1
|
Mardyukov A, Hernández FJ, Song L, Crespo-Otero R, Schreiner PR. Experimentally Delineating the Catalytic Effect of a Single Water Molecule in the Photochemical Rearrangement of the Phenylperoxy Radical to the Oxepin-2(5 H)-one-5-yl Radical. J Am Chem Soc 2024; 146:19070-19076. [PMID: 38968610 DOI: 10.1021/jacs.4c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Catalysis plays a pivotal role in both chemistry and biology, primarily attributed to its ability to stabilize transition states and lower activation free energies, thereby accelerating reaction rates. While computational studies have contributed valuable mechanistic insights, there remains a scarcity of experimental investigations into transition states. In this work, we embark on an experimental exploration of the catalytic energy lowering associated with transition states in the photorearrangement of the phenylperoxy radical-water complex to the oxepin-2(5H)-one-5-yl radical. Employing matrix isolation spectroscopy, density functional theory, and post-HF computations, we scrutinize the (photo)catalytic impact of a single water molecule on the rearrangement. Our computations indicate that the barrier heights for the water-assisted unimolecular isomerization steps are approximately 2-3 kcal mol-1 lower compared to the uncatalyzed steps. This decrease directly coincides with the energy difference in the required wavelength during the transformation (Δλ = λ546 nm - λ579 nm ≡ 52.4-49.4 = 3.0 kcal mol-1), allowing us to elucidate the differential transition state energy in the photochemical rearrangement of the phenylperoxy radical catalyzed by a single water molecule. Our work highlights the important role of water catalysis and has, among others, implications for understanding the mechanism of organic reactions under atmospheric conditions.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | | | - Lijuan Song
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Rachel Crespo-Otero
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
2
|
Wang T, Li Z, Gao H, Hu J, Chen HY, Xu JJ. Ultrafast C-C and C-N bond formation reactions in water microdroplets facilitated by the spontaneous generation of carbocations. Chem Sci 2023; 14:11515-11520. [PMID: 37886101 PMCID: PMC10599473 DOI: 10.1039/d3sc03870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Carbocations are important electrophilic intermediates in organic chemistry, but their formation typically requires harsh conditions such as extremely low pH, elevated temperature, strong oxidants and/or expensive noble-metal catalysts. Herein, we report the spontaneous generation of highly reactive carbocations in water microdroplets by simply spraying a diarylmethanol aqueous solution. The formation of transient carbocations as well as their ultrafast in-droplet transformations through carbocation-involved C-C and C-N bond formation reactions are directly characterized by mass spectrometry. The intriguing formation and stabilization of carbocations are attributed to the super acidity of the positively charged water microdroplets as well as the high electric fields at the water-air interfaces. Without the utilization of external acids as catalysts, we believe that these microdroplet reactions would pose a new and sustainable way for the construction of aryl-substituted compounds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
3
|
Cao Y, Mieres-Perez J, Rowen JF, Sanchez-Garcia E, Sander W, Morgenstern K. Chirality control of a single carbene molecule by tip-induced van der Waals interactions. Nat Commun 2023; 14:4500. [PMID: 37495625 PMCID: PMC10371978 DOI: 10.1038/s41467-023-39870-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Non-covalent interactions such as van der Waals interactions and hydrogen bonds are crucial for the chiral induction and control of molecules, but it remains difficult to study them at the single-molecule level. Here, we report a carbene molecule on a copper surface as a prototype of an anchored molecule with a facile chirality change. We examine the influence of the attractive van der Waals interactions on the chirality change by regulating the tip-molecule distance, resulting in an excess of a carbene enantiomer. Our model study provides insight into the change of molecular chirality controlled by van der Waals interactions, which is fundamental for understanding the mechanisms of chiral induction and amplification.
Collapse
Affiliation(s)
- Yunjun Cao
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Joel Mieres-Perez
- Computational Bioengineering, Technical University Dortmund, Emil-Figge-Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Universität Duisburg-Essen, Universitätsstr. 2, D-45141, Essen, Germany
| | - Julien Frederic Rowen
- Organic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Elsa Sanchez-Garcia
- Computational Bioengineering, Technical University Dortmund, Emil-Figge-Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Universität Duisburg-Essen, Universitätsstr. 2, D-45141, Essen, Germany
| | - Wolfram Sander
- Organic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Karina Morgenstern
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany.
| |
Collapse
|
4
|
Jiang J, Lu B, Zhu B, Li X, Rauhut G, Zeng X. Hydrogen-Bonded π Complexes between Phosphaethyne and Hydrogen Chloride. J Phys Chem Lett 2023; 14:4327-4333. [PMID: 37133825 DOI: 10.1021/acs.jpclett.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The highly labile complexes between phosphaethyne (HCP) and hydrogen chloride (HCl) with 1:1 and 1:2 stoichiometries have been generated in Ar and N2 matrices at 10 K through laser photolysis of the molecular precursors 1-chlorophosphaethene (CH2PCl) and dichloromethylphosphine (CH3PCl2), respectively. The IR spectrum of the 1:1 complex suggests the preference of a single "T-shaped" structure in which HCl acts as the hydrogen donor that interacts with the electron-rich C≡P triple bond. In contrast, three isomeric structures for the 1:2 complex bearing a core structure of the "T-shaped" 1:1 complex are present in the matrix. The spectroscopic identification of these rare HCP π-electron complexes is supported by D-isotope labeling and the quantum chemical calculations at the CCSD(T)-F12a/cc-pVTZ-F12 level of theory.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Bifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xiaolong Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Brusar V, Forjan M, Ljubić I, Alešković M, Becker K, Vdović S. Ultrafast Photoelimination of Nitrogen from Upper Excited States of Diazoalkanes and the Fate of Carbenes Formed in the Reaction. J Org Chem 2023; 88:4286-4300. [PMID: 36943919 DOI: 10.1021/acs.joc.2c02875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The photochemical reactivity of diphenyldiazomethane 1 and phenyl 1- and 2-adamantyl diazomethanes 2 and 3, respectively, was investigated by transient absorption spectroscopy (TA). Photoelimination of N2 upon UV excitation takes place in the anti-Kasha ultrafast photochemical reaction from the upper excited singlet states to deliver singlet carbenes, which were, in the case of 1 and 2, detected by fs-TA. The reactivity of the carbenes differs with respect to the substituent at the carbene center. The singlet car-1 in a nonpolar solvent delivers the triplet carbene by intersystem crossing (ISC). Singlet car-2 does not undergo ISC but reacts in the intermolecular insertion reactions into C-H bonds. Car-3 has an α-C-H bond next to the carbene center and reacts rapidly in the intramolecular C-H insertion reaction to deliver alkene, precluding its detection by fs-TA. However, the isolation of ketone photoproducts from 3 is highly indicative of triplet car-3's intermediate formation. The TA spectra from the S1-S3 states of 1-3 were computed using time-dependent density functional theory, while the multiconfigurational perturbation theory to the second order was used for the absorption spectra of the corresponding singlet and triplet carbenes. The modeled and measured spectra are in good agreement, and the computations corroborate the assignments of the key short-lived intermediates.
Collapse
Affiliation(s)
- Vedran Brusar
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia
| | - Mateo Forjan
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia
| | - Ivan Ljubić
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Kristin Becker
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Silvije Vdović
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Somani A, Sander W. Reaction of electrons trapped in cryogenic matrices with benzophenone. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankit Somani
- Lehrstuhl für Organische Chemie II Ruhr‐Universität Bochum Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II Ruhr‐Universität Bochum Bochum Germany
| |
Collapse
|
7
|
Henkel S, Merini MP, Mendez-Vega E, Sander W. Lewis acid catalyzed heavy atom tunneling - the case of 1 H-bicyclo[3.1.0]-hexa-3,5-dien-2-one. Chem Sci 2021; 12:11013-11019. [PMID: 34522298 PMCID: PMC8386641 DOI: 10.1039/d1sc02853g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
For many thermal reactions, the effects of catalysis or the influence of solvents on reaction rates can be rationalized by simple transition state models. This is not the case for reactions controlled by quantum tunneling, which do not proceed via transition states, and therefore lack the simple concept of transition state stabilization. 1H-Bicyclo[3.1.0]-hexa-3,5-dien-2-one is a highly strained cyclopropene that rearranges to 4-oxocyclohexa-2,5-dienylidene via heavy-atom tunneling. H2O, CF3I, or BF3 form Lewis acid–base complexes with both reactant and product, and the influence of these intermolecular complexes on the tunneling rates for this rearrangement was studied. The tunneling rate increases by a factor of 11 for the H2O complex, by 23 for the CF3I complex, and is too fast to be measured for the BF3 complex. These observations agree with quantum chemical calculations predicting a decrease in both barrier height and barrier width upon complexation with Lewis acids, resulting in the observed Lewis acid catalysis of the tunneling rearrangement. The ring-opening of a highly strained cyclopropene to a carbene proceeds via heavy-atom tunneling. This rearrangement is accelerated in the presence of H2O, ICF3 or BF3, resulting in a novel Lewis-acid catalyzed tunneling reaction.![]()
Collapse
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| |
Collapse
|
8
|
Zhao C, Lin H, Shan A, Guo S, Li X, Zhang X. Theoretical study on the noncovalent interactions involving triplet diphenylcarbene. J Mol Model 2021; 27:224. [PMID: 34244865 DOI: 10.1007/s00894-021-04838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
The properties of some types of noncovalent interactions formed by triplet diphenylcarbene (DPC3) have been investigated by means of density functional theory (DFT) calculations and quantum theory of atoms in molecule (QTAIM) studies. The DPC3···LA (LA = AlF3, SiF4, PF5, SF2, ClF) complexes have been analyzed from their equilibrium geometries, binding energies, and properties of electron density. The triel bond in the DPC3···AlF3 complex exhibits a partially covalent nature, with the binding energy - 65.7 kJ/mol. The tetrel bond, pnicogen bond, chalcogen bond, and halogen bond in the DPC3···LA (LA = SiF4, PF5, SF2, ClF) complexes show the character of a weak closed-shell noncovalent interaction. Polarization plays an important role in the formation of the studied complexes. The strength of intermolecular interaction decreases in the order LA = AlF3 > ClF > SF2 > SiF4 > PF5. The electron spin density transfers from the radical DPC3 to ClF and SF2 in the formation of halogen bond and chalcogen bond, but for the DPC3···AlF3/SiF4/PF5 complexes, the transfer of electron spin density is minimal.
Collapse
Affiliation(s)
- Chunhong Zhao
- Huihua College of Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Hui Lin
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Aiting Shan
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Shaofu Guo
- Huihua College of Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
9
|
Knorr J, Sokkar P, Costa P, Sander W, Sanchez-Garcia E, Nuernberger P. How Protic Solvents Determine the Reaction Mechanisms of Diphenylcarbene in Solution. J Org Chem 2019; 84:11450-11457. [PMID: 31343881 DOI: 10.1021/acs.joc.9b01228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigate the effects of small admixtures of protic solvent molecules, such as water and alcohols, on the ultrafast dynamics of diphenylcarbene in acetonitrile at room temperature. Broadband transient absorption measurements and quantum mechanics/molecular mechanics molecular dynamics simulations allow elucidating the dominant reaction mechanism of an intermediate hydrogen-bonded complex between singlet diphenylcarbene and a protic solvent molecule, thus competing with intersystem crossing. Analysis of the data indicates that complex formation is a diffusion-controlled process with orientational requirements. The reaction path involving a benzhydryl cation is less likely in neat bulkier alcohols, as it requires the interaction of the carbene with a protic solvent molecule being part of a hydrogen-bonded network. The simulations indicate a further reaction path toward O-H insertion and two side reactions depending on the involved protic solvent species. Thus, we established that not only the number but also the chemical nature of the protic solvent molecule determine which reaction path is pursued.
Collapse
Affiliation(s)
| | - Pandian Sokkar
- Computational Biochemistry, Center of Medical Biotechnology , University of Duisburg-Essen , 45117 Essen , Germany
| | | | | | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology , University of Duisburg-Essen , 45117 Essen , Germany
| | | |
Collapse
|
10
|
|
11
|
Mendez-Vega E, Mieres-Perez J, Chapyshev SV, Sander W. Persistent Organic High-Spin Trinitrenes. Angew Chem Int Ed Engl 2019; 58:12994-12998. [PMID: 31265166 PMCID: PMC7687127 DOI: 10.1002/anie.201904556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/15/2022]
Abstract
The septet ground state trinitrenes 1,3,5‐trichloro‐2,4,6‐trinitrenobenzene and 1,3,5‐tribromo‐2,4,6‐trinitrenobenzene were isolated in inert (Ar, Ne, and Xe) as well as reactive matrices (H2, O2, and H2O) at cryogenic temperatures. These trinitrenes were obtained in high yields by UV photolysis of the corresponding triazides and characterized by IR and UV/Vis spectroscopy. The trinitrenes, despite bearing six unpaired electrons, are remarkably unreactive towards molecular oxygen and hydrogen and are persistent in water ice up to 160 K where the water matrix starts to sublime off.
Collapse
Affiliation(s)
- Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Sergei V Chapyshev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
12
|
Ghafarian Shirazi R, Neese F, Pantazis DA, Bistoni G. Physical Nature of Differential Spin-State Stabilization of Carbenes by Hydrogen and Halogen Bonding: A Domain-Based Pair Natural Orbital Coupled Cluster Study. J Phys Chem A 2019; 123:5081-5090. [PMID: 30938995 PMCID: PMC6727382 DOI: 10.1021/acs.jpca.9b01051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Indexed: 11/28/2022]
Abstract
The variation in the singlet-triplet energy gap of diphenylcarbene (DPC) upon interaction with hydrogen (water and methanol) or halogen bond (XCF3, X = Cl, Br, I) donors to form van der Waals (vdW) complexes is investigated in relation to the electrostatic and dispersion components of such intermolecular interactions. The domain-based local pair natural orbital coupled cluster method, DLPNO-CCSD(T), is used for calculating accurate single-triplet energy gaps and interaction energies for both spin states. The local energy decomposition scheme is used to provide an accurate quantification to the various interaction energy components at the DLPNO-CCSD(T) level. It is shown that the formation of vdW adducts stabilizes the singlet state of DPC, and in the case of water, methanol, and ICF3, it reverses the ground state from triplet to singlet. Electrostatic interactions are significant in both spin states, but preferentially stabilize the singlet state. For methanol and ClCF3, London dispersion forces have the opposite effect, stabilizing preferentially the triplet state. The quantification of the energetic components of the interactions through the local energy decomposition analysis correlates well with experimental findings and provides the basis for more elaborate treatments of microsolvation in carbenes.
Collapse
Affiliation(s)
- Reza Ghafarian Shirazi
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Altun A, Saitow M, Neese F, Bistoni G. Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. J Chem Theory Comput 2019; 15:1616-1632. [PMID: 30702888 PMCID: PMC6728066 DOI: 10.1021/acs.jctc.8b01145] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Local
energy decomposition (LED) analysis decomposes the interaction
energy between two fragments calculated at the domain-based local
pair natural orbital CCSD(T) (DLPNO-CCSD(T)) level of theory into
a series of chemically meaningful contributions and has found widespread
applications in the study of noncovalent interactions. Herein, an
extension of this scheme that allows for the analysis of interaction
energies of open-shell molecular systems calculated at the UHF-DLPNO-CCSD(T)
level is presented. The new scheme is illustrated through applications
to the CH2···X (X = He, Ne, Ar, Kr, and
water) and heme···CO interactions in the low-lying
singlet and triplet spin states. The results are used to discuss the
mechanism that governs the change in the singlet–triplet energy
gap of methylene and heme upon adduct formation.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science , Nagoya University , 1-5 Chikusa-ku , 464-8602 Nagoya , Japan
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
14
|
Bartalucci N, Marchetti F, Zacchini S, Pampaloni G. Decarbonylation of phenylacetic acids by high valent transition metal halides. Dalton Trans 2019; 48:5725-5734. [DOI: 10.1039/c9dt00551j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The unusual decarbonylation of α-phenyl carboxylic acids with suitable substituents is a general reaction promoted at room temperature by homoleptic halides of high valent transition metals.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- I-40136 Bologna
- Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
15
|
Alkorta I, Elguero J. Interaction ofN-Heterocyclic Carbenes and Simple Carbenes with Small Molecules (One to Three Atoms) Excluding Metals: Formation of Covalent C-X Bonds. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica; CSIC; Juan de la Cierva, 3 Madrid E-28006 Spain
| | - José Elguero
- Instituto de Química Médica; CSIC; Juan de la Cierva, 3 Madrid E-28006 Spain
| |
Collapse
|
16
|
Raut AH, Costa P, Sander W. Reactions of Arylcarbenes with Lewis Acids. Chemistry 2018; 24:18043-18051. [PMID: 30230615 DOI: 10.1002/chem.201803695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/10/2022]
Abstract
The reactions of the three triplet ground state arylcarbenes diphenylcarbene 1, fluorenylidene 2, and dibenzocycloheptadienylidene 3 with the Lewis acids H2 O, ICF3 , and BF3 were studied under the conditions of matrix isolation. H2 O was selected as typical hydrogen bond donor, ICF3 as halogen bond donor, and BF3 as strong Lewis acid. H2 O forms hydrogen-bonded complexes of the singlet carbenes with 1 and 2, but not with 3. This is rationalized by the larger singlet-triplet gap of 3, which does not allow to stabilize the singlet state below the triplet state by hydrogen bonding. With ICF3 , both 1 and 3 form halogen-bonded complexes of the singlet states of the carbenes. This indicates that halogen bonding stabilizes singlet carbenes more than hydrogen bonding. Carbene 2 reacts differently from 1 and 3 by forming an iodonium ylide, thus avoiding antiaromatic destabilization of the fluorenyl unit. With BF3 , all three carbenes form zwitterionic Lewis acid/base complexes.
Collapse
Affiliation(s)
- Akshay Hemant Raut
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| |
Collapse
|
17
|
Mendez‐Vega E, Maehara M, Raut AH, Mieres‐Perez J, Tsuge M, Lee Y, Sander W. Activation of Molecular Hydrogen by Arylcarbenes. Chemistry 2018; 24:18801-18808. [DOI: 10.1002/chem.201804657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Enrique Mendez‐Vega
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Mika Maehara
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Akshay Hemant Raut
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Joel Mieres‐Perez
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yuan‐Pern Lee
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University, Hsinchu 30010 (Taiwan)Institute of Atomic and Molecular SciencesAcademia Sinica Taipei 10617 Taiwan
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
18
|
Mieres-Perez J, Costa P, Mendez-Vega E, Crespo-Otero R, Sander W. Switching the Spin State of Pentafluorophenylnitrene: Isolation of a Singlet Arylnitrene Complex. J Am Chem Soc 2018; 140:17271-17277. [DOI: 10.1021/jacs.8b10792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS, U.K
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
19
|
Henkel S, Trosien I, Mieres-Pérez J, Lohmiller T, Savitsky A, Sanchez-Garcia E, Sander W. Reactions of Cyclopentadienylidenes with CF 3I: Electron Bond Donation versus Halogen Bond Donation of the Iodine Atom. J Org Chem 2018; 83:7586-7592. [PMID: 30019897 DOI: 10.1021/acs.joc.8b01328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction of cyclopentadienylidene and tetrachlorocyclopentadienylidene with the halogen bond donor CF3I has been studied by matrix isolation spectroscopy. The carbenes were produced by photolysis of the corresponding diazo compounds, matrix-isolated in argon doped with 1% CF3I at 3 K. Bimolecular reactions between the carbenes and CF3I were induced by annealing these matrices to 25-30 K to allow for the diffusion of trapped species. Instead of classical halogen-bonded complexes, these carbenes form complexes in which the iodine atom is shared between the carbene center and the CF3 group. Photolysis of the complexes at 3 K yields radical pairs, which reversibly react back to the complexes when the matrices are warmed to 25-30 K.
Collapse
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany.,Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany
| | - Iris Trosien
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| | - Joel Mieres-Pérez
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| | - Thomas Lohmiller
- Max-Planck-Institut für Chemische Energiekonversion , 45470 Mülheim an der Ruhr , Germany
| | - Anton Savitsky
- Max-Planck-Institut für Chemische Energiekonversion , 45470 Mülheim an der Ruhr , Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| |
Collapse
|
20
|
Costa P, Trosien I, Mieres-Perez J, Sander W. Isolation of an Antiaromatic Singlet Cyclopentadienyl Zwitterion. J Am Chem Soc 2017; 139:13024-13030. [DOI: 10.1021/jacs.7b05807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paolo Costa
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Iris Trosien
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
21
|
Radhakrishnan S, Mieres-Perez J, Gudipati MS, Sander W. Photoinduced Reversible Electron Transfer Between the Benzhydryl Radical and Benzhydryl Cation in Amorphous Water–Ice. J Phys Chem A 2017; 121:6405-6412. [DOI: 10.1021/acs.jpca.7b05466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumya Radhakrishnan
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Murthy S. Gudipati
- Science
Division, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Wolfram Sander
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
22
|
Tsegaw YA, Kadam PE, Tötsch N, Sanchez-Garcia E, Sander W. Is Magnetic Bistability of Carbenes a General Phenomenon? Isolation of Simple Aryl(trifluoromethyl)carbenes in Both Their Singlet and Triplet States. J Am Chem Soc 2017; 139:12310-12316. [DOI: 10.1021/jacs.7b06868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yetsedaw A. Tsegaw
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Pritam E. Kadam
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Niklas Tötsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
- Universität Duisburg-Essen, Universitätsstrasse
2, 45141 Essen, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
- Universität Duisburg-Essen, Universitätsstrasse
2, 45141 Essen, Germany
| | - Wolfram Sander
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
23
|
Costa P, Mieres-Perez J, Özkan N, Sander W. Activation of the B-F Bond by Diphenylcarbene: A Reversible 1,2-Fluorine Migration between Boron and Carbon. Angew Chem Int Ed Engl 2017; 56:1760-1764. [PMID: 28071849 DOI: 10.1002/anie.201610179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/29/2016] [Indexed: 11/05/2022]
Abstract
Experiments in low-temperature matrices reveal that triplet diphenylcarbene inserts into the very strong B-F bond of BF3 in a two-step reaction. The first step is the formation of a strongly bound Lewis acid-base complex between the singlet state of diphenylcarbene and BF3 . This step involves an inversion of the spin state of the carbene from triplet to singlet. The second step requires visible-light photochemical activation to induce a 1,2-F migration from boron to the adjacent carbon atom under formation of the formal insertion product of the carbene center into BF3 . The 1,2-F migration is reversible under short-wavelength UV irradiation, thus leading back to the Lewis acid-base adduct.
Collapse
Affiliation(s)
- Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Nesli Özkan
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
24
|
Costa P, Mieres-Perez J, Özkan N, Sander W. Activation of the B−F Bond by Diphenylcarbene: A Reversible 1,2-Fluorine Migration between Boron and Carbon. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paolo Costa
- Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Nesli Özkan
- Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|
25
|
Standard JM. Effects of Solvation and Hydrogen Bond Formation on Singlet and Triplet Alkyl or Aryl Carbenes. J Phys Chem A 2016; 121:381-393. [DOI: 10.1021/acs.jpca.6b11202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean M. Standard
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
26
|
Knorr J, Sokkar P, Schott S, Costa P, Thiel W, Sander W, Sanchez-Garcia E, Nuernberger P. Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures. Nat Commun 2016; 7:12968. [PMID: 27708264 PMCID: PMC5059701 DOI: 10.1038/ncomms12968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/22/2016] [Indexed: 12/02/2022] Open
Abstract
Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate. Photochemistry in solution often involves coexisting reaction channels that may comprise intermediates capturing a solvent molecule. Here, the authors show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour.
Collapse
Affiliation(s)
- Johannes Knorr
- Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Pandian Sokkar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sebastian Schott
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Paolo Costa
- Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Wolfram Sander
- Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
27
|
Richter G, Mendez-Vega E, Sander W. Singlet Halophenylcarbenes as Strong Hydrogen-Bond Acceptors. J Phys Chem A 2016; 120:3524-32. [DOI: 10.1021/acs.jpca.6b02550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Geneviève Richter
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
28
|
Hao WJ, Du Y, Wang D, Jiang B, Gao Q, Tu SJ, Li G. Catalytic Diazosulfonylation of Enynals toward Diazoindenes via Oxidative Radical-Triggered 5-exo-trig Carbocyclizations. Org Lett 2016; 18:1884-7. [DOI: 10.1021/acs.orglett.6b00655] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wen-Juan Hao
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yan Du
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Dan Wang
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Qian Gao
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Guigen Li
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
29
|
Henkel S, Costa P, Klute L, Sokkar P, Fernandez-Oliva M, Thiel W, Sanchez-Garcia E, Sander W. Switching the Spin State of Diphenylcarbene via Halogen Bonding. J Am Chem Soc 2016; 138:1689-97. [PMID: 26762326 DOI: 10.1021/jacs.5b12726] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interactions between diphenylcarbene DPC and the halogen bond donors CF3I and CF3Br were investigated using matrix isolation spectroscopy (IR, UV-vis, and EPR) in combination with QM and QM/MM calculations. Both halogen bond donors CF3X form very strong complexes with the singlet state of DPC, but only weakly interact with triplet DPC. This results in a switching of the spin state of DPC, the singlet complexes becoming more stable than the triplet complexes. CF3I forms a second complex (type II) with DPC that is thermodynamically slightly more stable. Calculations predict that in this second complex the DPC···I distance is shorter than the F3C···I distance, whereas in the first (type I) complex the DPC···I distance is, as expected, longer. CF3Br only forms the type I complex. Upon irradiation I or Br, respectively, are transferred to the DPC carbene center and radical pairs are formed. Finally, on annealing, the formal C-X insertion product of DPC is observed. Thus, halogen bonding is a powerful new principle to control the spin state of reactive carbenes.
Collapse
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Linda Klute
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Pandian Sokkar
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | | | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| |
Collapse
|
30
|
Costa P, Lohmiller T, Trosien I, Savitsky A, Lubitz W, Fernandez-Oliva M, Sanchez-Garcia E, Sander W. Light and Temperature Control of the Spin State of Bis(p-methoxyphenyl)carbene: A Magnetically Bistable Carbene. J Am Chem Soc 2016; 138:1622-9. [DOI: 10.1021/jacs.5b11696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paolo Costa
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Thomas Lohmiller
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany
| | - Iris Trosien
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Anton Savitsky
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany
| | | | | | - Wolfram Sander
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
31
|
Costa P, Trosien I, Fernandez-Oliva M, Sanchez-Garcia E, Sander W. The Fluorenyl Cation. Angew Chem Int Ed Engl 2015; 54:2656-60. [DOI: 10.1002/anie.201411234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/10/2022]
|
32
|
Costa P, Trosien I, Fernandez-Oliva M, Sanchez-Garcia E, Sander W. The Fluorenyl Cation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|