2842-2869. [PMID: 36917476 DOI: 10.1039/d3ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This review provides a broad overview of the recent developments in the field of transition metal-catalyzed C-H/C-C bond activation and coupling with 1,3-diyne for assembling alkynylated heterocycles, bis-heterocycles, and 1,3-enynes. Transition metal-catalyzed inert bond (C-H/C-C) activation has been the focus of attention among synthetic chemists in recent times. Enormous developments have taken place in C-H/C-C bond activation chemistry in the last two decades. In recent years the use of 2π-unsaturated units as coupling partners for the synthesis of heterocycles through C-H/C-C bond activation and annulation sequence has received immense attention. Among the unsaturated units employed for assembling heterocycles, the use of 1,3-diynes has garnered significant attention due to its ability to render bis-heterocycles in a straightforward manner. The C-H bond activation and coupling with 1,3-diyne has been very much explored in recent years. However, the development of strategies for the use of 1,3-diynes in the analogous C-C bond activation chemistry is less explored. Earlier methods employed to assemble bis-heterocycle used heterocycles that were preformed and pre-functionalized via transition metal-catalyzed coupling reactions. The expensive pre-functionalized halo-heterocycles and sensitive and expensive heterocyclic metal reagents limit its broad application. However, the transition metal-catalyzed C-H activation obviates the need for expensive heterocyclic metal reagents and pre-functionalized halo-heterocycles. The C-H bond activation strategy makes use of C-H bonds as functional groups for effecting the transformation. This renders the overall synthetic sequence both step and cost economic. Hence, this strategy of C-H activation and subsequent reaction with 1,3-diyne could be used for the larger-scale synthesis of chemicals in the pharmaceutical industry. Despite these advances, there is still the possibility of exploration of earth-abundant and cost-effective first-row transition metals (Ni, Cu, Mn. Fe, etc.) for the synthesis of bis-heterocycles. Moreover, the Cp*-ligand-free, simple metal-salt-mediated synthesis of bis-heterocycles is also less explored. Thus, more exploration of reaction conditions for the Cp*-free synthesis of bis-heterocycles is called for. We hope this review will inspire scientists to investigate these unexplored domains.
Collapse
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nitha Nahan Puthalath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
12
|
Kumar S, Kumar Sabbi T, Pingale R, Girase P, Kanchupalli V. 1,3-Diynes: A Versatile Precursor in Transition-Metal Catalyzed (Mediated) C-H Functionalizations. CHEM REC 2023; 23:e202200228. [PMID: 36512645 DOI: 10.1002/tcr.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Transition metal-catalyzed C-H functionalization of diverse arenes with alkyne units has attracted enormous attention for decades since they provide straightforward access to various functionalization/annulations, which are commonly present in bioactive compounds and natural products. Recently, conjugated alkynes (1,3-diynes) have been utilized as key coupling partner in many C-H activation reactions due to their versatile characteristic properties. The presence of two C≡C bonds in conjugated 1,3-diyne brings the new diversity in synthetic transformations, such as chemo-, regioselective pathways, mono-bis functionalizations, cascade annulations, etc. Herein, we summarized the latest developments in the realm of transition-metal-catalyzed C-H functionalizations of diverse arenes with 1,3-diynes. Moreover, we highlighted the diverse transformations, conditions, mechanisms and applications of the corresponding reaction in detail.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Tharun Kumar Sabbi
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Rasika Pingale
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Pradeep Girase
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| |
Collapse
|
13
|
Saxena A, Ghosh N. Sequential Cu(II)-Catalyzed Multicomponent C-N Coupling, Nucleophilic Addition, and Cyclization Cascade: A Diastereoselective Approach to Carboxamide-Embedded Hexahydrobenzofuran Core. J Org Chem 2023; 88:300-309. [PMID: 36571574 DOI: 10.1021/acs.joc.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cascade or domino reactions serve as a powerful technique for the synthesis of complex organic scaffolds in one pot. Herein, a Cu(II)-catalyzed and silica gel-assisted multicomponent reaction (MCR) between bromoalkyne-tethered cyclohexadienones, amides, and water for the construction of hexahydrobenzofuran-3-carboxamide is developed. The reaction proceeds via a C-N coupling reaction followed by hydrative cyclization of ynamide intermediates. Notably, good to excellent diastereoselectivity is complementary of this reaction.
Collapse
Affiliation(s)
- Anchal Saxena
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Fang T, Zhang S, Ye Q, Kong S, Yang T, Tang K, He X, Shang Y. Rh-Catalyzed Cascade C-H Activation/Annulation of N-Hydroxybenzamides and Propargylic Acetates for Modular Access to Isoquinolones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238553. [PMID: 36500644 PMCID: PMC9740102 DOI: 10.3390/molecules27238553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A sequential Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides with propargylic acetates leading to the formation of NH-free isoquinolones is described. This reaction proceeds through a sequential C-H activation/alkyne insertion/intramolecular annulation/N-O bond cleavage procedure, affording a broad spectrum of products with diverse substituents in moderate-to-excellent yields. Notably, this protocol features the simultaneous formation of two new C-C/C-N bonds and one heterocycle in one pot with the release of water as the sole byproduct.
Collapse
Affiliation(s)
- Taibei Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Shiwen Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingqing Ye
- Department of Medicine, Chuzhou City Vocation College, Chuzhou 239000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Shuwen Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Tingting Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Kaijie Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| |
Collapse
|
15
|
Li Q, Yan K, Zhu Y, Qi G, Wang Y, Hao WJ, Jiang B. Rh(III)-Catalyzed annulative aldehydic C-H functionalization for accessing ring-fluorinated benzo[b]azepin-5-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zhu Y, Dai R, Huang C, Zhou W, Zhang X, Yang K, Wen H, Li W, Liu J. Synthesis of Isoquinolone, 1,2-Benzothiazine, and Naphtho[1',2':4,5]imidazo[1,2- a]pyridine Derivatives via Rhodium(III)-Catalyzed (4 + 2) Annulation. J Org Chem 2022; 87:11722-11734. [PMID: 35968716 DOI: 10.1021/acs.joc.2c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we report a novel and efficient synthetic method to construct isoquinolone scaffold via the Rh(III)-catalyzed (4 + 2) annulation of benzamide with an unreported coupling reagent methyl 2-chloroacrylate. Accordingly, other valuable 1,2-benzothiazine and naphtho[1',2':4,5]imidazo[1,2-a]pyridine derivatives are also obtained through a similar synthetic protocol. Thus, our developed method is highlighted by high yield and reaction versatility.
Collapse
Affiliation(s)
- Yueyue Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rupeng Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wang Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyuan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
17
|
Brandes DS, Ellman JA. C-H bond activation and sequential addition to two different coupling partners: a versatile approach to molecular complexity. Chem Soc Rev 2022; 51:6738-6756. [PMID: 35822540 PMCID: PMC9364435 DOI: 10.1039/d2cs00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sequential multicomponent C-H bond addition is a powerful approach for the rapid, modular generation of molecular complexity in a single reaction. In this approach, C-H bonds are typically added across π-bonds or π-bond isosteres, followed by subsequent coupling to another type of functionality, thereby forming two σ-bonds in a single reaction sequence. Many sequential C-H bond addition reactions have been developed to date, including additions across both conjugated and isolated π-systems followed by coupling with reactants such as carbonyl compounds, cyanating reagents, aminating reagents, halogenating reagents, oxygenating reagents, and alkylating reagents. These atom-economical reactions transform ubiquitous C-H bonds under mild conditions to more complex structures with a high level of regiochemical and stereochemical control. Surprising connectivities and diverse mechanisms have been elucidated in the development of these reactions. Given the large number of possible combinations of coupling partners, there are enormous opportunities for the discovery of new sequential C-H bond addition reactions.
Collapse
Affiliation(s)
- Daniel S Brandes
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA.
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA.
| |
Collapse
|
18
|
Patel RK, Chauhan A, Jha P, Kant R, Kumar R. Catalytic Friedel-Crafts Alkylative Desymmetrization of Cyclohexa-2,5-dienones: Access to Linear and Bridged Polycyclic Pyrroles and 3-Arylpyrroles. Org Lett 2022; 24:5422-5427. [PMID: 35852460 DOI: 10.1021/acs.orglett.2c02135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic [3 + 2]-cycloaddition/Friedel-Crafts alkylative desymmetrization strategy has been developed for the stereoselective construction of linear and bridged polycyclic pyrroles from alkynylcyclohexa-2,5-dienones. This strategy was further explored for the synthesis of 3-arylpyrroles under Brønsted acid catalysis. Reaction is highly chemo-, regio-, and stereoselective and is compatible with wide range of functionalized cyclohexa-2,5-dienones/pyrroles (>51 examples, ≤98% yields). Gram-scale synthesis and synthetic utility of the products have also been demonstrated to showcase the robustness of present method.
Collapse
Affiliation(s)
- Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| |
Collapse
|
19
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
20
|
Saiegh T, Meyer C, Cossy J. Rhodium(III)‐Catalyzed Heteroannulations of 3‐Sulfolene Derivatives via C(sp2)–H Activation. Access to Pyridine ortho‑Quinodimethane Precursors. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomas Saiegh
- ESPCI Paris Molecular, Macromolecular Chemistry, and Materials FRANCE
| | - Christophe Meyer
- ESPCI Paris, CNRS, PSL Research University Laboratory of Organic Chemsitry 10 rue Vauquelin 75005 PARIS FRANCE
| | - Janine Cossy
- ESPCI: ESPCI Paris Molecular, Macromolecular Chemistry, and Materials PARIS FRANCE
| |
Collapse
|
21
|
Ge J, Wu H, Kong D, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroacylation/Cyclization of 1,6-Enynes with Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroacylation/cyclization of 1,6-enynes. The computations show that the initial oxidative cyclization constitutes the rate-determining step of the overall reaction....
Collapse
|
22
|
Teng Q, Chen D, Tung CH, Xu Z. Asymmetric synthesis of tricyclic 6,5,5-fused polycycles by desymmetric Pauson-Khand reaction. Org Chem Front 2022. [DOI: 10.1039/d1qo01878g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium(I)-BINAP-catalyzed enantioselective desymmetric Pauson-Khand (PK) reaction of prochiral 1,6-enynes with CO has been developed. Diverse tricyclic 6,5,5-fused bowl type polycycles with three continuous chiral centers were synthesized in...
Collapse
|
23
|
Li Y, Wang Y, Huang X, Shi Y, Tang Y, Jiao J, Li J, Xu S. Rapid Construction of Hexacyclic Indolines via the Ru(II)-Catalyzed C-H Activation Initiated Cascade Cyclization of Phenidones with Enynones. Org Lett 2021; 24:435-440. [PMID: 34928618 DOI: 10.1021/acs.orglett.1c04133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly efficient cascade cyclization of phenidones and enynones has been developed via a Ru(II)-catalyzed C-H activation initiated indole formation/Diels-Alder reaction/iminium ion cyclization sequence, which afforded hexacyclic indolines as single diastereomer in good to excellent yields with a broad substrate scope under mild conditions. The reaction features the simultaneous generation of five new chemical bonds and four new rings in one pot, providing a rapid and concise approach toward polycyclic indoline alkaloids and their analogues.
Collapse
Affiliation(s)
- Yang Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
24
|
Pan S, Sarkar S, Ghosh B, Samanta R. Transition metal catalysed direct construction of 2-pyridone scaffolds through C-H bond functionalizations. Org Biomol Chem 2021; 19:10516-10529. [PMID: 34816862 DOI: 10.1039/d1ob01856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Substituted 2-pyridone is one of the most frequent scaffolds among nitrogen-containing bioactive natural products, pharmaceuticals and organic materials. Besides the classical syntheses to construct this class of molecules, retrosynthetically more straightforward approaches based on transition metal catalysed C-H bond functionalizations have been explored recently. In this review, we have summarized the recent progress in the direct transition metal catalysed construction of substituted 2-pyridone scaffolds via site-selective C-H bond functionalizations.
Collapse
Affiliation(s)
- Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Bidhan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
25
|
Jadhav SB, Maurya S, Navaneetha N, Chegondi R. Rh(III)-catalyzed diastereoselective cascade annulation of enone-tethered cyclohexadienones via C(sp 2)-H bond activation. Chem Commun (Camb) 2021; 57:13598-13601. [PMID: 34853840 DOI: 10.1039/d1cc05941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report highly diastereoselective arylative cyclization of enone-tethered cyclohexadienones via Rh(III)-catalyzed C-H activation of N-methoxybenzamides. This reaction proceeds through the formation of a five-membered rhodacycle followed by bis-Michael cascade annulation to access functionalized bicyclic scaffolds with four contiguous stereocenters with a broad substrate scope. These products have excellent functional handles, allowing further synthetic transformation to increase the structural complexity. Furthermore, mechanistic studies of arylative cyclization and a gram-scale experiment are also presented.
Collapse
Affiliation(s)
- Sandip B Jadhav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sundaram Maurya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N Navaneetha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Huang X, Shi Y, Wang Y, Jiao J, Tang Y, Li J, Xu S, Li Y. Synthesis of Indole-Fused Oxepines via C-H Activation Initiated Diastereoselective [5 + 2] Annulation of Indoles with 1,6-Enynes. Org Lett 2021; 23:8365-8369. [PMID: 34652931 DOI: 10.1021/acs.orglett.1c03106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A rhodium-catalyzed diastereoselective formal [5 + 2] annulation of indoles with cyclohexadienone-containing 1,6-enynes has been established via indole 2,3-difunctionalization. The reaction, probably proceeding through tandem indole C2-H alkenylation and intramolecular Friedel-Crafts alkylation relay, provides rapid construction of indole-fused oxepines in good to excellent yields with a broad substrate scope. This method also features concomitant construction of cis-hydrobenzo[b] oxepine scaffolds, a core unit found in numerous natural products of important biological activities.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
27
|
Aher YN, Pawar AB. Cp*Co(III)-catalyzed C-H amination/annulation cascade of sulfoxonium ylides with anthranils for the synthesis of indoloindolones. Chem Commun (Camb) 2021; 57:7164-7167. [PMID: 34184017 DOI: 10.1039/d1cc02817k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cp*Co(iii)-catalyzed [4+1] annulation of sulfoxonium ylides with anthranils has been developed for the synthesis of indole-indolone scaffolds. The dual functionality of anthranils was exploited, wherein the nitrogen has been used for C-H amination and the aldehyde group was utilized in the subsequent intramolecular aldol condensation to furnish the corresponding annulated products.
Collapse
Affiliation(s)
- Yogesh N Aher
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India.
| | - Amit B Pawar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
28
|
Wei Y, Jiang X, Gao H, Bian M, Huang Y, Zhou Z, Yi W. Rhodium(III)‐Catalyzed Cascade C−H Coupling/C‐Terminus Michael Addition of
N
‐Phenoxy Amides with 1,6‐Enynes. ChemistrySelect 2021. [DOI: 10.1002/slct.202102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yinhui Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Xinlin Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Mengyao Bian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Yugang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
29
|
Munakala A, Phanindrudu M, Chegondi R. Transition-Metal Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones. CHEM REC 2021; 21:3689-3726. [PMID: 34145713 DOI: 10.1002/tcr.202100136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The development of transition-metal catalyzed enantioselective and diastereoselective transformations has contributed many advances in the field of synthetic organic chemistry. Particularly, stereoselective desymmetrization of prochiral cyclohexadienones represents a powerful strategy for accessing highly functionalized and stereochemically enriched scaffolds, which are often found in biologically active compounds and natural products. In recent years, several research groups including our group have made a significant progress on transition-metal catalyzed stereoselective desymmetrizations of 2,5-cyclohexadienones. In this account, we will provide an overview of the recent developments in this area employing Pd, Cu, Rh, Au, Ag, Ni, Co, and Mn-catalysts.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mandalaparthi Phanindrudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
30
|
Mallick RK, Vangara S, Kommu N, Guntreddi T, Sahoo AK. Lewis Acid-Driven Meyer-Schuster-Type Rearrangement of Yne-Dienone. J Org Chem 2021; 86:7059-7068. [PMID: 33914539 DOI: 10.1021/acs.joc.1c00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developed herein is a Cu(II)-catalyzed Meyer-Schuster-type rearrangement of alkyne-tethered cyclohexadienone for the construction of m-enone-substituted phenols. The reaction involves an uncommon 5-exo-trig 1,6-enyne cyclization of alkyne-tethered-cyclohexadienone, aromatization-triggered C-O bond cleavage, and an electrocyclic 4π-ring-opening of oxetene intermediate. This atom-efficient transformation provides access to a wide range of synthetically important α-(m-substituted phenol)-α,β-unsaturated ketones, featuring a broad scope with labile functional group tolerance. The gram-scale demonstration makes this transformation synthetically viable. The synthetic application of α,β-unsaturated ketones is also showcased.
Collapse
Affiliation(s)
- Rajendra K Mallick
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Srinivas Vangara
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - Nagarjuna Kommu
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | | | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.,Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
31
|
Selective annulation of benzamides with internal alkynes catalyzed by an electron-deficient rhodium catalyst. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Song L, Manno R, Ranjan P, Sebastian V, Irusta S, Mallada R, Van Meervelt L, Santamaria J, Van der Eycken EV. Preparation of Cu cluster catalysts by simultaneous cooling-microwave heating: application in radical cascade annulation. NANOSCALE ADVANCES 2021; 3:1087-1095. [PMID: 36133300 PMCID: PMC9417637 DOI: 10.1039/d0na00980f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/09/2021] [Indexed: 06/16/2023]
Abstract
One of the hallmarks of microwave irradiation is its selective heating mechanism. In the past 30 years, alternative designs of chemical reactors have been introduced, where the microwave (MW) absorber occupies a limited reactor volume but the surrounding environment is MW transparent. This advantage results in a different heating profile or even the possibility to quickly cool down the system. Simultaneous cooling-microwave heating has been largely adopted for organic chemical transformations. However, to the best of our knowledge there are no reports of its application in the field of nanocluster synthesis. In this work, we propose an innovative one-pot procedure for the synthesis of Cu nanoclusters. The cluster nucleation was selectively MW-activated inside the pores of a highly ordered mesoporous substrate. Once the nucleation event occurred, the crystallization reaction was instantaneously quenched, precluding the growth events and favoring the production of Cu clusters with a homogenous size distribution. Herein, we demonstrated that Cu nanoclusters could be successfully adopted for radical cascade annulations of N-alkoxybenzamides, resulting in various tricyclic and tetracyclic isoquinolones, which are widely present in lots of natural products and bioactive compounds. Compared to reported homogeneous methods, supported Cu nanoclusters provide a better platform for a green, sustainable and efficient heterogeneous approach for the synthesis of tricyclic and tetracyclic isoquinolones, avoiding a variety of toxic waste/byproducts and metal contamination in the final products.
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Roberta Manno
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
| | - Prabhat Ranjan
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Reyes Mallada
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jesús Santamaria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow 117198 Russia
| |
Collapse
|
33
|
Half-sandwich rhodium complexes with phenylene-based SCS ligands: Synthesis, characterization and catalytic activities for transfer hydrogenation of ketones. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Hu W, He X, Zhou T, Zuo Y, Zhang S, Yang T, Shang Y. Construction of isoxazolone-fused phenanthridines via Rh-catalyzed cascade C-H activation/cyclization of 3-arylisoxazolones with cyclic 2-diazo-1,3-diketones. Org Biomol Chem 2021; 19:552-556. [PMID: 33367424 DOI: 10.1039/d0ob02310h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A Rh(iii)-catalyzed cascade C-H activation/intramolecular cyclization of 3-aryl-5-isoxazolones with cyclic 2-diazo-1,3-diketones was described, leading to the formation of isoxazolo[2,3-f]phenanthridine skeletons. The protocol features the simultaneous one-pot formation of two new C-C/C-N bonds and one heterocycle in moderate-to-good yields with good functional group compatibility. It is amenable to large-scale synthesis and further transformation.
Collapse
Affiliation(s)
- Wangcheng Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Shiwen Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Tingting Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
35
|
Zhang Y, Li X, Bai J, Huang Z, Yin M, Sheng J, Song Y. Rh( iii)-Catalyzed C–H allylation/annulative Markovnikov addition with 5-methylene-1,3-dioxan-2-one: formation of isoquinolinones containing a C3 quaternary centre. Org Chem Front 2021. [DOI: 10.1039/d1qo01232k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rh(iii)-Catalyzed C–H allylation/annulative Markovnikov addition reaction was disclosed, offering isoquinolinones containing a C3 quaternary centre. By using this method as the key step, the US28 inverse agonist analogs were synthesized.
Collapse
Affiliation(s)
- Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinghua Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jintong Bai
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Zhaoyu Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Minhai Yin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Ying Song
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
36
|
|
37
|
Tang J, Tang Y, Wang X, Wang Y, Huang X, Xu S, Li Y. Regioselective cascade annulation of indoles with alkynediones for construction of functionalized tetrahydrocarbazoles triggered by Cp*Rh III-catalyzed C–H activation. Org Chem Front 2021. [DOI: 10.1039/d1qo00616a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient regioselective and stereoselective cascade annulation of indoles with alkynediones has been developed for construction of free (NH) tetrahydrocarbazoles with continuous quaternary carbons via Cp*RhIII-catalyzed indole C2–H activation.
Collapse
Affiliation(s)
- Jiaxu Tang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yuhai Tang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiaonan Wang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yongzhuang Wang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiaoli Huang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Silong Xu
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yang Li
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
38
|
Li Z, Qiu X, Meng N, Liu Z. Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Zhang P, Chang W, Kang YS, Zhao W, Cui PP, Liang Y, Sun WY, Lu Y. Rhodium(III)-Catalyzed C(sp 2)-H Chemoselective Annulation to O-Cyclized Isochromen-imines from Benzamides. Org Lett 2020; 22:9462-9467. [PMID: 33275440 DOI: 10.1021/acs.orglett.0c03425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through the development of ligands and reaction conditions, the Rh(III)-catalyzed selective annulation of benzamides with internal alkynes has been achieved to the formation of O-cyclized isochromen-imines. Various substituents are well-tolerated under mild reaction conditions. Density functional theory calculations indicate that silver carbonate could act as a Lewis acid to assist the ligand to improve the chemical selectivity of the reaction in a catalytic system.
Collapse
Affiliation(s)
- Ping Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan-Shang Kang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei-Pei Cui
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Kumar GR, Rajesh M, Lin S, Liu S. Propargylic Alcohols as Coupling Partners in Transition‐Metal‐Catalyzed Arene C−H Activation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000896] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gadi Ranjith Kumar
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| |
Collapse
|
41
|
Raji Reddy C, Sathish P, Mallesh K, Lakshmi Prapurna Y. Construction of Unique Polycyclic 3, 4‐Fused Indoles
via
Rhodium(III)‐Catalyzed Domino Annulations**. ChemistrySelect 2020. [DOI: 10.1002/slct.202002689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Puppala Sathish
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Kathe Mallesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Y. Lakshmi Prapurna
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
| |
Collapse
|
42
|
Gao D, Wang F, Liu X, Feng K, Zhao J, Wang Y, Yang X, Tian P, Lin G. Synthesis of Decahydrocyclobuta[
cd
]indene Skeletons: Rhodium(III)‐Catalyzed Hydroarylation and Relay Thiophene‐Promoted Intramolecular [2+2] Cycloaddition. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dingding Gao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Feng Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Xing‐Yu Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kai‐Rui Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jia‐Ying Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Yu‐Hui Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Xiao‐Di Yang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guo‐Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
43
|
Xu F, Zhu WJ, Wang J, Ma Q, Shen LJ. Rhodium-catalyzed synthesis of substituted isoquinolones via a selective decarbonylation/alkyne insertion cascade of phthalimides. Org Biomol Chem 2020; 18:8219-8223. [PMID: 33043915 DOI: 10.1039/d0ob01793k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A rhodium-catalyzed decarbonylation/alkyne insertion cascade of phthalimides has been established. The reaction can be carried out in an operationally simple manner and provides expedient access to a series of isoquinolones in moderate to good yields. This reaction proceeded through a sequential decarbonylation/alkyne insertion/intramolecular annulation procedure and featured good functional group tolerance, ample substrate scope, and the construction of C-C and C-N bonds in one pot.
Collapse
Affiliation(s)
- Fen Xu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Wen-Jing Zhu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Juan Wang
- Henan Ecological and Environmental Monitoring Center, Zhengzhou 450002, P. R. China
| | - Qi Ma
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Li-Jing Shen
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
44
|
Song L, Van der Eycken EV. Transition Metal-Catalyzed Intermolecular Cascade C-H Activation/Annulation Processes for the Synthesis of Polycycles. Chemistry 2020; 27:121-144. [PMID: 32530508 DOI: 10.1002/chem.202002110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Polycycles are abundantly present in numerous advanced chemicals, functional materials, bioactive molecules and natural products. However, the strategies for the synthesis of polycycles are limited to classical reactions and transition metal-catalyzed cross-coupling reactions, requiring pre-functionalized starting materials and lengthy synthetic operations. The emergence of novel approaches shows great promise for the fields of organic/medicinal/materials chemistry. Among them, transition metal-catalyzed C-H activation followed by intermolecular annulation reactions prevail, due to their straightforward manner with high atom- and step-economy, providing rapid, concise and efficient methods for the construction of diverse polycycles. Several strategies have been developed for the synthesis of polycycles, relying on sequential multiple C-H activation/annulation, or combination of C-H activation/annulation and further interaction with a proximal group, or merger of C-H activation with a cycloaddition reaction, or in situ formation of the directing group. These are attractive, efficient, step- and atom-economic methods starting from commercially available materials. This Minireview will provide an introduction to transition metal-catalyzed C-H activation for the synthesis of polycycles, helping researchers to discover indirect connections and reveal hidden opportunities. It will also promote the discovery of novel synthetic strategies relying on C-H activation.
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| |
Collapse
|
45
|
Chen W, Li H, Lu W, Wu Y. Ruthenium(II)‐catalyzed Monohydroalkylation of α,β‐Unsaturated Ketones with
N
‐Acyl Pyrroles using a C−H Activation Strategy. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weiqiang Chen
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Hui‐Jing Li
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
- Weihai Huiankang Biotechnology Co. Ltd Weihai 264200 P. R. China
| | - Wen‐Yu Lu
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Yan‐Chao Wu
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| |
Collapse
|
46
|
Song L, Zhang X, Tang X, Van Meervelt L, Van der Eycken J, Harvey JN, Van der Eycken EV. Ruthenium-catalyzed cascade C-H activation/annulation of N-alkoxybenzamides: reaction development and mechanistic insight. Chem Sci 2020; 11:11562-11569. [PMID: 34094402 PMCID: PMC8162874 DOI: 10.1039/d0sc04434b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A highly selective ruthenium-catalyzed C–H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)–Ru(iv)–Ru(ii) pathway involving N–O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C–H activation/annulation with alkynes, involving alkyne insertion prior to N–O bond cleavage. Via this pathway, the in situ generated acetic acid from the N–H/C–H activation step facilitates the N–O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)–Ru(iv)–Ru(ii) mechanism featuring N–O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C–H activation/annulation. A highly selective ruthenium-catalyzed C–H activation/annulation through a pathway involving N–O bond cleavage prior to alkyne insertion is developed.![]()
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Xiaoyong Zhang
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Xiao Tang
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology Gardens Point Campus Brisbane QLD 4001 Australia
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 (S.4) B-9000 Ghent Belgium
| | - Jeremy N Harvey
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium .,Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow 117198 Russia
| |
Collapse
|
47
|
Zhou J, Zhang L, Chen J, Chen J, Yin C, Yu C. Rh(III)-catalyzed [4+1] annulation and ring opening for the synthesis of pyrazolo[1,2-a] indazole bearing a quaternary carbon. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Nishii Y, Miura M. Cp*M-Catalyzed Direct Annulation with Terminal Alkynes and Their Surrogates for the Construction of Multi-Ring Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02972] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Kanchupalli V, Shukla RK, Singh A, Volla CMR. Rh(III)-Catalyzed Redox-Neutral Cascade Annulation of Benzamides with p
-Quinone Methides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vinaykumar Kanchupalli
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Rahul K. Shukla
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Anurag Singh
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Chandra M. R. Volla
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| |
Collapse
|
50
|
Hua Y, Chen ZY, Diao H, Zhang L, Qiu G, Gao X, Zhou H. Copper-Catalyzed Preparation of Benzo[3,4]indolo[1,2- b]isoquinoline-8-ones and Photoluminescence Exploration. J Org Chem 2020; 85:9614-9621. [PMID: 32657128 DOI: 10.1021/acs.joc.0c00936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A facile synthesis of benzo[3,4]indolo[1,2-b]isoquinolin-8-ones is described. Under copper catalysis, the reaction proceeds with a high efficiency and a broad reaction scope. A deuteration experiment shows that the KIE value is 2.85. From the results on mechanism studies, copper-catalyzed C-H activation, intramolecular cis-addition of alkynes, and reductive elimination are involved. Moreover, this skeleton is indeed a new fluorophore, and its photophysical properties are also investigated.
Collapse
Affiliation(s)
- Yiwen Hua
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zi-Yan Chen
- School of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Hanying Diao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Lianpeng Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.,School of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiaoxing Gao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|