1
|
Oliyantakath Hassan MS, Abdul Vahid A, Sahayaraj AE, Viswanathan R, Vijayan V. NMR Relaxation Experiments Probe Monomer-Fibril Interaction and Identify Critical Interacting Residues Responsible for Distinct Tau Fibril Morphologies. J Phys Chem Lett 2023; 14:6583-6591. [PMID: 37458827 DOI: 10.1021/acs.jpclett.3c00912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Tau aggregation is governed by secondary processes, a major pathological pathway for tau protein fibril propagation, yet its molecular mechanism remains unknown. This work uses saturation transfer and lifetime line-broadening experiments to identify the critical residues involved in these secondary processes. Distinct residue-specific NMR relaxation parameters were obtained for the truncated three repeat tau construct (K19) in equilibrium with structurally different, self-aggregated (saK19) or heparin-induced (hK19) fibrils. The interacting residues are restricted to R3 repeat for hK19 and to R3, R4, and R' repeats for saK19 fibrils. Furthermore, the relaxation profiles of tau monomers in equilibrium with the structurally comparable, in vitro pathological fibrils (tauAD and tauCTE) were similar but distinct from hK19 or saK19 fibrils. Thus, residue-specific relaxation identifies the important residues involved in the binding of monomers to the fibrils. The relaxation profile of the monomers in equilibrium with the NMR invisible fibril seeds potentially distinguishes the distinct structures of tau fibrils.
Collapse
Affiliation(s)
| | - Arshad Abdul Vahid
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Allwin Ebenezer Sahayaraj
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Renjith Viswanathan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Viola G, Barracchia CG, Tira R, Parolini F, Leo G, Bellanda M, Munari F, Capaldi S, D’Onofrio M, Assfalg M. New Paradigm for Nano-Bio Interactions: Multimolecular Assembly of a Prototypical Disordered Protein with Ultrasmall Nanoparticles. NANO LETTERS 2022; 22:8875-8882. [PMID: 36346924 PMCID: PMC9706667 DOI: 10.1021/acs.nanolett.2c02902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Indexed: 05/20/2023]
Abstract
Understanding the interactions between nanoparticles (NPs) and proteins is crucial for the successful application of NPs in biological contexts. Protein adsorption is dependent on particle size, and protein binding to ultrasmall (1-3 nm) NPs is considered to be generally weak. However, most studies have involved structured biomacromolecules, while the interactions of ultrasmall NPs with intrinsically disordered proteins (IDPs) have remained elusive. IDPs are abundant in eukaryotes and found to associate with NPs intracellularly. As a model system, we focused on ultrasmall gold nanoparticles (usGNPs) and tau, a cytosolic IDP associated with Alzheimer's disease. Using site-resolved NMR, steady-state fluorescence, calorimetry, and circular dichroism, we reveal that tau and usGNPs form stable multimolecular assemblies, representing a new type of nano-bio interaction. Specifically, the observed interaction hot spots explain the influence of usGNPs on tau conformational transitions, with implications for the intracellular targeting of aberrant IDP aggregation.
Collapse
Affiliation(s)
- Giovanna Viola
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Roberto Tira
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Giulia Leo
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Massimo Bellanda
- Department
of Chemistry, University of Padova, 35131 Padova, Italy
| | - Francesca Munari
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Stefano Capaldi
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Michael Assfalg
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
3
|
Della Valle M, D'Abrosca G, Gentile MT, Russo L, Isernia C, Di Gaetano S, Avolio R, Castaldo R, Cocca M, Gentile G, Malgieri G, Errico ME, Fattorusso R. Polystyrene nanoplastics affect the human ubiquitin structure and ubiquitination in cells: a high-resolution study. Chem Sci 2022; 13:13563-13573. [PMID: 36507175 PMCID: PMC9682910 DOI: 10.1039/d2sc04434j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Humans are estimated to consume several grams per week of nanoplastics (NPs) through exposure to a variety of contamination sources. Nonetheless, the effects of these polymeric particles on living systems are still mostly unknown. Here, by means of CD, NMR and TEM analyses, we describe at an atomic resolution the interaction of ubiquitin with polystyrene NPs (PS-NPs), showing how a hard protein corona is formed. Moreover, we report that in human HeLa cells exposure to PS-NPs leads to a sensible reduction of ubiquitination. Our study overall indicates that PS-NPs cause significant structural effects on ubiquitin, thereby influencing one of the key metabolic processes at the base of cell viability.
Collapse
Affiliation(s)
- M Della Valle
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - G D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - M T Gentile
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - L Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - C Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - S Di Gaetano
- Institute of Biostructures and Bioimaging-CNR Via Mezzocannone 16 80134 Naples Italy
| | - R Avolio
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - R Castaldo
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - M Cocca
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - G Gentile
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - G Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - M E Errico
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - R Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
4
|
Ceccon A, Kubatova N, Louis JM, Clore GM, Tugarinov V. Global Dynamics of a Protein on the Surface of Anisotropic Lipid Nanoparticles Derived from Relaxation-Based NMR Spectroscopy. J Phys Chem B 2022; 126:5646-5654. [PMID: 35877206 DOI: 10.1021/acs.jpcb.2c03519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The global motions of ubiquitin, a model protein, on the surface of anisotropically tumbling 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG):1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles are described. The shapes of POPG:DHPC bicelles prepared with high molar ratios q of POPG to DHPC can be approximated by prolate ellipsoids, with the ratio of ellipsoid dimensions and dimensions themselves increasing with higher values of q. Adaptation of the nuclear magnetic resonance (NMR) relaxation-based approach that we previously developed for interactions of ubiquitin with spherical POPG liposomes (Ceccon, A. J. Am. Chem. Soc. 2016, 138, 5789-5792) allowed us to quantitatively analyze the variation in lifetime line broadening of NMR signals (ΔR2) measured for ubiquitin in the presence of q = 2 POPG:DHPC bicelles and the associated transverse spin relaxation rates (R2,B) of bicelle-bound ubiquitin. Ubiquitin, transiently bound to POPG:DHPC bicelles, undergoes internal rotation about an axis orthogonal to the surface of the bicelle and perpendicular to the principal axis of its rotational diffusion tensor on the low microsecond time scale (∼3 μs), while the rotation axis itself wobbles in a cone on a submicrosecond time scale (≤ 500 ns).
Collapse
Affiliation(s)
- Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Nina Kubatova
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
5
|
Tugarinov V, Ceccon A, Clore GM. NMR methods for exploring 'dark' states in ligand binding and protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:1-24. [PMID: 35282867 PMCID: PMC8921508 DOI: 10.1016/j.pnmrs.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
A survey, primarily based on work in the authors' laboratory during the last 10 years, is provided of recent developments in NMR studies of exchange processes involving protein-ligand and protein-protein interactions. We start with a brief overview of the theoretical background of Dark state Exchange Saturation Transfer (DEST) and lifetime line-broadening (ΔR2) NMR methodology. Some limitations of the DEST/ΔR2 methodology in applications to molecular systems with intermediate molecular weights are discussed, along with the means of overcoming these limitations with the help of closely related exchange NMR techniques, such as the measurements of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, exchange-induced chemical shifts or rapidly-relaxing components of relaxation decays. Some theoretical underpinnings of the quantitative description of global dynamics of proteins on the surface of very high molecular weight particles (nanoparticles) are discussed. Subsequently, several applications of DEST/ΔR2 methodology are described from a methodological perspective with an emphasis on providing examples of how kinetic and relaxation parameters for exchanging systems can be reliably extracted from NMR data for each particular model of exchange. Among exchanging systems that are not associated with high molecular weight species, we describe several exchange NMR-based studies that focus on kinetic modelling of transient pre-nucleation oligomerization of huntingtin peptides that precedes aggregation and fibril formation.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | - Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
6
|
Lu Y, Yang D. Conformational exchange of fatty acid binding protein induced by protein-nanodisc interactions. Biophys J 2021; 120:4672-4681. [PMID: 34600898 DOI: 10.1016/j.bpj.2021.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022] Open
Abstract
Fatty acid binding proteins (FABPs) can facilitate the transfer of long-chain fatty acids between intracellular membranes across considerable distances. The transfer process involves fatty acids, their donor membrane and acceptor membrane, and FABPs, implying that potential protein-membrane interactions exist. Despite intensive studies on FABP-membrane interactions, the interaction mode remains elusive, and the protein-membrane association and dissociation rates are inconsistent. In this study, we used nanodiscs (NDs) as mimetic membranes to investigate FABP-membrane interactions. Our NMR experiments showed that human intestinal FABP interacts weakly with both negatively charged and neutral membranes, but it prefers the negatively charged one. Through simultaneous analysis of NMR relaxation in the rotating-frame (R1ρ), relaxation dispersion, chemical exchange saturation transfer, and dark-state exchange saturation transfer data, we estimated the affinity of the protein to negatively charged NDs, the dissociation rate, and apparent association rate. We further showed that the protein in the ND-bound state adopts a conformation different from the native structure and the second helix is very likely involved in interactions with NDs. We also found a membrane-induced FABP conformational state that exists only in the presence of NDs. This state is native-like, different from other conformational states in structure, unbound to NDs, and in dynamic equilibrium with the ND-bound state.
Collapse
Affiliation(s)
- Yimei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Oliyantakath Hassan MS, Somasundaran SM, Abdul Shukkoor MB, Ayyappan S, Abdul Vahid A, Vijayan V. Examining the Transient Dark State in Protein-Quantum Dot Interaction by Relaxation-Based Solution NMR. J Phys Chem B 2021; 125:10119-10125. [PMID: 34473517 DOI: 10.1021/acs.jpcb.1c04853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We probed the "dark" state involved in the protein-quantum dot (QD) interaction using a relaxation-based solution nuclear magnetic resonance (NMR) approach. We examined the dynamics and exchange kinetics of the ubiquitin-CdTe model system, which undergoes a fast exchange in the transverse relaxation time scale. We applied the recently developed dark-state exchange saturation transfer (DEST), lifetime line broadening (ΔR2), and exchange-induced chemical shift (δex) solution NMR techniques to obtain a residue-specific binding behavior of the protein on the QD surface. The variation in the estimated 15N-R2bound values clearly shows the dynamic nature of bound Ub. Upon mapping the amino acid residues showing a faster relaxation rate on the electrostatic potential surface of the protein, we have determined that the interaction is preferably electrostatic, and the amino acid residues involved in binding lie on the positively charged surface of the protein. We believe that our experimental approach should provide more in-depth knowledge to engineer new hybrid protein-QD systems in the future.
Collapse
Affiliation(s)
| | - Sanoop Mambully Somasundaran
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| | | | - Shine Ayyappan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Arshad Abdul Vahid
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
8
|
Tira R, De Cecco E, Rigamonti V, Santambrogio C, Barracchia CG, Munari F, Romeo A, Legname G, Prosperi D, Grandori R, Assfalg M. Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. Int J Biol Macromol 2020; 154:206-216. [DOI: 10.1016/j.ijbiomac.2020.03.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
9
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
10
|
Perera YR, Hill RA, Fitzkee NC. Protein Interactions with Nanoparticle Surfaces: Highlighting Solution NMR Techniques. Isr J Chem 2019; 59:962-979. [PMID: 34045771 PMCID: PMC8152826 DOI: 10.1002/ijch.201900080] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
In the last decade, nanoparticles (NPs) have become a key tool in medicine and biotechnology as drug delivery systems, biosensors and diagnostic devices. The composition and surface chemistry of NPs vary based on the materials used: typically organic polymers, inorganic materials, or lipids. Nanoparticle classes can be further divided into sub-categories depending on the surface modification and functionalization. These surface properties matter when NPs are introduced into a physiological environment, as they will influence how nucleic acids, lipids, and proteins will interact with the NP surface. While small-molecule interactions are easily probed using NMR spectroscopy, studying protein-NP interactions using NMR introduces several challenges. For example, globular proteins may have a perturbed conformation when attached to a foreign surface, and the size of NP-protein conjugates can lead to excessive line broadening. Many of these challenges have been addressed, and NMR spectroscopy is becoming a mature technique for in situ analysis of NP binding behavior. It is therefore not surprising that NMR has been applied to NP systems and has been used to study biomolecules on NP surfaces. Important considerations include corona composition, protein behavior, and ligand architecture. These features are difficult to resolve using classical surface and material characterization strategies, and NMR provides a complementary avenue of characterization. In this review, we examine how solution NMR can be combined with other analytical techniques to investigate protein behavior on NP surfaces.
Collapse
Affiliation(s)
- Y Randika Perera
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Rebecca A Hill
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
11
|
Tugarinov V, Clore GM. Exchange saturation transfer and associated NMR techniques for studies of protein interactions involving high-molecular-weight systems. JOURNAL OF BIOMOLECULAR NMR 2019; 73:461-469. [PMID: 31407202 PMCID: PMC6819251 DOI: 10.1007/s10858-019-00244-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 05/15/2023]
Abstract
A brief overview of theoretical and experimental aspects of the Dark state Exchange Saturation Transfer (DEST) and lifetime line broadening ([Formula: see text]) NMR methodologies is presented from a physico-chemical perspective. We describe how the field-dependence of [Formula: see text] can be used for determining the exchange regime on the transverse spin relaxation time-scale. Some limitations of DEST/[Formula: see text] methodology in applications to molecular systems with intermediate molecular weights are discussed, and the means of overcoming these limitations via the use of closely related exchange NMR techniques is presented. Finally, several applications of DEST/[Formula: see text] methodology are described from a methodological viewpoint, with an emphasis on providing examples of how kinetic and relaxation parameters of exchange can be reliably extracted from the experimental data in each particular case.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
12
|
Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Bortot A, Zanzoni S, D'Onofrio M, Assfalg M. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces. Chemistry 2018; 24:5911-5919. [PMID: 29446497 DOI: 10.1002/chem.201705994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/08/2022]
Abstract
In biological systems, nanoparticles (NPs) elicit bioactivity upon interaction with proteins. As a result of post-translational modification, proteins occur in a variety of alternative covalent forms, including structural isomers, which present unique molecular surfaces. We aimed at a detailed description of the recognition of protein isomeric species by NP surfaces. The transient adsorption of isomeric ubiquitin (Ub) dimers by NPs was investigated by solution NMR spectroscopy. Lys63- and Lys48-linked Ub2 were adsorbed by large anionic NPs with different affinities, whereas the binding strength was similar in the cases of smaller particles. After the incorporation of paramagnetic tags into NPs, the observed site-resolved paramagnetic footprints provided a high-resolution map of the different protein surfaces binding to NPs. The approach described could be extended to further protein isoforms and more specialized NP systems to allow better control of the interactions between NPs and protein targets.
Collapse
Affiliation(s)
- Andrea Bortot
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| |
Collapse
|
14
|
Egner TK, Naik P, Nelson NC, Slowing II, Venditti V. Mechanistic Insight into Nanoparticle Surface Adsorption by Solution NMR Spectroscopy in an Aqueous Gel. Angew Chem Int Ed Engl 2017. [PMID: 28640513 DOI: 10.1002/anie.201704471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark-state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel-stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200 nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found that the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. We believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.
Collapse
Affiliation(s)
- Timothy K Egner
- Department of Chemistry, Iowa State University, 2438 Pammel Drive, Ames, IA, 50011, USA
| | - Pranjali Naik
- Department of Chemistry, Iowa State University, 2438 Pammel Drive, Ames, IA, 50011, USA.,US Department of Energy, Ames Laboratory, 2756 Gilman Hall, Ames, IA, 50011, USA
| | - Nicholas C Nelson
- Department of Chemistry, Iowa State University, 2438 Pammel Drive, Ames, IA, 50011, USA.,US Department of Energy, Ames Laboratory, 2756 Gilman Hall, Ames, IA, 50011, USA
| | - Igor I Slowing
- Department of Chemistry, Iowa State University, 2438 Pammel Drive, Ames, IA, 50011, USA.,US Department of Energy, Ames Laboratory, 2756 Gilman Hall, Ames, IA, 50011, USA
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, 2438 Pammel Drive, Ames, IA, 50011, USA
| |
Collapse
|
15
|
Egner TK, Naik P, Nelson NC, Slowing II, Venditti V. Mechanistic Insight into Nanoparticle Surface Adsorption by Solution NMR Spectroscopy in an Aqueous Gel. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Timothy K. Egner
- Department of Chemistry Iowa State University 2438 Pammel Drive Ames IA 50011 USA
| | - Pranjali Naik
- Department of Chemistry Iowa State University 2438 Pammel Drive Ames IA 50011 USA
- US Department of Energy Ames Laboratory 2756 Gilman Hall Ames IA 50011 USA
| | - Nicholas C. Nelson
- Department of Chemistry Iowa State University 2438 Pammel Drive Ames IA 50011 USA
- US Department of Energy Ames Laboratory 2756 Gilman Hall Ames IA 50011 USA
| | - Igor I. Slowing
- Department of Chemistry Iowa State University 2438 Pammel Drive Ames IA 50011 USA
- US Department of Energy Ames Laboratory 2756 Gilman Hall Ames IA 50011 USA
| | - Vincenzo Venditti
- Department of Chemistry Iowa State University 2438 Pammel Drive Ames IA 50011 USA
| |
Collapse
|
16
|
D'Onofrio M, Zanzoni S, Munari F, Monaco HL, Assfalg M, Capaldi S. The long variant of human ileal bile acid-binding protein associated with colorectal cancer exhibits sub-cellular localization and lipid binding behaviour distinct from those of the common isoform. Biochim Biophys Acta Gen Subj 2017; 1861:2315-2324. [PMID: 28689989 DOI: 10.1016/j.bbagen.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/09/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ileal bile acid-binding protein, IBABP, participates in the intracellular trafficking of bile salts and influences their signaling activities. The recently discovered variant, IBABP-L, bearing an N-terminal 49-amino acid extension, was found to be associated with colorectal cancer and to protect cancer cells from the cytotoxic effects of deoxycholate. However, the precise function and the molecular properties of this variant are currently unknown. METHODS Bioinformatics tools and confocal microscopy were used to investigate the sub-cellular localization of IBABP-L; protein dynamics, ligand binding and interaction with membrane models were studied by 2D NMR and fluorescence spectroscopy. RESULTS Based on sub-cellular localization experiments we conclude that IBABP-L is targeted to the secretory pathway by a 24-residue signal peptide and, upon its cleavage, the mature protein is constitutively released into the extracellular space. Site-resolved NMR experiments indicated the distinct preference of primary and secondary bile salts to form either heterotypic or homotypic complexes with IBABP-L. The presence of the relatively dynamic N-terminal extension, originating only subtle conformational perturbations in the globular domain, was found to influence binding site occupation in IBABP-L as compared to IBABP. Even more pronounced differences were found in the tendency of the two variants to associate with phospholipid bilayers. CONCLUSIONS IBABP-L exhibits different sub-cellular localization, ligand-binding properties and membrane interaction propensity compared to the canonical short isoform. GENERAL SIGNIFICANCE Our results constitute an essential first step towards an understanding of the role of IBABP-L in bile salt trafficking and signaling under healthy and pathological conditions.
Collapse
Affiliation(s)
- Mariapina D'Onofrio
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Serena Zanzoni
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Francesca Munari
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Hugo L Monaco
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Stefano Capaldi
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
17
|
Zamarreño F, Giorgetti A, Amundarain MJ, Viso JF, Córsico B, Costabel MD. Conserved charged amino acids are key determinants for fatty acid binding proteins (FABPs)-membrane interactions. A multi-methodological computational approach. J Biomol Struct Dyn 2017; 36:861-877. [PMID: 28298157 DOI: 10.1080/07391102.2017.1301271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Based on the analysis of the mechanism of ligand transfer to membranes employing in vitro methods, Fatty Acid Binding Protein (FABP) family has been divided in two subgroups: collisional and diffusional FABPs. Although the collisional mechanism has been well characterized employing in vitro methods, the structural features responsible for the difference between collisional and diffusional mechanisms remain uncertain. In this work, we have identified the amino acids putatively responsible for the interaction with membranes of both, collisional and diffusional, subgroups of FABPs. Moreover, we show how specific changes in FABPs' structure could change the mechanism of interaction with membranes. We have computed protein-membrane interaction energies for members of each subgroup of the family, and performed Molecular Dynamics simulations that have shown different configurations for the initial interaction between FABPs and membranes. In order to generalize our hypothesis, we extended the electrostatic and bioinformatics analysis over FABPs of different mammalian genus. Also, our methodological approach could be used for other systems involving protein-membrane interactions.
Collapse
Affiliation(s)
- Fernando Zamarreño
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| | - Alejandro Giorgetti
- b Department of Biotechnology, Faculty of Mathematical , Physical and Natural Sciences, University of Verona , Verona , Italy
| | - María Julia Amundarain
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| | - Juan Francisco Viso
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| | - Betina Córsico
- c Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP) , Universidad Nacional de La Plata , La Plata , Argentina
| | - Marcelo D Costabel
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| |
Collapse
|
18
|
Shang L, Nienhaus GU. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy. Acc Chem Res 2017; 50:387-395. [PMID: 28145686 DOI: 10.1021/acs.accounts.6b00579] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology holds great promise for applications in many fields including biology and medicine. Unfortunately, the processes occurring at the interface between nanomaterials and living systems are exceedingly complex and not yet well understood, which has significantly hampered the realization of many nanobiotechnology applications. Whenever nanoparticles (NPs) are incorporated by a living organism, a protein adsorption layer, also known as the "protein corona", forms on the NP surface. Accordingly, living organisms interact with protein-coated rather than bare NPs, and their biological responses depend on the nature of the protein corona. In recent years, a wide variety of biophysical techniques have been employed to elucidate mechanistic aspects of NP-protein interactions. In most studies, NPs are immersed in protein or biofluid (e.g., blood serum) solutions and then separated from the liquid for analysis. Because this approach may modify the composition and structure of the protein corona, our group has pioneered the use of fluorescence correlation spectroscopy (FCS) as an in situ technique, capable of examining NP-protein interactions while the NPs are suspended in biological fluids. FCS allows us to measure, with subnanometer precision and as a function of protein concentration, the increase in hydrodynamic radius of the NPs due to protein adsorption. This Account aims at reviewing recent progress in the exploration of NP-protein interactions by using FCS. In vitro FCS studies of the adsorption of important serum proteins onto water-solubilized luminescent NPs always showed a stepwise increase of the NP radius upon protein binding in the form of a binding isotherm, regardless of the type of NP and its specific surface functionalization. This observation indicates formation of a protein monolayer on the NP. Structure-based calculations of protein surface potentials revealed that positively charged patches on the proteins interact electrostatically with negatively charged NP surfaces, and the observed protein layer thickness always matched the known molecular dimensions of the proteins binding in certain orientations. Temperature and NP surface functionalization have also been identified as important parameters controlling protein corona formation. Notably, while the corona formed from a single type of serum protein was reversible, protein adsorption from complex biological media such as blood serum was entirely irreversible. These quantitative in vitro studies are of great relevance to the bio-nano community and especially to researchers developing engineered nanomaterials for biological and biomedical applications. Future efforts will be directed toward elucidating kinetic aspects of protein corona formation and the detailed structure of the adsorbed proteins at the molecular level. To better appreciate the biological responses triggered by NP exposure, more efforts will be devoted to the exploration of the biomolecular corona as it forms on NPs in contact with living cells, tissues, and even entire model organisms. These studies are challenging when performed in a well-controlled and quantitative fashion and rely on the availability of sophisticated analytical tools, particularly, quantitative optical imaging techniques including FCS and related fluctuation methods.
Collapse
Affiliation(s)
- Li Shang
- Institute
of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Center
for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - G. Ulrich Nienhaus
- Institute
of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute
of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Ceccon A, Tugarinov V, Bax A, Clore GM. Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy. J Am Chem Soc 2016; 138:5789-92. [PMID: 27111298 DOI: 10.1021/jacs.6b02654] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The global motions and exchange kinetics of a model protein, ubiquitin, bound to the surface of negatively charged lipid-based nanoparticles (liposomes) are derived from combined analysis of exchange lifetime broadening arising from binding to nanoparticles of differing size. The relative contributions of residence time and rotational tumbling to the total effective correlation time of the bound protein are modulated by nanoparticle size, thereby permitting the various motional and exchange parameters to be determined. The residence time of ubiquitin bound to the surface of both large and small unilamellar liposomes is ∼20 μs. Bound ubiquitin undergoes internal rotation about an axis approximately perpendicular to the lipid surface on a low microsecond time scale (∼2 μs), while simultaneously wobbling in a cone of semiangle 30-55° centered about the internal rotation axis on the nanosecond time scale. The binding interface of ubiquitin with liposomes is mapped by intermolecular paramagnetic relaxation enhancement using Gd(3+)-tagged vesicles, to a predominantly positively charged surface orthogonal to the internal rotation axis.
Collapse
Affiliation(s)
- Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
20
|
Zanzoni S, Pedroni M, D'Onofrio M, Speghini A, Assfalg M. Paramagnetic Nanoparticles Leave Their Mark on Nuclear Spins of Transiently Adsorbed Proteins. J Am Chem Soc 2015; 138:72-5. [PMID: 26683352 DOI: 10.1021/jacs.5b11582] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The successful application of nanomaterials in biosciences necessitates an in-depth understanding of how they interface with biomolecules. Transient associations of proteins with nanoparticles (NPs) are accessible by solution NMR spectroscopy, albeit with some limitations. The incorporation of paramagnetic centers into NPs offers new opportunities to explore bio-nano interfaces. We propose NMR paramagnetic relaxation enhancement as a new tool to detect NP-binding surfaces on proteins with increased sensitivity, also extending the applicability of NMR investigations to heterogeneous biomolecular mixtures. The adsorption of ubiquitin on gadolinium-doped fluoride-based NPs produced residue-specific NMR line-broadening effects mapping to a contiguous area on the surface of the protein. Importantly, an identical paramagnetic fingerprint was observed in the presence of a competing protein-protein association equilibrium, exemplifying possible interactions taking place in crowded biological media. The interaction was further characterized using isothermal titration calorimetry and upconversion emission measurements. The data indicate that the used fluoride-based NPs are not biologically inert but rather are capable of biomolecular recognition.
Collapse
Affiliation(s)
- Serena Zanzoni
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona , 37134 Verona, Italy
| | - Marco Pedroni
- Nanomaterials Research Group, Department of Biotechnology, University of Verona and INSTM , 37134 Verona, Italy
| | - Mariapina D'Onofrio
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona , 37134 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology, University of Verona and INSTM , 37134 Verona, Italy
| | - Michael Assfalg
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona , 37134 Verona, Italy
| |
Collapse
|
21
|
Transient Interactions of a Cytosolic Protein with Macromolecular and Vesicular Cosolutes: Unspecific and Specific Effects. Chembiochem 2015; 16:2633-45. [DOI: 10.1002/cbic.201500451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 01/04/2023]
|
22
|
Tomaselli S, Pagano K, Boulton S, Zanzoni S, Melacini G, Molinari H, Ragona L. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach. FEBS J 2015; 282:4094-113. [PMID: 26260520 DOI: 10.1111/febs.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off.
Collapse
Affiliation(s)
- Simona Tomaselli
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Katiuscia Pagano
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Stephen Boulton
- Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | | | - Giuseppe Melacini
- Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Henriette Molinari
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| |
Collapse
|
23
|
The study of transient protein-nanoparticle interactions by solution NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:102-14. [PMID: 25936778 DOI: 10.1016/j.bbapap.2015.04.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
The rapid development of novel nanoscale materials for applications in biomedicine urges an improved characterization of the nanobio interfaces. Nanoparticles exhibit unique structures and properties, often different from the corresponding bulk materials, and the nature of their interactions with biological systems remains poorly characterized. Solution NMR spectroscopy is a mature technique for the investigation of biomolecular structure, dynamics, and intermolecular associations, however its use in protein-nanoparticle interaction studies remains scarce and highly challenging, particularly due to unfavorable hydrodynamic properties of most nanoscale assemblies. Nonetheless, recent efforts demonstrated that a number of NMR observables, such as chemical shifts, signal intensities, amide exchange rates and relaxation parameters, together with newly designed saturation transfer experiments, could be successfully employed to characterize the orientation, structure and dynamics of proteins adsorbed onto nanoparticle surfaces. This review provides the first survey and critical assessment of the contributions from solution NMR spectroscopy to the study of transient interactions between proteins and both inorganic (gold, silver, and silica) and organic (polymer, carbon and lipid based) nanoparticles. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
|
24
|
Zanzoni S, Ceccon A, Assfalg M, Singh RK, Fushman D, D'Onofrio M. Polyhydroxylated [60]fullerene binds specifically to functional recognition sites on a monomeric and a dimeric ubiquitin. NANOSCALE 2015; 7:7197-205. [PMID: 25811293 PMCID: PMC4443925 DOI: 10.1039/c5nr00539f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which NPs interact with biomolecules. NPs associating with proteins may interfere with protein-protein interactions and affect cellular communication pathways, however the impact of NPs on biomolecular recognition remains poorly characterized. In this respect, particularly relevant is the study of NP-induced functional perturbations of proteins implicated in the regulation of key biochemical pathways. Ubiquitin (Ub) is a prototypical protein post-translational modifier playing a central role in numerous essential biological processes. To contribute to the understanding of the interactions between this universally distributed biomacromolecule and NPs, we investigated the adsorption of polyhydroxylated [60]fullerene on monomeric Ub and on a minimal polyubiquitin chain in vitro at atomic resolution. Site-resolved chemical shift and intensity perturbations of Ub's NMR signals, together with (15)N spin relaxation rate changes, exchange saturation transfer effects, and fluorescence quenching data were consistent with the reversible formation of soluble aggregates incorporating fullerenol clusters. The specific interaction epitopes were identified, coincident with functional recognition sites in a monomeric and lysine48-linked dimeric Ub. Fullerenol appeared to target the open state of the dynamic structure of a dimeric Ub according to a conformational selection mechanism. Importantly, the protein-NP association prevented the enzyme-catalyzed synthesis of polyubiquitin chains. Our findings provide an experiment-based insight into protein/fullerenol recognition, with implications in functional biomolecular communication, including regulatory protein turnover, and for the opportunity of therapeutic intervention in Ub-dependent cellular pathways.
Collapse
Affiliation(s)
- Serena Zanzoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH. The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem Soc Rev 2015; 44:6094-121. [DOI: 10.1039/c5cs00217f] [Citation(s) in RCA: 460] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Besides the wide use of engineered nanomaterials (NMs) in technical products, their applications are not only increasing in biotechnology and biomedicine, but also in the environmental field.
Collapse
Affiliation(s)
- D. Docter
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - D. Westmeier
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - M. Markiewicz
- Department Sustainable Chemistry
- Center for Environmental Research and Sustainable Technology (UFT)
- University of Bremen
- Bremen
| | - S. Stolte
- Department Sustainable Chemistry
- Center for Environmental Research and Sustainable Technology (UFT)
- University of Bremen
- Bremen
- Department of Environmental Analytics
| | - S. K. Knauer
- Institute for Molecular Biology
- CENIDE
- Mainz Scientific Screening Center UG&Co. KG
- University Duisburg-Essen
- 45117 Essen
| | - R. H. Stauber
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| |
Collapse
|