1
|
Bunyat-Zada AR, Ducharme SE, Cleveland ME, Hoffman ER, Howe GW. Genome Mining Leads to the Identification of a Stable and Promiscuous Baeyer-Villiger Monooxygenase from a Thermophilic Microorganism. Chembiochem 2024; 25:e202400443. [PMID: 38991205 DOI: 10.1002/cbic.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are NAD(P)H-dependent flavoproteins that convert ketones to esters and lactones. While these enzymes offer an appealing alternative to traditional Baeyer-Villiger oxidations, these proteins tend to be either too unstable or exhibit too narrow of a substrate scope for implementation as industrial biocatalysts. Here, sequence similarity networks were used to search for novel BVMOs that are both stable and promiscuous. Our genome mining led to the identification of an enzyme from Chloroflexota bacterium (strain G233) dubbed ssnBVMO that exhibits i) the highest melting temperature of any naturally sourced BVMO (62.5 °C), ii) a remarkable kinetic stability across a wide range of conditions, similar to those of PAMO and PockeMO, iii) optimal catalysis at 50 °C, and iv) a broad substrate scope that includes linear aliphatic, aromatic, and sterically bulky ketones. Subsequent quantitative assays using propiophenone demonstrated >95 % conversion. Several fusions were also constructed that linked ssnBVMO to a thermostable phosphite dehydrogenase. These fusions can recycle NADPH and catalyze oxidations with sub-stoichiometric quantities of this expensive cofactor. Characterization of these fusions permitted identification of PTDH-L1-ssnBVMO as the most promising protein that could have utility as a seed sequence for enzyme engineering campaigns aiming to develop biocatalysts for Baeyer-Villiger oxidations.
Collapse
Affiliation(s)
- Amir R Bunyat-Zada
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephan E Ducharme
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Maria E Cleveland
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Esther R Hoffman
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Graeme W Howe
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
2
|
Li X, Li C, Qu G, Yuan B, Sun Z. Engineering of a Baeyer-Villiger monooxygenase to Improve Substrate Scope, Stereoselectivity and Regioselectivity. Chembiochem 2024; 25:e202400328. [PMID: 38742991 DOI: 10.1002/cbic.202400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Baeyer-Villiger monooxygenases belong to a family of flavin-binding proteins that catalyze the Baeyer-Villiger (BV) oxidation of ketones to produce lactones or esters, which are important intermediates in pharmaceuticals or sustainable materials. Phenylacetone monooxygenase (PAMO) from Thermobifida fusca with moderate thermostability catalyzes the oxidation of aryl ketone substrates, but is limited by high specificity and narrow substrate scope. In the present study, we applied loop optimization by loop swapping followed by focused saturation mutagenesis in order to evolve PAMO mutants capable of catalyzing the regioselective BV oxidation of cyclohexanone and cyclobutanone derivatives with formation of either normal or abnormal esters or lactones. We further modulated PAMO to increase enantioselectivity. Crystal structure studies indicate that rotation occurs in the NADP-binding domain and that the high B-factor region is predominantly distributed in the catalytic pocket residues. Computational analyses further revealed dynamic character in the catalytic pocket and reshaped hydrogen bond interaction networks, which is more favorable for substrate binding. Our study provides useful insights for studying enzyme-substrate adaptations.
Collapse
Affiliation(s)
- Xu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| |
Collapse
|
3
|
Yang G, Pećanac O, Wijma HJ, Rozeboom HJ, de Gonzalo G, Fraaije MW, Mascotti ML. Evolution of the catalytic mechanism at the dawn of the Baeyer-Villiger monooxygenases. Cell Rep 2024; 43:114130. [PMID: 38640062 DOI: 10.1016/j.celrep.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Enzymes are crucial for the emergence and sustenance of life on earth. How they became catalytically active during their evolution is still an open question. Two opposite explanations are plausible: acquiring a mechanism in a series of discrete steps or all at once in a single evolutionary event. Here, we use molecular phylogeny, ancestral sequence reconstruction, and biochemical characterization to follow the evolution of a specialized group of flavoprotein monooxygenases, the bacterial Baeyer-Villiger monooxygenases (BVMOs). These enzymes catalyze an intricate chemical reaction relying on three different elements: a reduced nicotinamide cofactor, dioxygen, and a substrate. Characterization of ancestral BVMOs shows that the catalytic mechanism evolved in a series of steps starting from a FAD-binding protein and further acquiring reactivity and specificity toward each of the elements participating in the reaction. Together, the results of our work portray how an intrinsically complex catalytic mechanism emerged during evolution.
Collapse
Affiliation(s)
- Guang Yang
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ognjen Pećanac
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Henriëtte J Rozeboom
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41012 Sevilla, Spain
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
4
|
Rodriguez‐Abetxuko A, Reifs A, Sánchez‐deAlcázar D, Beloqui A. A Versatile Chemoenzymatic Nanoreactor that Mimics NAD(P)H Oxidase for the In Situ Regeneration of Cofactors. Angew Chem Int Ed Engl 2022; 61:e202206926. [PMID: 35762738 PMCID: PMC9796410 DOI: 10.1002/anie.202206926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 01/01/2023]
Abstract
Herein, we report a multifunctional chemoenzymatic nanoreactor (NanoNOx) for the glucose-controlled regeneration of natural and artificial nicotinamide cofactors. NanoNOx are built of glucose oxidase-polymer hybrids that assemble in the presence of an organometallic catalyst: hemin. The design of the hybrid is optimized to increase the effectiveness and the directional channeling at low substrate concentration. Importantly, NanoNOx can be reutilized without affecting the catalytic properties, can show high stability in the presence of organic solvents, and can effectively oxidize assorted natural and artificial enzyme cofactors. Finally, the hybrid was successfully coupled with NADH-dependent dehydrogenases in one-pot reactions, using a strategy based on the sequential injection of a fuel, namely, glucose. Hence, this study describes the first example of a hybrid chemoenzymatic nanomaterial able to efficiently mimic NOx enzymes in cooperative one-pot cascade reactions.
Collapse
Affiliation(s)
- Andoni Rodriguez‐Abetxuko
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA)Tolosa Hiribidea 7620018Donostia-San SebastiánSpain
| | - Antonio Reifs
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA)Tolosa Hiribidea 7620018Donostia-San SebastiánSpain
| | - Daniel Sánchez‐deAlcázar
- POLYMAT and Department of Applied ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Beloqui
- POLYMAT and Department of Applied ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel Lardizabal 320018Donostia-San SebastiánSpain,IKERBASQUEPlaza Euskadi 548009BilbaoSpain
| |
Collapse
|
5
|
Rodriguez-Abetxuko A, Reifs A, Sánchez-deAlcázar D, Beloqui A. A Versatile Chemoenzymatic Nanoreactor that Mimics NAD(P)H Oxidase for the In Situ Regeneration of Cofactors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Ana Beloqui
- University of the Basque Country: Universidad del Pais Vasco POLYMAT Tolosa, 76 SPAIN
| |
Collapse
|
6
|
Haikazian S, Olson MF. MICAL1 Monooxygenase in Autosomal Dominant Lateral Temporal Epilepsy: Role in Cytoskeletal Regulation and Relation to Cancer. Genes (Basel) 2022; 13:715. [PMID: 35627100 PMCID: PMC9141472 DOI: 10.3390/genes13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetic focal epilepsy associated with mutations in the LGI1, RELN, and MICAL1 genes. A previous study linking ADLTE with two MICAL1 mutations that resulted in the substitution of a highly conserved glycine residue for serine (G150S) or a frameshift mutation that swapped the last three C-terminal amino acids for 59 extra residues (A1065fs) concluded that the mutations increased enzymatic activity and promoted cell contraction. The roles of the Molecule Interacting with CasL 1 (MICAL1) protein in tightly regulated semaphorin signaling pathways suggest that activating MICAL1 mutations could result in defects in axonal guidance during neuronal development. Further studies would help to illuminate the causal relationships of these point mutations with ADLTE. In this review, we discuss the proposed pathogenesis caused by mutations in these three genes, with a particular emphasis on the G150S point mutation discovered in MICAL1. We also consider whether these types of activating MICAL1 mutations could be linked to cancer.
Collapse
Affiliation(s)
| | - Michael F. Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
7
|
Seo E, Kim M, Park S, Park S, Oh D, Bornscheuer U, Park J. Enzyme Access Tunnel Engineering in Baeyer‐Villiger Monooxygenases to Improve Oxidative Stability and Biocatalyst Performance. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eun‐Ji Seo
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Myeong‐Ju Kim
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - So‐Yeon Park
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Seongsoon Park
- Department of Chemistry, Center for NanoBio Applied Technology Sungshin Women's University Seoul 01133 Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Uwe Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis Greifswald University Greifswald 17487 Germany
| | - Jin‐Byung Park
- Department of Food Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
8
|
Tinikul R, Lawan N, Akeratchatapan N, Pimviriyakul P, Chinantuya W, Suadee C, Sucharitakul J, Chenprakhon P, Ballou DP, Entsch B, Chaiyen P. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase. FEBS J 2020; 288:3246-3260. [PMID: 33289305 DOI: 10.1111/febs.15653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Bacterial luciferase catalyzes a bioluminescent reaction by oxidizing long-chain aldehydes to acids using reduced FMN and oxygen as co-substrates. Although a flavin C4a-peroxide anion is postulated to be the intermediate reacting with aldehyde prior to light liberation, no clear identification of the protonation status of this intermediate has been reported. Here, transient kinetics, pH variation, and site-directed mutagenesis were employed to probe the protonation state of the flavin C4a-hydroperoxide in bacterial luciferase. The first observed intermediate, with a λmax of 385 nm, transformed to an intermediate with a λmax of 375 nm. Spectra of the first observed intermediate were pH-dependent, with a λmax of 385 nm at pH < 8.5 and 375 at pH > 9, correlating with a pKa of 7.7-8.1. These data are consistent with the first observed flavin C4a intermediate at pH < 8.5 being the protonated flavin C4a-hydroperoxide, which loses a proton to become an active flavin C4a-peroxide. Stopped-flow studies of His44Ala, His44Asp, and His44Asn variants showed only a single intermediate with a λmax of 385 nm at all pH values, and none of these variants generate light. These data indicate that His44 variants only form a flavin C4a-hydroperoxide, but not an active flavin C4a-peroxide, indicating an essential role for His44 in deprotonating the flavin C4a-hydroperoxide and initiating chemical catalysis. We also investigated the function of the adjacent His45; stopped-flow data and molecular dynamics simulations identify the role of this residue in binding reduced FMN.
Collapse
Affiliation(s)
- Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiangmai University, Thailand
| | - Nattanon Akeratchatapan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wachirawit Chinantuya
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chutintorn Suadee
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand
| | - David P Ballou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Barrie Entsch
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
9
|
Abstract
Flavoenzymes are broadly employed as biocatalysts for a large variety of reactions, owing to the chemical versatility of the flavin cofactor. Oxidases set aside, many flavoenzymes require a source of electrons in form of the biological reductant nicotinamide NAD(P)H in order to initiate catalysis via the reduced flavin. Chemists can take advantage of the reactivity of reduced flavins with oxygen to carry out monooxygenation reactions, while the reduced flavin can also be used for formal hydrogenation reactions. The main advantage of these reactions compared to chemical approaches is the frequent regio-, chemo- and stereo-selectivity of the biocatalysts, which allows the synthesis of chiral molecules in optically active form. This chapter provides an overview of the variety of biocatalytic processes that have been developed with flavoenzymes, with a particular focus on nicotinamide-dependent enzymes. The diversity of molecules obtained is highlighted and in several cases, strategies that allow control of the stereochemical outcome of the reactions are reviewed.
Collapse
Affiliation(s)
- Mélanie Hall
- Department of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
10
|
Kim T, Kang S, Park J, Oh D. Construction of an engineered biocatalyst system for the production of medium‐chain α,ω‐dicarboxylic acids from medium‐chain ω‐hydroxycarboxylic acids. Biotechnol Bioeng 2020; 117:2648-2657. [DOI: 10.1002/bit.27433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tae‐Hun Kim
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Su‐Hwan Kang
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science and EngineeringEwha Womans University Seoul Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| |
Collapse
|
11
|
Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases. Int J Mol Sci 2020; 21:ijms21113797. [PMID: 32471202 PMCID: PMC7312611 DOI: 10.3390/ijms21113797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/30/2022] Open
Abstract
In this review, recent progress in the engineering of the oxidative half-reaction of flavin-dependent oxidases and dehydrogenases is discussed, considering their current and future applications in bioelectrochemical studies, such as for the development of biosensors and biofuel cells. There have been two approaches in the studies of oxidative half-reaction: engineering of the oxidative half-reaction with oxygen, and engineering of the preference for artificial electron acceptors. The challenges for engineering oxidative half-reactions with oxygen are further categorized into the following approaches: (1) mutation to the putative residues that compose the cavity where oxygen may be located, (2) investigation of the vicinities where the reaction with oxygen may take place, and (3) investigation of possible oxygen access routes to the isoalloxazine ring. Among these approaches, introducing a mutation at the oxygen access route to the isoalloxazine ring represents the most versatile and effective strategy. Studies to engineer the preference of artificial electron acceptors are categorized into three different approaches: (1) engineering of the charge at the residues around the substrate entrance, (2) engineering of a cavity in the vicinity of flavin, and (3) decreasing the glycosylation degree of enzymes. Among these approaches, altering the charge in the vicinity where the electron acceptor may be accessed will be most relevant.
Collapse
|
12
|
Abstract
Flavin-dependent monooxygenases (FMOs) are ancient enzymes present in all kingdoms of life. FMOs typically catalyze the incorporation of an oxygen atom from molecular oxygen into small molecules. To date, the majority of functional characterization studies have been performed on mammalian, fungal and bacterial FMOs, showing that they play fundamental roles in drug and xenobiotic metabolism. By contrast, our understanding of FMOs across the plant kingdom is very limited, despite plants possessing far greater FMO diversity compared to both bacteria and other multicellular organisms. Here, we review the progress of plant FMO research, with a focus on FMO diversity and functionality. Significantly, of the FMOs characterized to date, they all perform oxygenation reactions that are crucial steps within hormone metabolism, pathogen resistance, signaling and chemical defense. This demonstrates the fundamental role FMOs have within plant metabolism, and presents significant opportunities for future research pursuits and downstream applications.
Collapse
|
13
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Expression, biochemical characterization, and mutation of a water forming NADH: FMN oxidoreductase from Lactobacillus rhamnosus. Enzyme Microb Technol 2019; 134:109464. [PMID: 32044036 DOI: 10.1016/j.enzmictec.2019.109464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 01/03/2023]
Abstract
Enzyme-catalyzed cofactor regeneration is a significant approach to avoid large quantities consumption of oxidized cofactor, which is vital in a variety of bioconversion reactions. NADH: FMN oxidoreductase is an ideal regenerating enzyme because innocuous molecular oxygen is required as an oxidant. But the by-product H2O2 limits its further applications at the industrial scale. Here, novel NADH: FMN oxidoreductase (LrFOR) from Lactobacillus rhamnosus comprised of 1146 bp with a predicted molecular weight of 42 kDa was cloned and overexpressed in Escherichia coli BL21 (DE3). Enzyme assay shows that the purified recombinant LrFOR has both the NADPH and NADH oxidation activity. Biochemical characterizations suggested that LrFOR exhibits the specific activity of 39.8 U·mg-1 with the optimal pH and temperature of 5.6 and 35 °C and produces H2O instead of potentially harmful peroxide. To further study its catalytic function, a critical Thr29 residue and its six mutants were investigated. Mutants T29G, T29A, and T29D show notable enhancement in activities compared with the wild type. Molecular docking of NADH into wild type and its mutants reveal that a small size or electronegative of residue in position29 could shorten the distance of NADH and FMN, promoting the electrons transfer and resulting in the increased activity. This work reveals the pivotal role of position 29 in the catalytic function of LrFOR and provides effective catalysts in NAD+ regeneration.
Collapse
|
15
|
Lyu SY, Lin KH, Yeh HW, Li YS, Huang CM, Wang YL, Shih HW, Hsu NS, Wu CJ, Li TL. The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:918-929. [PMID: 31588923 PMCID: PMC6778850 DOI: 10.1107/s2059798319011938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022]
Abstract
Structural and enzymological explorations of p-hydroxy-mandelate oxidase and its mutants uncover an unprecedented electrophilic/nucleophilic duality for the flavin mononucleotide cofactor as well as an intramolecular disproportionation mechanism for an oxidative decarboxylation reaction. The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportionation reaction via an N5-alkanol-FMNred C′α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism.
Collapse
Affiliation(s)
- Syue Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsien Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun Man Huang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hao Wei Shih
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chang Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
16
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD‐Dependent Baeyer–Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Xu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zhiguo Wang
- Institute of Aging Research School of Medicine Hangzhou Normal University Hangzhou 311121 China
| | - Yujing Hu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - He Zheng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
17
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD-Dependent Baeyer-Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019; 58:14499-14503. [PMID: 31423719 DOI: 10.1002/anie.201907606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Cyclohexanone monooxygenases (CHMOs) show very high catalytic specificity for natural Baeyer-Villiger (BV) reactions and promiscuous reduction reactions have not been reported to date. Wild-type CHMO from Acinetobacter sp. NCIMB 9871 was found to possess an innate, promiscuous ability to reduce an aromatic α-keto ester, but with poor yield and stereoselectivity. Structure-guided, site-directed mutagenesis drastically improved the catalytic carbonyl-reduction activity (yield up to 99 %) and stereoselectivity (ee up to 99 %), thereby converting this CHMO into a ketoreductase, which can reduce a range of differently substituted aromatic α-keto esters. The improved, promiscuous reduction activity of the mutant enzyme in comparison to the wild-type enzyme results from a decrease in the distance between the carbonyl moiety of the substrate and the hydrogen atom on N5 of the reduced flavin adenine dinucleotide (FAD) cofactor, as confirmed using docking and molecular dynamics simulations.
Collapse
Affiliation(s)
- Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiajie Fan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - He Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Xia H, Li Z, Zhong X, Li B, Jiang Y, Jiang Y. HKUST-1 catalyzed efficient in situ regeneration of NAD+ for dehydrogenase mediated oxidation. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus. Int J Biol Macromol 2019; 135:328-336. [PMID: 31128193 DOI: 10.1016/j.ijbiomac.2019.05.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Enzymatic NADP+ regeneration is a promising approach to produce valuable chemicals under economic conditions. Among all the enzymatic routes, using water-forming NADH oxidase is an ideal one because there is no by-product. However, most NADH oxidases have a low specific activity to NADPH. In this work, a thermostable NADH oxidase from Lactobacillus rhamnosus (LrNox) was rationally engineered to switch its specificity from NADH to NADPH. The results show that mutants D177A, G178R, D177A/G178R, D177A/G178R/L179S improved the NADPH activity by a factor of 4-6. The highest NADPH catalytic efficiency (Kcat/Km 223.71 S-1 μm-1, 47.6-fold higher than wild-type LrNox) and 51% of NADH activity retention were achieved by replacing the single amino acid Leu179 for serine (L179S) in LrNox. Modeling of L179S-NADPH complex reveals that the phosphate group of NADPH interacts with the hydroxyl of Ser179 with a strong hydrogen bond and several shorter hydrogen bonds with the amino group of Lys185 could stabilize the binding of NADPH in the L179S mutant. This work provides an efficient method for converting NAD(P)H specificity and shows that L179S mutant is a potential and efficient auxiliary enzyme for NADP+ regeneration.
Collapse
|
20
|
Aalbers FS, Fraaije MW. Design of Artificial Alcohol Oxidases: Alcohol Dehydrogenase-NADPH Oxidase Fusions for Continuous Oxidations. Chembiochem 2018; 20:51-56. [PMID: 30184296 PMCID: PMC6899577 DOI: 10.1002/cbic.201800421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 01/22/2023]
Abstract
To expand the arsenal of industrially applicable oxidative enzymes, fusions of alcohol dehydrogenases with an NADPH-oxidase were designed. Three different alcohol dehydrogenases (LbADH, TbADH, ADHA) were expressed with a thermostable NADPH-oxidase fusion partner (PAMO C65D) and purified. The resulting bifunctional biocatalysts retained the catalytic properties of the individual enzymes, and acted essentially like alcohol oxidases: transforming alcohols to ketones by using dioxygen as mild oxidant, while merely requiring a catalytic amount of NADP+ . In small-scale reactions, the purified fusion enzymes show good performances, with 69-99 % conversion, 99 % ee with a racemic substrate, and high cofactor and enzyme total turnover numbers. As the fusion enzymes essentially act as oxidases, we found that commonly used high-throughput oxidase-activity screening methods can be used. Therefore, if needed, the fusion enzymes could be easily engineered to tune their properties.
Collapse
Affiliation(s)
- Friso S Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| |
Collapse
|
21
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
22
|
Balke K, Beier A, Bornscheuer UT. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnol Adv 2018; 36:247-263. [DOI: 10.1016/j.biotechadv.2017.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
23
|
Bozkurt E, Soares TA, Rothlisberger U. Can Biomimetic Zinc Compounds Assist a (3 + 2) Cycloaddition Reaction? A Theoretical Perspective. J Chem Theory Comput 2017; 13:6382-6390. [DOI: 10.1021/acs.jctc.7b00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esra Bozkurt
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Thereza A. Soares
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Fundamental Chemistry, Federal University of Pernambuco, Recife 50740-560, Brazil
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Jia HY, Zong MH, Yu HL, Li N. Dehydrogenase-Catalyzed Oxidation of Furanics: Exploitation of Hemoglobin Catalytic Promiscuity. CHEMSUSCHEM 2017; 10:3524-3528. [PMID: 28786206 DOI: 10.1002/cssc.201701288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/06/2017] [Indexed: 06/07/2023]
Abstract
The catalytic promiscuity of hemoglobin (Hb) was explored for regenerating oxidized nicotinamide cofactors [NAD(P)+ ]. With H2 O2 as oxidant, Hb efficiently oxidized NAD(P)H into NAD(P)+ within 30 min. The new NAD(P)+ regeneration system was coupled with horse liver alcohol dehydrogenase (HLADH) for the oxidation of bio-based furanics such as furfural and 5-hydroxymethylfurfural (HMF). The target acids (e.g., 2,5-furandicarboxylic acid, FDCA) were prepared with moderate-to-good yields. The enzymatic regeneration method was applied in l-glutamic dehydrogenase (DH)-mediated oxidative deamination of lglutamate and for l-lactic-DH-mediated oxidation of l-lactate, which furnished α-ketoglutarate and pyruvate in yields of 97 % and 81 %, respectively. A total turnover number (TTON) of up to approximately 5000 for cofactor and an E factor of less than 110 were obtained in the bi-enzymatic cascade synthesis of α-ketoglutarate. Overall, a proof-of-concept based on catalytic promiscuity of Hb was provided for in situ regeneration of NAD(P)+ in DH-catalyzed oxidation reactions.
Collapse
Affiliation(s)
- Hao-Yu Jia
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| |
Collapse
|
25
|
Fan Y, Lu Y, Zhang L, Chen X, Shen Y. Enhancing NADPH regeneration and increasing hydroxylation efficiency with P450 monooxygenase through strengthening expression of glucose-6-phosphate dehydrogenase in industrial filamentous fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Balke K, Bäumgen M, Bornscheuer UT. Controlling the Regioselectivity of Baeyer-Villiger Monooxygenases by Mutation of Active-Site Residues. Chembiochem 2017; 18:1627-1638. [PMID: 28504873 DOI: 10.1002/cbic.201700223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/12/2022]
Abstract
Baeyer-Villiger monooxygenase (BVMO)-mediated regiodivergent conversions of asymmetric ketones can lead to the formation of "normal" or "abnormal" lactones. In a previous study, we were able to change the regioselectivity of a BVMO by mutation of the active-site residues to smaller amino acids, which thus created more space. In this study, we demonstrate that this method can also be used for other BVMO/substrate combinations. We investigated the regioselectivity of 2-oxo-Δ3 -4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase from Pseudomonas putida (OTEMO) for cis-bicyclo[3.2.0]hept-2-en-6-one (1) and trans-dihydrocarvone (2), and we were able to switch the regioselectivity of this enzyme for one of the substrate enantiomers. The OTEMO wild-type enzyme converted (-)-1 into an equal (50:50) mixture of the normal and abnormal products. The F255A/F443V variant produced 90 % of the normal product, whereas the W501V variant formed up to 98 % of the abnormal product. OTEMO F255A exclusively produced the normal lactone from (+)-2, whereas the wild-type enzyme was selective for the production of the abnormal product. The positions of these amino acids were equivalent to those mutated in the cyclohexanone monooxygenases from Arthrobacter sp. and Acinetobacter sp. (CHMOArthro and CHMOAcineto ) to switch their regioselectivity towards (+)-2, which suggests that there are hot spots in the active site of BVMOs that can be targeted with the aim to change the regioselectivity.
Collapse
Affiliation(s)
- Kathleen Balke
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
27
|
Vanoni MA. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics. Arch Biochem Biophys 2017; 632:118-141. [PMID: 28602956 DOI: 10.1016/j.abb.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of multidomain proteins conserved from insects to humans, which are increasingly attracting attention for their participation in the control of actin cytoskeleton dynamics, and, therefore, in the several related key processes in health and disease. MICAL is unique among actin binding proteins because it catalyzes a NADPH-dependent F-actin depolymerizing reaction. This unprecedented reaction is associated with its N-terminal FAD-containing domain that is structurally related to p-hydroxybenzoate hydroxylase, the prototype of aromatic monooxygenases, but catalyzes a strong NADPH oxidase activity in the free state. This review will focus on the known structural and functional properties of MICAL forms in order to provide an overview of the arguments supporting the current hypotheses on the possible mechanism of action of MICAL in the free and F-actin bound state, on the modulating effect of the CH, LIM, and C-terminal domains that follow the catalytic flavoprotein domain on the MICAL activities, as well as that of small molecules and proteins interacting with MICAL.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
28
|
van Beek HL, Romero E, Fraaije MW. Engineering Cyclohexanone Monooxygenase for the Production of Methyl Propanoate. ACS Chem Biol 2017; 12:291-299. [PMID: 27935281 DOI: 10.1021/acschembio.6b00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A previous study showed that cyclohexanone monooxygenase from Acinetobacter calcoaceticus (AcCHMO) catalyzes the Baeyer-Villiger oxidation of 2-butanone, yielding ethyl acetate and methyl propanoate as products. Methyl propanoate is of industrial interest as a precursor of acrylic plastic. Here, various residues near the substrate and NADP+ binding sites in AcCHMO were subjected to saturation mutagenesis to enhance both the activity on 2-butanone and the regioselectivity toward methyl propanoate. The resulting libraries were screened using whole cell biotransformations, and headspace gas chromatography-mass spectrometry was used to identify improved AcCHMO variants. This revealed that the I491A AcCHMO mutant exhibits a significant improvement over the wild type enzyme in the desired regioselectivity using 2-butanone as a substrate (40% vs 26% methyl propanoate, respectively). Another interesting mutant is the T56S AcCHMO mutant, which exhibits a higher conversion yield (92%) and kcat (0.5 s-1) than wild type AcCHMO (52% and 0.3 s-1, respectively). Interestingly, the uncoupling rate for the T56S AcCHMO mutant is also significantly lower than that for the wild type enzyme. The T56S/I491A double mutant combined the beneficial effects of both mutations leading to higher conversion and improved regioselectivity. This study shows that even for a relatively small aliphatic substrate (2-butanone), catalytic efficiency and regioselectivity can be tuned by structure-inspired enzyme engineering.
Collapse
Affiliation(s)
- Hugo L. van Beek
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
29
|
Li G, Fürst MJLJ, Mansouri HR, Ressmann AK, Ilie A, Rudroff F, Mihovilovic MD, Fraaije MW, Reetz MT. Manipulating the stereoselectivity of the thermostable Baeyer–Villiger monooxygenase TmCHMO by directed evolution. Org Biomol Chem 2017; 15:9824-9829. [DOI: 10.1039/c7ob02692g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermostable Baeyer–Villiger monooxygenase TmCHMO and evolved mutants are viable catalysts in stereoselective reactions of structurally different ketones.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | | | | | - Anna K. Ressmann
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Adriana Ilie
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | | | - Marco W. Fraaije
- Molecular Enzymology Group
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| |
Collapse
|
30
|
Rehn G, Pedersen AT, Woodley JM. Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Leys D, Scrutton NS. Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism. Curr Opin Struct Biol 2016; 41:19-26. [DOI: 10.1016/j.sbi.2016.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
32
|
Padhi SK. Modern Approaches to Discovering New Hydroxynitrile Lyases for Biocatalysis. Chembiochem 2016; 18:152-160. [DOI: 10.1002/cbic.201600495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory; Department of Biochemistry; School of Life Sciences; University of Hyderabad; Hyderabad 500 046 India
| |
Collapse
|
33
|
Zhu C, Li Q, Pu L, Tan Z, Guo K, Ying H, Ouyang P. Nonenzymatic and Metal-Free Organocatalysis for in Situ Regeneration of Oxidized Cofactors by Activation and Reduction of Molecular Oxygen. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01261] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chenjie Zhu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Qing Li
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Lingling Pu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Zhuotao Tan
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Kai Guo
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Hanjie Ying
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Pingkai Ouyang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| |
Collapse
|
34
|
Holec C, Neufeld K, Pietruszka J. P450 BM3 Monooxygenase as an Efficient NAD(P)H-Oxidase for Regeneration of Nicotinamide Cofactors in ADH-Catalysed Preparative Scale Biotransformations. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Properties and catalytic activities of MICAL1, the flavoenzyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains. Arch Biochem Biophys 2016; 593:24-37. [DOI: 10.1016/j.abb.2016.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 11/21/2022]
|
36
|
Wechsler C, Meyer D, Loschonsky S, Funk LM, Neumann P, Ficner R, Brodhun F, Müller M, Tittmann K. Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot. Chembiochem 2015; 16:2580-4. [DOI: 10.1002/cbic.201500529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Cindy Wechsler
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Danilo Meyer
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Sabrina Loschonsky
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg im Breisgau Germany
| | - Lisa-Marie Funk
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Piotr Neumann
- Abt. Molekulare Strukturbiologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Ralf Ficner
- Abt. Molekulare Strukturbiologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Florian Brodhun
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg im Breisgau Germany
| | - Kai Tittmann
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| |
Collapse
|
37
|
Visitsatthawong S, Chenprakhon P, Chaiyen P, Surawatanawong P. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer. J Am Chem Soc 2015; 137:9363-74. [DOI: 10.1021/jacs.5b04328] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Surawit Visitsatthawong
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pirom Chenprakhon
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimchai Chaiyen
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
38
|
Hu YL, Li DJ, Li DS. Efficient and convenient oxidation of aldehydes and ketones to carboxylic acids and esters with H2O2 catalyzed by Co4HP2Mo15V3O62 in ionic liquid [TEBSA][BF4]. RSC Adv 2015. [DOI: 10.1039/c5ra02234g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A simple, efficient, and eco-friendly procedure for the oxidation of aldehydes and ketones to carboxylic acids and esters with H2O2 catalyzed by Co4HP2Mo15V3O62 in ionic liquid [TEBSA][BF4] has been developed.
Collapse
Affiliation(s)
- Yu-Lin Hu
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang 443002
- People's Republic of China
| | - De-Jiang Li
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang 443002
- People's Republic of China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang 443002
- People's Republic of China
| |
Collapse
|