1
|
Müller M, Liu N, Gujrati V, Valavalkar A, Hartmann S, Anzenhofer P, Klemm U, Telek A, Dietzek-Ivanšić B, Hartschuh A, Ntziachristos V, Thorn-Seshold O. Merged Molecular Switches Excel as Optoacoustic Dyes: Azobenzene-Cyanines Are Loud and Photostable NIR Imaging Agents. Angew Chem Int Ed Engl 2024; 63:e202405636. [PMID: 38807438 DOI: 10.1002/anie.202405636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents, which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1→S0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches with cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (>3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.
Collapse
Affiliation(s)
- Markus Müller
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nian Liu
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Abha Valavalkar
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Sean Hartmann
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - András Telek
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Achim Hartschuh
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | | |
Collapse
|
2
|
Wang S, Fu Q, Su L, Wu Y, Zhu K, Yang DC, Yang XZ, Weng XL, Liu JY, Song J. Self-Reporting Molecular Prodrug for In Situ Quantitative Sensing of Drug Release by Ratiometric Photoacoustic Imaging. ACS Sens 2023; 8:4737-4746. [PMID: 38008917 DOI: 10.1021/acssensors.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Understanding the pharmacokinetics of prodrugs in vivo necessitates quantitative, noninvasive, and real-time monitoring of drug release, despite its difficulty. Ratiometric photoacoustic (PA) imaging, a promising deep tissue imaging technology with a unique capacity for self-calibration, can aid in solving this problem. Here, for the first time, a methylamino-substituted Aza-BODIPY (BDP-N) and the chemotherapeutic drug camptothecin (CPT) are joined via a disulfide chain to produce the molecular theranostic prodrug (BSC) for real-time tumor mapping and quantitative visualization of intratumoral drug release using ratiometric PA imaging. Intact BSC has an extremely low toxicity, with a maximum absorption at ∼720 nm; however, endogenous glutathione (GSH), which is overexpressed in tumors, will cleave the disulfide bond and liberate CPT (with full toxicity) and BDP-N. This is accompanied by a significant redshift in absorption at ∼800 nm, resulting in the PA800/PA720 ratio. In vitro, a linear relationship is successfully established between PA800/PA720 values and CPT release rates, and subsequent experiments demonstrate that this relationship can also be applied to the quantitative detection of intratumoral CPT release in vivo. Notably, the novel ratiometric strategy eliminates nonresponsive interference and amplifies the multiples of the signal response to significantly improve the imaging contrast and detection precision. Therefore, this research offers a viable alternative for the design of molecular theranostic agents for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, P. R. China
| | - Lichao Su
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Kang Zhu
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - De-Chao Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiao-Zhen Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiao-Lu Weng
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jian-Yong Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
3
|
Jiang Z, Liang Z, Cui Y, Zhang C, Wang J, Wang H, Wang T, Chen Y, He W, Liu Z, Guo Z. Blood-Brain Barrier Permeable Photoacoustic Probe for High-Resolution Imaging of Nitric Oxide in the Living Mouse Brain. J Am Chem Soc 2023; 145:7952-7961. [PMID: 37000012 DOI: 10.1021/jacs.2c13315] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Alternations in the brain nitric oxide (NO) homeostasis are associated with a variety of neurodegeneration diseases; therefore, high-resolution imaging of NO in the brain is essential for understanding pathophysiological processes. However, currently available NO probes are unsuitable for this purpose due to their poor ability to cross the blood-brain barrier (BBB) or to image in deep tissues with spatial resolution. Herein, we developed a photoacoustic (PA) probe with BBB crossing ability to overcome this obstacle. The probe shows a highly selective ratiometric response toward NO, which enables the probe to image NO with micron resolution in the whole brain of living mice. Using three-dimensional PA imaging, we demonstrated that the probe could be used to visualize the detailed NO distribution in varying depth cross-sections (0-8 mm) of the living Parkinson's disease (PD) mouse brain. We also investigated the therapeutic properties of natural polyphenols in the PD mouse brain using the probe as an imaging agent and suggested the potential of the probe for screening therapeutic agents. This study provides a promising imaging agent for imaging of NO in the mouse brain with high resolution. We anticipate that these findings may open up new possibilities for understanding the biological functions of NO in the brain and the development of new imaging agents for the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Zhiyong Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yijing Cui
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jing Wang
- TomoWave Laboratories, Inc., Houston, Texas 77054, United States
| | - Hong Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tianzhu Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| |
Collapse
|
4
|
Shojaei SR, Shiroudi A, Abdel-Rahman MA. Computational studies on thermo-kinetics aspects of pyrolysis of isopropyl acetate and its methyl, bromide and hydroxyl derivatives. Heliyon 2022; 8:e11274. [PMID: 36339763 PMCID: PMC9626549 DOI: 10.1016/j.heliyon.2022.e11274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The gas-phase decomposition kinetics of isopropyl acetate (IPA) and its methyl, bromide and hydroxyl derivatives into the corresponding acid and propene were investigated using density functional theory (DFT) with the ωB97XD and M06-2x functionals, as well as the benchmark CBS-QB3 composite method. Transition state theory (TST) and RRKM theory calculations of rate constants under atmospheric pressure and in the fall-off regime were used to supplement the measured energy profiles. The results show that the formation of propene and bromoacetic acid is the most dominant pathway at the CBS-QB3 composite method, both kinetically and thermodynamically. There was a good agreement with experimental results. Pressures greater than 0.01 bar, corresponding to larger barrier heights are insufficient to ensure saturation of the measured rate coefficient when compared to the RRKM kinetic rates. Natural bond orbitals (NBO) charges, bond orders, bond indices, and synchronicity parameters all point to the considered pathways taking place via a homogenous, first-order concerted, as well as an asynchronous mechanism involving a non-planar cyclic six-membered transition state. The calculated data exhibit that the elongation of the Cα-O bond length and subsequent polarization of the Cα +δ…O-δ bond is the rate-determining step of the considered reactions in the cyclic transition state, which appears to be involved in this type of reaction.
Collapse
Affiliation(s)
- S.H. Reza Shojaei
- Department of Physics, Faculty of Science, Sahand University of Technology, Tabriz, 51335-1996, Iran
- X-LAB, Hasselt University, Agoralaan, Diepenbeek, 3590, Belgium
| | | | | |
Collapse
|
5
|
Rout Y, Michel Merkes J, Banala S, Misra R. Dicyanoquinodimethane (DCNQ) linked benzothiadiazole and phenothiazine derivatives for photoacoustic imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zhang M, Xu X, Liu J, Jiang Y, Wang J, Dong N, Chen C, Zhu B, Liang Y, Fan T, Xu J. All-Organic Composite Films for High Flexibility and Giant Nonlinear Optical Limiting Responses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33787-33796. [PMID: 35852224 DOI: 10.1021/acsami.2c06476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Given the substantial π-electron delocalization observed in 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST), a high third-order nonlinear optical response can be expected that might manifest itself in various ways for potential applications. To probe the possibility and assess its potential, all-organic DAST-polymethyl methacrylate (PMMA) composite films were prepared by a simple solution casting method, and their nonlinear absorption performances were measured by an open-aperture Z-scan system. The results reveal that under irradiation by a 380 fs laser pulse at 520 nm or a 6 ns laser pulse at 532 nm, the DAST-PMMA composite films with a DAST concentration of 0.125 wt % exhibit similar giant optical limiting (OL) responses with OL threshold of 7.84 or 0.37 GW cm-2, both superior to those of most organic and inorganic OL materials measured under similar conditions. These all-organic composite films show high flexibility, and interestingly, their OL responses can remain stable even after exposure to air for 3 months. The superior OL behaviors of such materials in the femtosecond and nanosecond regimes are attributed to the two-photon absorption and the combination of two-photon absorption and excited-state absorption, respectively. The simple preparation, high flexibility, giant OL responses, and excellent environmental stability suggest that such novel all-organic composite films hold great potential for applications in flexible OL devices.
Collapse
Affiliation(s)
- Mingang Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiangdong Xu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jinrong Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yadong Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun Wang
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ningning Dong
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chenduan Chen
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Baohua Zhu
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yuning Liang
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Ting Fan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jimmy Xu
- Department of Physics and School of Engineering, Brown University, Providence 02912, Rhode Island, United States
| |
Collapse
|
7
|
Chan C, Li J, Xue Z, Guan B. A dicyanoisophorone-based fluorescent probe for hypochlorite with a fast response and its applications in bioimaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2311-2317. [PMID: 35638370 DOI: 10.1039/d2ay00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One kind of phenolic substituted dicyanoisophorone derivative (Is-OL) has been designed and successfully synthesized for the detection of hypochlorite in water samples, test strips and living HeLa cells. The probe Is-OL showed high sensitivity and selectivity to hypochlorite over other competitive ROS and metal ions. Moreover, Is-OL can react instantaneously with hypochlorite (<5 s) while exhibiting a significant color change from yellow to colorless, which makes "naked-eye" detection possible with a low detection limit (0.095 μM). The results based on water tests and living HeLa cell experiments showed that Is-OL could be applied as a potential candidate for the detection of hypochlorite.
Collapse
Affiliation(s)
- Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jia Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Binbin Guan
- Nantong Food and Drug Supervision and Inspection Center, Nantong 226400, PR China.
| |
Collapse
|
8
|
Hatamimoslehabadi M, Frenette M, Bag S, Gilligan GE, La J, Yelleswarapu C, Rochford J. Characterization of Triphenylamine and Ferrocenyl Donor-π-donor Vinyl BODIPY Derivatives as Photoacoustic Contrast Agents. Photochem Photobiol 2022; 98:62-72. [PMID: 33811760 DOI: 10.1111/php.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
The photophysical and electrochemical properties for a series of BODIPY dyes with incremental 3- and 3,5-vinyl conjugation, as well as incremental electron-donating groups (anisole < triphenylamine < ferrocenyl), are presented. Insight into the influence of each vinyl-conjugated electron-donating group on both vis-NIR absorption and fluorescence emission properties is provided. These trends are further corroborated by density functional theory computational analysis. Two of this series containing the 3,5-bis(vinyltriphenylamine) and 3,5-bis(vinylferrocenyl) substituents exhibit significant absorption cross sections in the biological transparency window justifying further investigation of their photoacoustic emission properties via both optical photoacoustic z-scan and photoacoustic tomography experiments. Both the 3,5-bis(vinyltriphenylamine) and 3,5-bis(vinylferrocenyl) substituted BODIPY dyes exhibit quantitative photoacoustic quantum yields. Relative to the commercially available methylene blue and indocyanine green molecular photoacoustic contrast agents, the 3,5-bis(vinyltriphenylamine)-derived BODIPY exhibits the greatest photoacoustic emission and contrast upon excited-state absorption at 685 nm excitation at a low power laser fluence (<20 mJ cm-2 ).
Collapse
Affiliation(s)
| | - Mathieu Frenette
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Seema Bag
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Gerald E Gilligan
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | | | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
9
|
Cepeda E, Narváez K. Molecular Photoacoustic Imaging. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.04.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Medicine has gone through several challenges to make it much more accurate and thus prolong the human being's life. A large part of this challenge is diseased, so early detection can help carry out treatment on time. There is a technology that allows detecting an abnormality within the body without using an invasive method. Ultrasound is a diagnostic test used to scan organs and tissues through sound waves. Although this technique has been widely used, the results are not desired because the images generated are not high resolution.
On the other hand, X-rays are used because it presents an image with a much higher resolution than other techniques based on light waves or ultrasound; despite this, they are harmful to cells. In consequence of this problem, another method called molecular photoacoustic imaging has been implemented. This technique bridges the traditional depth limits of ballistic optical imaging and diffuse optical imaging's resolution limits, using the acoustic waves generated in response to laser light absorption, which has now shown potential for molecular imaging, allowing the visualization of biological processes in a non-invasive way. The purpose of this article is to give a critically scoped review of the physical, chemical, and biochemical characteristics of existing photoacoustic contrast agents, highlighting the pivotal applications and current challenges for molecular photoacoustic imaging.
Collapse
Affiliation(s)
- Eduardo Cepeda
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador
| | - Katherine Narváez
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador
| |
Collapse
|
10
|
Li C, Liu C, Fan Y, Ma X, Zhan Y, Lu X, Sun Y. Recent development of near-infrared photoacoustic probes based on small-molecule organic dye. RSC Chem Biol 2021; 2:743-758. [PMID: 34458809 PMCID: PMC8341990 DOI: 10.1039/d0cb00225a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/07/2021] [Indexed: 12/22/2022] Open
Abstract
Photoacoustic imaging (PAI), which integrates the higher spatial resolution of optical imaging and the deeper penetration depth of ultrasound imaging, has attracted great attention. Various photoacoustic probes including inorganic and organic agents have been well fabricated in last decades. Among them, small-molecule based agents are most promising candidates for preclinical/clinical applications due to their favorite in vivo features and facile functionalization. In recent years, PAI, in the near-infrared region (NIR, 700-1700 nm) has developed rapidly and has made remarkable achievements in the biomedical field. Compared with the visible light region (400-700 nm), it can significantly reduce light scattering and meanwhile provide deeper tissue penetration. In this review, we discuss the recent developments of near-infrared photoacoustic probes based on small molecule dyes, which focus on their "always on" and "activatable" form in biomedicine. Further, we also suggest current challenges and perspectives.
Collapse
Affiliation(s)
- Chonglu Li
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
| | - Chang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Yifan Fan
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Xin Ma
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization Shaoguan 512026 China
| | - Yibei Zhan
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Xiaoju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| |
Collapse
|
11
|
Hu W, Prasad PN, Huang W. Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics. Acc Chem Res 2021; 54:697-706. [PMID: 33301301 DOI: 10.1021/acs.accounts.0c00688] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Manipulating the dynamics of dark excited states (DESs), such as higher excited singlet or excited triplet states with no or small radiative decay, are of both fundamental and practical interests, an important application being photoactivated diagnosis and therapy (phototheranostics), which include photoacoustic (PA) imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). However, the current understanding of DESs in organic structures is rather limited, thus making any rational manipulation of DES in organic materials very challenging.A DES decays primarily by radiationless transition through two pathways: (i) singlet-to-triplet intersystem crossing (ISC) and (ii) internal conversion (IC) relaxation. The deactivation of a DES via ISC can generate cytotoxic reactive oxygen species (ROS) for PDT, while IC could convert photons into heat for PA imaging and PTT. In this Account, we highlight our research on developing a fundamental understanding of structure-property relationships for manipulation of DESs in organic materials in relation to phototheranostic applications. We describe the application of femtosecond transient absorption (fs-TA) spectroscopy for obtaining valuable insights into the DES dynamics. Afterward, we present our work on DESs in nonrigid molecules that revealed greatly enhanced ISC through geometry twisting, which leads to an innovative pathway to develop organic materials exhibiting external stimuli-responsive reversible switching of ISC. We introduce the concept of smart PDT where highly efficient ISC imparted by geometry twisting in the acidic environment specific to tumors leads to very efficient and highly localized PDT, thus leaving surrounding healthy tissues at a different pH unaffected. This insightful understanding of ISC can lead to the development of more advanced photosensitizers for PDT. Two other emergent concepts from our work presented here are (1) significantly enhanced IC producing strong local heating by combining two-photon absorption with excited state absorption for cumulative multiphoton absorption, thus greatly increasing the strength of the PA signal for nonlinear PA imaging, and (2) shown by an example of an organic molecule, BODIPY, nanoscale charge-transfer state mediated strong IC in aggregate nanoparticles resulting in exceptionally high photothermal conversion efficiency of 61% for both PA and PTT. Some in vivo results of the phototheranostic studies using BODIPY are presented, providing an elegant example of nanoscale manipulation of the excited state dynamics.This Account concludes with a summary and discussion of future perspectives. We hope this Account will deepen the understanding of molecular and nanoscale control of excited state dynamics in organic materials, hopefully enticing a broad range of scientists within different disciplinary areas.
Collapse
Affiliation(s)
- Wenbo Hu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
12
|
Merkes JM, Ostlender T, Wang F, Kiessling F, Sun H, Banala S. Tuning the optical properties of BODIPY dyes by N-rich heterocycle conjugation using a combined synthesis and computational approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj01847g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a systematic tuning of optical properties of BODIPY dyes by conjugation of nitrogen-rich heterocycles, and underlying nitrogen influence by TDDFT calculations.
Collapse
Affiliation(s)
- Jean Michel Merkes
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Forckenbeckstr 55, Aachen 52074, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue Str. 2, Bremen 28359, Germany
| | - Tobias Ostlender
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Fufang Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Forckenbeckstr 55, Aachen 52074, Germany
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Forckenbeckstr 55, Aachen 52074, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue Str. 2, Bremen 28359, Germany
| |
Collapse
|
13
|
Munch M, Rotstein BH, Ulrich G. Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging. Molecules 2020; 25:E6042. [PMID: 33371284 PMCID: PMC7766373 DOI: 10.3390/molecules25246042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Recent progress realized in the development of optical imaging (OPI) probes and devices has made this technique more and more affordable for imaging studies and fluorescence-guided surgery procedures. However, this imaging modality still suffers from a low depth of penetration, thus limiting its use to shallow tissues or endoscopy-based procedures. In contrast, positron emission tomography (PET) presents a high depth of penetration and the resulting signal is less attenuated, allowing for imaging in-depth tissues. Thus, association of these imaging techniques has the potential to push back the limits of each single modality. Recently, several research groups have been involved in the development of radiolabeled fluorophores with the aim of affording dual-mode PET/OPI probes used in preclinical imaging studies of diverse pathological conditions such as cancer, Alzheimer's disease, or cardiovascular diseases. Among all the available PET-active radionuclides, 18F stands out as the most widely used for clinical imaging thanks to its advantageous characteristics (t1/2 = 109.77 min; 97% β+ emitter). This review focuses on the recent efforts in the synthesis and radiofluorination of fluorescent scaffolds such as 4,4-difluoro-4-bora-diazaindacenes (BODIPYs), cyanines, and xanthene derivatives and their use in preclinical imaging studies using both PET and OPI technologies.
Collapse
Affiliation(s)
- Maxime Munch
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Benjamin H. Rotstein
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, CEDEX 02, 67087 Strasbourg, France;
| |
Collapse
|
14
|
Bresolí-Obach R, Frattini M, Abbruzzetti S, Viappiani C, Agut M, Nonell S. Tetramethylbenzidine: An Acoustogenic Photoacoustic Probe for Reactive Oxygen Species Detection. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5952. [PMID: 33096750 PMCID: PMC7590141 DOI: 10.3390/s20205952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Photoacoustic imaging is attracting a great deal of interest owing to its distinct advantages over other imaging techniques such as fluorescence or magnetic resonance image. The availability of photoacoustic probes for reactive oxygen and nitrogen species (ROS/RNS) could shed light on a plethora of biological processes mediated by these key intermediates. Tetramethylbenzidine (TMB) is a non-toxic and non-mutagenic colorless dye that develops a distinctive blue color upon oxidation. In this work, we have investigated the potential of TMB as an acoustogenic photoacoustic probe for ROS/RNS. Our results indicate that TMB reacts with hypochlorite, hydrogen peroxide, singlet oxygen, and nitrogen dioxide to produce the blue oxidation product, while ROS, such as the superoxide radical anion, sodium peroxide, hydroxyl radical, or peroxynitrite, yield a colorless oxidation product. TMB does not penetrate the Escherichia coli cytoplasm but is capable of detecting singlet oxygen generated in its outer membrane.
Collapse
Affiliation(s)
- Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
- Department of Chemistry, Katholieke Universiteit Leuven, celestijnenlaan 200F, 3001 Heverlee (Leuven), Belgium
| | - Marcello Frattini
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy; (S.A.); (C.V.)
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy; (S.A.); (C.V.)
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy; (S.A.); (C.V.)
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
| |
Collapse
|
15
|
Zha M, Lin X, Ni J, Li Y, Zhang Y, Zhang X, Wang L, Li K. An Ester‐Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR‐II Photoacoustic Performance for Monitoring of Tumor Growth. Angew Chem Int Ed Engl 2020; 59:23268-23276. [DOI: 10.1002/anie.202010228] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Menglei Zha
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Xiangwei Lin
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Ave Kowloon Hong Kong SAR
- City University of Hong Kong Shenzhen Research Institute No. 8 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jen‐Shyang Ni
- Department of Chemical and Materials Engineering Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART) National Kaohsiung University of Science and Technology Kaohsiung 80778 Taiwan
| | - Yaxi Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yachao Zhang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Ave Kowloon Hong Kong SAR
| | - Xun Zhang
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Lidai Wang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Ave Kowloon Hong Kong SAR
- City University of Hong Kong Shenzhen Research Institute No. 8 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
16
|
Zha M, Lin X, Ni J, Li Y, Zhang Y, Zhang X, Wang L, Li K. An Ester‐Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR‐II Photoacoustic Performance for Monitoring of Tumor Growth. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Menglei Zha
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Xiangwei Lin
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Ave Kowloon Hong Kong SAR
- City University of Hong Kong Shenzhen Research Institute No. 8 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jen‐Shyang Ni
- Department of Chemical and Materials Engineering Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART) National Kaohsiung University of Science and Technology Kaohsiung 80778 Taiwan
| | - Yaxi Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yachao Zhang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Ave Kowloon Hong Kong SAR
| | - Xun Zhang
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Lidai Wang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Ave Kowloon Hong Kong SAR
- City University of Hong Kong Shenzhen Research Institute No. 8 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
17
|
Edappadikkunnummal S, Prasannan D, Francis J, Desai NR, Keloth C. An insight into phenomenal optical non‐linearities arising from synergistic relationship between selected BODIPYs and noble metal nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shiju Edappadikkunnummal
- Laser and Nonlinear Optics Laboratory, Department of Physics National Institute of Technology Calicut Kozhikode 673601 India
| | - Dijo Prasannan
- Bioinorganic Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode 673 601 India
| | - Jaismon Francis
- Laser and Nonlinear Optics Laboratory, Department of Physics National Institute of Technology Calicut Kozhikode 673601 India
| | | | - Chandrasekharan Keloth
- Laser and Nonlinear Optics Laboratory, Department of Physics National Institute of Technology Calicut Kozhikode 673601 India
| |
Collapse
|
18
|
Wang S, Zhang X. Design Strategies of Photoacoustic Molecular Probes. Chembiochem 2020; 22:308-316. [PMID: 32770597 DOI: 10.1002/cbic.202000514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic (PA) probes have been developed very quickly and applied in broad areas in recent years. Most of them are constructed based on organic dyes with intrinsic near-infrared (NIR) absorption properties. To increase PA contrast and improve imaging resolution and the sensitivity of detection, various methods for the design of PA probes have been developed. This minireview mainly focuses on the development and design strategies of activatable small-molecule PA probes in four aspects: reaction-cleavage, metal ion chelation, photoswitch, and protonation-deprotonation. It highlights some key points of designing PA probes corresponding to their properties and applications. The challenges and perspectives for small-molecule PA probes are also discussed.
Collapse
Affiliation(s)
- Shichao Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, P.R. China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, P.R. China
| |
Collapse
|
19
|
May A, Mack J, Nyokong T. Optical limiting properties of D-π-A BODIPY dyes in the presence and absence of methyl groups at the 1,7-positions. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The optical limiting properties of three meso-pentafluorophenylstyrylBODIPY dyes are investigated in the presence and absence of methyl groups at the 1,7-positions that hinder free rotation of the meso-aryl group. Pentafluorophenyl groups are introduced at the meso-position, while 4-diethylaminostyryl groups are introduced at the 3- and/or 5-positions to form dyes with strong donor-[Formula: see text]-acceptor (D-[Formula: see text]-A) properties to enhance the dipole moment of the molecule. Favorable optical limiting properties are obtained for all three dyes, with the highest second-order hyperpolarizability value obtained for a monostyryl dye with no methyl groups at the 1,7-position. Bromination at the 2,6-positions of a 1,7-methyl substituted dye is found to result in second-order hyperpolarizability that is an order of magnitude lower than that calculated for the analogous non-halogenated dye.
Collapse
Affiliation(s)
- Aviwe May
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
20
|
Miao X, Tao H, Hu W, Pan Y, Fan Q, Huang W. Elucidating the excited-state dynamics behavior in near-infrared Bodipy dye and aggregates toward biophotonics. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Chen M, Zhang X, Liu J, Liu F, Zhang R, Wei P, Feng H, Tu M, Qin A, Lam JWY, Ding D, Tang BZ. Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. ACS NANO 2020; 14:4265-4275. [PMID: 32160460 DOI: 10.1021/acsnano.9b09625] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of highly effective approaches to desirable photothermal conversion agents is particularly valuable. Herein, we report a concept, namely, bond stretching vibration-induced photothermy, that serves as a mechanism to construct advanced photothermal conversion agents. As a proof-of-concept, two compounds (DCP-TPA and DCP-PTPA) with donor-acceptor (D-A) structures were synthesized. The bond stretching vibration of the pyrazine-containing unit in these molecules is vigorous and insensitive to the external environmental restraint, which efficiently transforms the absorbed photons to dark-state heat energy. The nanoparticles (NPs) of DCP-TPA and DCP-PTPA show rather high photothermal conversion efficiency (52% and 59%) and stronger photoacoustic (PA) signal than commercial methylene blue and reported high-performance semiconducting polymer nanoparticles. The DCP-PTPA NPs perform better than DCP-TPA NPs in terms of photothermal conversion, PA signal production, and in vivo PA tumor imaging because of the increased bond stretching vibration in the former molecule.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science, Nankai University, Tianjin 300071, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Feng Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Peifa Wei
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Haitao Feng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Anjun Qin
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science, Nankai University, Tianjin 300071, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Ngoy BP, May AK, Mack J, Nyokong T. Optical Limiting and Femtosecond Pump-Probe Transient Absorbance Properties of a 3,5-distyrylBODIPY Dye. Front Chem 2019; 7:740. [PMID: 31737610 PMCID: PMC6834545 DOI: 10.3389/fchem.2019.00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
The optical limiting (OL) properties of a 3,5-di-p-benzyloxystyrylBODIPY dye with an p-acetamidophenyl moiety at the meso-position have been investigated by using the open-aperture Z-scan technique at 532 nm with 10 ns laser pulses. There is a ca. 140 nm red shift of the main spectral band to 644 nm relative to the corresponding BODIPY core dye, due to the incorporation of p-benzyloxystyryl groups at the 3,5-positions. As a result, there is relatively weak absorbance across most of the visible region under ambient light conditions. Analysis of the observed reverse saturable absorbance (RSA) profiles demonstrates that the dye is potentially suitable for use in optical limiting applications as has been reported previously for other 3,5-distyrylBODIPY dyes. Time-resolved transient absorption spectroscopy and kinetic studies with femtosecond and nanosecond scale laser pulses provide the first direct spectral evidence that excited state absorption (ESA) from the S1 state is responsible for the observed OL properties.
Collapse
Affiliation(s)
- Bokolombe P. Ngoy
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
- Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Aviwe K. May
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - John Mack
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
23
|
Hu W, Miao X, Tao H, Baev A, Ren C, Fan Q, He T, Huang W, Prasad PN. Manipulating Nonradiative Decay Channel by Intermolecular Charge Transfer for Exceptionally Improved Photothermal Conversion. ACS NANO 2019; 13:12006-12014. [PMID: 31518102 DOI: 10.1021/acsnano.9b06208] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In-depth studies of nonradiative (NR) decay, seeking to maximize NR decay rate or manipulate other NR decay channels, are of greatest significance for improving the photothermal conversion efficiency (η) of organic materials for phototheranostics; however, to date, relevant work remains scarce. Here, we present an insightful study of NR decay in BODIPY (BDP) dye, in an aggregated state, i.e., in BDP nanoparticles (BDP NPs), which show an efficient additional NR decay channel from the aggregation-stabilized intermolecular charge transfer (CT) state, resulting in exceptionally high η (61%) for highly efficient phototheranostics in vivo. BDP NPs exhibit two ultrafast NR decay channels with ultrashort lifetimes of 1.7 and 50 ps, which is in stark contrast to the only S1 → S0 NR channel with a long lifetime of 373 ps in the isolated BDP dye. More importantly, the ultrafast NR channel (1.7 ps) in BDP NPs depletes a substantial portion of the excited-state population (71%), which accounts for its much better photothermal effect as compared with the isolated BDP dye. Finally, BDP NPs display a highly efficient photoacoustic imaging (PAI) guided photothermal therapy (PTT) of tumors in live mice. This study presents a deeper fundamental understanding of NR decay in organic materials, setting a valuable guideline that may be widely applicable to similar molecular structure to develop more advanced organic materials not only for photothermal-related applications.
Collapse
Affiliation(s)
- Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , Nanjing 211800 , China
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | - Xiaofei Miao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Haojie Tao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Alexander Baev
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | - Can Ren
- College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , Nanjing 211800 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , China
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
24
|
Park S, Kim M, Vial JC, Kyhm K. Stimulation Emission Depleted Photoacoustic. OPTICS EXPRESS 2019; 27:27841-27850. [PMID: 31684545 DOI: 10.1364/oe.27.027841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate that the Stimulated Emission Depletion (STED) concept, which is usually invoked for fluorescence, can be extended to photoacoustic effects. When two-nanosecond pulses of exciting and stimulating light are synchronized, 80% of the acoustic signal generated through excited state absorption (ESA) can be quenched. Regarding the cross-sections for stimulated emission and ESA, a model gives a good order of magnitude in the depletion efficiency. The transient molecular orientation, usually measured via the fluorescence anisotropy, can be accessed in photoacoustic when STED is implemented.
Collapse
|
25
|
Zhao Z, Chen C, Wu W, Wang F, Du L, Zhang X, Xiong Y, He X, Cai Y, Kwok RTK, Lam JWY, Gao X, Sun P, Phillips DL, Ding D, Tang BZ. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat Commun 2019; 10:768. [PMID: 30770816 PMCID: PMC6377612 DOI: 10.1038/s41467-019-08722-z] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The exciting applications of molecular motion are still limited and are in urgent pursuit, although some fascinating concepts such as molecular motors and molecular machines have been proposed for years. Utilizing molecular motion in a nanoplatform for practical application has been scarcely explored due to some unconquered challenges such as how to achieve effective molecular motion in the aggregate state within nanoparticles. Here, we introduce a class of near infrared-absorbing organic molecules with intramolecular motion-induced photothermy inside nanoparticles, which enables most absorbed light energy to dissipate as heat. Such a property makes the nanoparticles a superior photoacoustic imaging agent compared to widely used methylene blue and semiconducting polymer nanoparticles and allow them for high-contrast photoacoustic imaging of tumours in live mice. This study not only provides a strategy for developing advanced photothermal/photoacoustic imaging nanoagents, but also enables molecular motion in a nanoplatform to find a way for practical application.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenting Wu
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Fenfen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 000000, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu Xiong
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Xuewen He
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yuanjing Cai
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 000000, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| |
Collapse
|
26
|
Harris J, May AK, Ngoy BP, Mack J, Nyokong T. An analysis of the photophysical and optical limiting properties of a novel 1,3,5-tristyrylBODIPY dye. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and characterization of a novel dibrominated 1,3,5-tristyrylBODIPY dye is reported, and its potential utility as a singlet oxygen photosensitizer and optical limiting material is assessed. The main spectral band lies in the therapeutic window, and there is a moderately high singlet oxygen quantum yield making the dye potentially suitable for use in biomedical applications and as an optical limiting dye at 532 nm. The optical limiting parameters are comparable to those reported previously for 3,5-distyrylBODIPYs, which suggests that mixtures of 3,5-distyryl and 1,3,5-tristyryl compounds that are formed in Knoevenagel condensation reactions could be used for this application. Theoretical calculations are used to assess the effect of 1,3,5-tristyryl substitution. A smaller red shift of the main spectral band is observed upon styrylation at the 1-position than is the case with the 3,5-positions due to there being smaller MO coefficients at this position, limiting the utility of this structural modification method for shifting the main BODIPY spectral band further into the therapeutic window.
Collapse
Affiliation(s)
- Jessica Harris
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Aviwe K. May
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Bokolombe P. Ngoy
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
27
|
Ngoy BP, May AK, Mack J, Nyokong T. Effect of bromination on the optical limiting properties at 532 nm of BODIPY dyes with p-benzyloxystyryl groups at the 3,5-positions. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Abstract
Photoacoustic imaging (PAI) is a powerful imaging modality capable of mapping the absorption of light in biological tissue via the PA effect. When chromophores are optically excited, subsequent energy loss in the form of heat generates local thermoelastic expansion. Repeated excitation from a pulsed laser induces pressure fluctuations that propagate through tissue and can be detected as ultrasound waves. By combining ultrasonic detection with optical excitation, PAI enables high-resolution image acquisition at centimeter depths. PAI is also relatively inexpensive and relies on safe, nonionizing excitation light in the near-infrared window, making it an attractive alternative to other common biomedical imaging modalities. Research in our group is aimed at developing small-molecule activatable probes that can be used for analyte detection in deep tissue via PAI. These probes contain reactive triggers that undergo a selective chemical reaction in the presence of specific stimuli to produce a spectral change that can be observed via PAI. Chemically tuning the absorbance profile of the probe and the reacted product such that they are both within the PA imaging window enables ratiometric imaging when each species is irradiated at a specific wavelength. Ratiometric imaging is an important design feature of these probes as it minimizes error associated with tissue-dependent signal fluctuations and instrumental variation. In this Account, we discuss key properties for designing small-molecule PA probes that can be applied for in vivo studies and the challenges associated with this area of probe development. We also highlight examples from our group including probes capable of detecting metal ions (Cu(II)), reactive nitrogen species (NO), and oxygen tension (hypoxia). Each of these targets can be sensed using a modular design strategy based on influencing the electronic and spectral properties of a NIR-absorbing dye platform. We demonstrate that ideal small-molecule PA probes have high molar absorptivity, low fluorescence quantum yields, and selective triggers that can reliably report on a single analyte in a complex biological setting. Probes must also be highly chemo- and photostable to enable long-term imaging studies. We show that these PA probes react rapidly and selectively and can be utilized for deep-tissue imaging in mouse models of various diseases. Overall, these examples represent a new class of biomedical imaging tools that seek to enable high-resolution molecular imaging capable of improving diagnostic methods and elucidating new biological discoveries. We anticipate that the combination of small-molecule PA probes with new PAI technology will enable noninvasive detection of analytes relevant to disease progression and mapping of tissue microenvironments.
Collapse
Affiliation(s)
- Hailey J. Knox
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Borg RE, Rochford J. Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochem Photobiol 2018; 94:1175-1209. [PMID: 29953628 PMCID: PMC6252265 DOI: 10.1111/php.12967] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly growing field which offers high spatial resolution and high contrast for deep-tissue imaging in vivo. PAI is nonionizing and noninvasive and combines the optical resolution of fluorescence imaging with the spatial resolution of ultrasound imaging. In particular, the development of exogenous PA contrast agents has gained significant momentum of late with a vastly expanding complexity of dye materials under investigation ranging from small molecules to macromolecular proteins, polymeric and inorganic nanoparticles. The goal of this review is to survey the current state of the art in molecular photoacoustic contrast agents (MPACs) for applications in biomedical imaging. The fundamental design principles of MPACs are presented and a review of prior reports spanning from early-to-current literature is put forth.
Collapse
Affiliation(s)
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
| |
Collapse
|
30
|
Lavaud L, Pascal S, Metwally K, Gasteau D, Da Silva A, Chen Z, Elhabiri M, Canard G, Jacquemin D, Siri O. Azacalixphyrins as NIR photoacoustic contrast agents. Chem Commun (Camb) 2018; 54:12365-12368. [PMID: 30325372 DOI: 10.1039/c8cc05851b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) azacalixphyrins bearing aryl substituents strongly impacting the physico-chemical properties of the macrocycles were designed, enabling hyperchromic and bathochromic shifts of the absorption compared to their N-alkylated analogues. This engineering enhances the photoacoustic response under NIR excitation, making azacalixphyrins promising organic contrast agents that reach the 800-1000 nm range.
Collapse
Affiliation(s)
- Lucien Lavaud
- Aix-Marseille Université, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Laramie MD, Smith MK, Marmarchi F, McNally LR, Henary M. Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging. Molecules 2018; 23:E2766. [PMID: 30366395 PMCID: PMC6278390 DOI: 10.3390/molecules23112766] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.
Collapse
Affiliation(s)
- Matt D Laramie
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Mary K Smith
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Fahad Marmarchi
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Lacey R McNally
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
32
|
Wu Y, Huang S, Wang J, Sun L, Zeng F, Wu S. Activatable probes for diagnosing and positioning liver injury and metastatic tumors by multispectral optoacoustic tomography. Nat Commun 2018; 9:3983. [PMID: 30266905 PMCID: PMC6162313 DOI: 10.1038/s41467-018-06499-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/10/2018] [Indexed: 01/23/2023] Open
Abstract
Optoacoustic tomography (photoacoustic tomography) is an emerging imaging technology displaying great potential for medical diagnosis and preclinical research. Rationally designing activatable optoacoustic probes capable of diagnosing diseases and locating their foci can bring into full play the role of optoacoustic tomography (OAT) as a promising noninvasive imaging modality. Here we report two xanthene-based optoacoustic probes (C1X-OR1 and C2X-OR2) for temporospatial imaging of hepatic alkaline phosphatase (or β-galactosidase) for evaluating and locating drug-induced liver injury (or metastatic tumor). The probes rapidly respond to the disease-specific biomarkers by displaying red-shifted NIR absorption bands and generate prominent optoacoustic signals. Using multispectral optoacoustic tomography (MSOT), we can precisely localize the focus of drug-induced liver injury in mice using C1X-OR1, and the metastatic tumors using C2X-OR2. This work suggests that the activatable optoacoustic chromophores may potentially be applied for diagnosing and localizing disease foci, especially smaller and deeper ones.
Collapse
Affiliation(s)
- Yinglong Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Shuailing Huang
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Jun Wang
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640 China
| |
Collapse
|
33
|
Borg RE, Hatamimoslehabadi M, Bellinger S, La J, Mithila F, Yelleswarapu C, Rochford J. Photophysical and Photoacoustic Properties of π-Extended Curcumin Dyes. Effects of the Terminal Dimethylamino Electron-donor and the Bridging Aryl Ring. Photochem Photobiol 2018; 95:280-292. [PMID: 29989174 DOI: 10.1111/php.12980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
Abstract
The synthesis, photophysical and photoacoustic characterization for a series of nine π-extended quadrupolar curcumin dyes is presented. A systematic evaluation of the π-bridging unit including the p-phenyl, naphth-4-yl, thien-2-yl and hybrid 4-naphthathien-2-yl groups is presented. Furthermore, evaluation of the strongly donating donor-π-acceptor-π-donor quadrupolar dimethylamino terminated derivatives is also included. Select dyes exhibit excited state absorption at increased laser fluence which translates to the production of a nonlinear enhanced photoacoustic response. In particular, the bis-4-dimethylaminonaphtha-2-thien-5-yl curcuminBF2 contrast agent DMA-5 exhibits an excellent molar photoacoustics (PA) emission at both low (9.4 × 103 V M-1 ) and high (1.47 × 105 V M-1 ) laser fluence which is confirmed by its strong contrast by photoacoustic tomography (PAT). In summary, the strong absorbance and enhanced photoacoustic properties of naphthyl and thienyl curcuminoids here presented provides great promise for future photoacoustic imaging applications as demonstrated by preliminary PAT studies.
Collapse
Affiliation(s)
- Raymond E Borg
- Department of Chemistry, University of Massachusetts Boston, Boston, MA
| | | | | | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, Boston, MA
| | - Farha Mithila
- Department of Chemistry, University of Massachusetts Boston, Boston, MA
| | | | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, Boston, MA
| |
Collapse
|
34
|
Roberts S, Andreou C, Choi C, Donabedian P, Jayaraman M, Pratt EC, Tang J, Pérez-Medina C, Jason de la Cruz M, Mulder WJM, Grimm J, Kircher M, Reiner T. Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chem Sci 2018; 9:5646-5657. [PMID: 30061998 PMCID: PMC6049522 DOI: 10.1039/c8sc01706a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Optoacoustic imaging offers the promise of high spatial resolution and, at the same time, penetration depths well beyond the conventional optical imaging technologies, advantages that would be favorable for a variety of clinical applications. However, similar to optical fluorescence imaging, exogenous contrast agents, known as sonophores, need to be developed for molecularly targeted optoacoustic imaging. Despite numerous optoacoustic contrast agents that have been reported, there is a need for more rational design of sonophores. Here, using a library screening approach, we systematically identified and evaluated twelve commercially available near-infrared (690-900 nm) and highly absorbing dyes for multi-spectral optoacoustic tomography (MSOT). In order to achieve more accurate spectral deconvolution and precise data quantification, we sought five practical mathematical methods, namely direct classical least squares based on UV-Vis (UV/Vis-DCLS) or optoacoustic (OA-DCLS) spectra, non-negative LS (NN-LS), independent component analysis (ICA) and principal component analysis (PCA). We found that OA-DCLS is the most suitable method, allowing easy implementation and sufficient accuracy for routine analysis. Here, we demonstrate for the first time that our biocompatible nanoemulsions (NEs), in combination with near-infrared and highly absorbing dyes, enable non-invasive in vivo MSOT detection of tumors. Specifically, we found that NE-IRDye QC1 offers excellent optoacoustic performance and detection compared to related near-infrared NEs. We demonstrate that when loaded with low fluorescent or dark quencher dyes, NEs represent a flexible and new class of exogenous sonophores suitable for non-invasive pre-clinical optoacoustic imaging.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Chrysafis Andreou
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Crystal Choi
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Patrick Donabedian
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Madhumitha Jayaraman
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Edwin C Pratt
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
| | - Jun Tang
- Cancer Research Institute (CRI) , 29 Broadway , New York , NY 10006 , USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
| | - M Jason de la Cruz
- Structural Biology Program , Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , USA
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
- Department of Medical Biochemistry , Academic Medical Center , Amsterdam , The Netherlands
| | - Jan Grimm
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
- Pharmacology Program , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Moritz Kircher
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Thomas Reiner
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| |
Collapse
|
35
|
Bellinger S, Hatamimoslehabadi M, Borg RE, La J, Catsoulis P, Mithila F, Yelleswarapu C, Rochford J. Characterization of a NIR absorbing thienyl curcumin contrast agent for photoacoustic imaging. Chem Commun (Camb) 2018; 54:6352-6355. [PMID: 29868656 PMCID: PMC6082415 DOI: 10.1039/c8cc03727b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis and characterization of a bis(2-dimethylaminothien-5-yl)curcumin boron difluoride chromophore is presented. Photophysical, electrochemical and computational investigations establish the properties of its absorption in the Vis-NIR spectral range relative to established curcumin dyes. Application of this thienyl curcumin dye as a photoacoustic contrast agent is investigated against the dicarbocyanine Cy5 dye in the 675-735 nm excitation range.
Collapse
Affiliation(s)
- Stephanie Bellinger
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kang H, Si Y, Liu Y, Zhang X, Zhang W, Zhao Y, Yang B, Liu Y, Liu Z. Photophysical/Chemistry Properties of Distyryl-BODIPY Derivatives: An Experimental and Density Functional Theoretical Study. J Phys Chem A 2018; 122:5574-5579. [DOI: 10.1021/acs.jpca.8b02656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongwei Kang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yubing Si
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Xiaofan Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Weiwei Zhang
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yaxuan Liu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
37
|
Ngoy BP, Hlatshwayo Z, Nwaji N, Fomo G, Mack J, Nyokong T. Photophysical and optical limiting properties at 532 nm of BODIPY dyes with p-benzyloxystyryl groups at the 3,5-positions. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424617500857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and characterization of a series of 3,5-di-[Formula: see text]-benzyloxystyrylBODIPY dyes with different substituents at the meso-aryl position is reported. The photophysical and nonlinear optical properties are described. BODIPYs of this type are found to be suitable for optical limiting at 532 nm on the nanosecond timescale. An enhancement of the population of the T[Formula: see text] state through the incorporation of bromine atoms at the 2,6-positions does not result in an enhancement of the optical limiting properties on a nanosecond timescale. This suggests that, in contrast with phthalocyanines, access to excited state absorption (ESA) from the T[Formula: see text] state through the introduction of a heavy atom effect does not provide a significantly improved reverse saturable absorbance response compared to ESA from the S[Formula: see text] state.
Collapse
Affiliation(s)
- Bokolombe P. Ngoy
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Zweli Hlatshwayo
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Njemuwa Nwaji
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Gertrude Fomo
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - John Mack
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
38
|
Kubheka G, Sanusi K, Mack J, Nyokong T. Optical limiting properties of 3,5-dipyrenylvinyleneBODIPY dyes at 532nm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:357-364. [PMID: 29055280 DOI: 10.1016/j.saa.2017.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
The optical limiting (OL) properties of 3,5-dipyrenylvinyleneBODIPY dyes that contain both electron withdrawing and donating moieties have been investigated by using the z-scan technique at 532nm in the nanosecond pulse range. The extension of the π-conjugation at the 3,5-positions with pyrenylvinylene groups results in a ca. 200nm red shift of the main BODIPY spectral band to ca. 700nm, so there is relatively weak absorbance at 532nm under ambient light conditions. Reverse saturable absorbance (RSA) profiles are observed in response to incident pulsed laser light that is consistent with a two photon absorption-assisted excited state absorption (ESA) mechanism in CH2Cl2 solution and when the dyes are embedded in poly(bisphenol carbonate A) (PBC) polymer thin films. This demonstrates that 3,5-divinyleneBODIPY dyes are potentially suitable for use in OL applications, since limiting threshold fluence (Ilim) values of below 0.95Jcm-2 are observed when thin films are prepared.
Collapse
Affiliation(s)
- Gugu Kubheka
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Kayode Sanusi
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
39
|
Bellinger S, Hatamimoslehabadi M, Bag S, Mithila F, La J, Frenette M, Laoui S, Szalda DJ, Yelleswarapu C, Rochford J. Photophysical and Photoacoustic Properties of Quadrupolar Borondifluoride Curcuminoid Dyes. Chemistry 2018; 24:906-917. [PMID: 29149546 PMCID: PMC11528891 DOI: 10.1002/chem.201704423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/10/2022]
Abstract
The synthesis and characterization of a series of donor-π-acceptor-π-donor (D-A-D) curcuminoid molecules is presented herein that incorporates π-extended aryl and electron-donating amino terminal functionalization. Computational evaluation shows these molecules possess quadrupolar character with the lowest energy transitions displaying high molar extinction coefficients with broad tunability through manipulation of terminal donating groups. Consistent with their quadrupolar nature, these molecules show varying degrees of solvatochromic behavior in both their absorption and emission spectra, which has been analyzed by Lippert-Mataga and Kamlet-Taft analysis. Photophysical and photoacoustic (PA) properties of these molecules have been investigated by the optical photoacoustic z-scan (OPAZ) method. Selected curcuminoid molecules display nonlinear behavior at a high laser fluence through excited state absorption that translates to the production of an enhanced photoacoustic emission. A relative comparison of "molar PA emission" is also presented with the crystal violet linear optical absorbing/linear PA emitting system being utilized as a standard reference material for OPAZ experiments. Furthermore, PA tomography experiments are presented to illustrate the enhanced PA contrast obtainable via an excited state absorption.
Collapse
Affiliation(s)
- Stephanie Bellinger
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Maryam Hatamimoslehabadi
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Seema Bag
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Farha Mithila
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Mathieu Frenette
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Samir Laoui
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - David J Szalda
- Department of Natural Science, Baruch College, CUNY, New York, 1001, USA
| | - Chandra Yelleswarapu
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| |
Collapse
|
40
|
Abstract
Photoacoustic (PA) imaging is an emerging, non-invasive imaging modality that encompasses attributes of both optical and ultrasound imaging. Because of the combination of optical excitation and acoustic detection, PA imaging enables high contrast and high resolution within deep tissue (centimeter depths). Recent advances in PA probe development have allowed for stimulus-responsive imaging in a variety of biological models with implications for basic, translational, and clinical sciences. This perspective highlights recent progress in the development of PA probes and their application to live-animal molecular imaging.
Collapse
Affiliation(s)
- Christopher J. Reinhardt
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Liu XM, Jin XY, Zhang ZX, Wang J, Bai FQ. Theoretical study on the reaction mechanism of the thermal cis–trans isomerization of fluorine-substituted azobenzene derivatives. RSC Adv 2018; 8:11580-11588. [PMID: 35542787 PMCID: PMC9079044 DOI: 10.1039/c8ra01132j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Quantum chemical calculations of a set of valid photoswitches of azobenzene compounds, with the aim of describing their thermal isomerization.
Collapse
Affiliation(s)
- Xiao-Mei Liu
- Institute of Theoretical Chemistry
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Xing-Yi Jin
- 1st Department of Neurosurgery
- China–Japan Union Hospital
- Jilin University
- Changchun 130033
- People's Republic of China
| | - Zhi-Xiang Zhang
- Institute of Theoretical Chemistry
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Jian Wang
- Institute of Theoretical Chemistry
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| |
Collapse
|
42
|
Oliaey AR, Shiroudi A, Zahedi E, Deleuze MS. Theoretical study on the mechanisms and kinetics of the β-elimination of 2,2-dihaloethyltrihalosilanes (X = F, Cl, Br) compounds: a DFT study along with a natural bond orbital analysis. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1332-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Gawale Y, Rhyman L, Elzagheid MI, Ramasami P, Sekar N. Excited State and Non-linear Optical Properties of NIR Absorbing β-Thiophene-Fused BF2-Azadipyrromethene Dyes—Computational Investigation. J Fluoresc 2017; 28:243-250. [DOI: 10.1007/s10895-017-2186-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
|
44
|
Xiao H, Wu C, Li P, Gao W, Zhang W, Zhang W, Tong L, Tang B. Ratiometric photoacoustic imaging of endoplasmic reticulum polarity in injured liver tissues of diabetic mice. Chem Sci 2017; 8:7025-7030. [PMID: 29147529 PMCID: PMC5642195 DOI: 10.1039/c7sc02330h] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023] Open
Abstract
As one of the complications of diabetes, liver injury results in significant hazards. Therefore, accurately diagnosing diabetes-induced liver injury beforehand is crucial for the warning and treatment of hepatic diseases. Diabetes-induced liver injury can cause changes in the microstructure and morphology of liver tissue, leading to changes in the hydrophilic and hydrophobic domains in the endoplasmic reticulum (ER), which is closely associated with changes in cellular ER polarity. So, differences in the ER polarity can indicate the degree of diabetes-induced liver injury. Herein, we develop a new fluorescent and photoacoustic dual-mode probe, ER-P, for detection of the ER polarity of liver tissue in normal and diabetic mice. Upon excitation with a 633 nm laser, ER-P showed increasing fluorescence intensity at 800 nm accompanying a decline in the polarity. Due to its polarity-sensitivity, ER-P was utilized for confocal fluorescence imaging in live cells, and the results demonstrate that ER-P can exclusively accumulate in the ER and indicate an increase in the polarity during ER stress. Importantly, ER-P displayed different absorbance intensities at 700 nm and 800 nm in different polarity environments because of intramolecular charge transfer. The photoacoustic intensity ratios between 700 nm and 800 nm will enable quantification of polarity to be achieved. The ratiometric photoacoustic imaging data demonstrate that the polarity of the liver tissue of diabetic mice is higher than that of the liver tissue of normal mice. Meanwhile, after treatment with the antidiabetic drug metformin, diabetic mice exhibit a reduced polarity environment in their liver tissue. The proposed study may serve as a new approach for the early diagnosis and therapeutic evaluation of diabetes-induced liver injury.
Collapse
Affiliation(s)
- Haibin Xiao
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| |
Collapse
|
45
|
Nazari M, Xi M, Lerch S, Alizadeh MH, Ettinger C, Akiyama H, Gillespie C, Gummuluru S, Erramilli S, Reinhard BM. Plasmonic Enhancement of Selective Photonic Virus Inactivation. Sci Rep 2017; 7:11951. [PMID: 28931903 PMCID: PMC5607298 DOI: 10.1038/s41598-017-12377-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022] Open
Abstract
Femtosecond (fs) pulsed laser irradiation techniques have attracted interest as a photonic approach for the selective inactivation of virus contaminations in biological samples. Conventional pulsed laser approaches require, however, relatively long irradiation times to achieve a significant inactivation of virus. In this study, we investigate the enhancement of the photonic inactivation of Murine Leukemia Virus (MLV) via 805 nm femtosecond pulses through gold nanorods whose localized surface plasmon resonance overlaps with the excitation laser. We report a plasmonically enhanced virus inactivation, with greater than 3.7-log reduction measured by virus infectivity assays. Reliable virus inactivation was obtained for 10 s laser exposure with incident laser powers ≥0.3 W. Importantly, the fs-pulse induced inactivation was selective to the virus and did not induce any measurable damage to co-incubated antibodies. The loss in viral infection was associated with reduced viral fusion, linking the loss in infectivity with a perturbation of the viral envelope. Based on the observations that physical contact between nanorods and virus particles was not required for viral inactivation and that reactive oxygen species (ROS) did not participate in the detected viral inactivation, a model of virus inactivation based on plasmon enhanced shockwave generation is proposed.
Collapse
Affiliation(s)
- Mina Nazari
- Departments of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Min Xi
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Sarah Lerch
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - M H Alizadeh
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Chelsea Ettinger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | | | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Shyamsunder Erramilli
- Departments of Physics, Boston University, Boston, MA, 02215, United States. .,The Photonics Center, Boston University, Boston, MA, 02215, United States.
| | - Björn M Reinhard
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States. .,The Photonics Center, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
46
|
Harris J, Gai L, Kubheka G, Mack J, Nyokong T, Shen Z. Optical Limiting Properties of 3,5-Dithienylenevinylene BODIPY Dyes at 532 nm. Chemistry 2017; 23:14507-14514. [PMID: 28805263 DOI: 10.1002/chem.201702503] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 12/31/2022]
Abstract
The optical limiting properties of a series of near infrared absorbing 3,5-dithienylenevinylene BODIPY (boron-dipyrromethene) dyes (1-3) that contain donor and acceptor moieties in their π-conjugation systems were studied by using the z-scan technique at 532 nm in the nanosecond pulse range. A strong reverse saturable absorption response was observed when the compounds are embedded into poly(bisphenol carbonate A) polymer thin films, which demonstrates that BODIPY dyes with this type of structure are suitable for use in optical limiting applications.
Collapse
Affiliation(s)
- Jessica Harris
- Department of Chemistry, Rhodes University, Grahamstown, 6410, South Africa
| | - Lizhi Gai
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University; Nanjing 210023 (P.R. China)
| | - Gugu Kubheka
- Department of Chemistry, Rhodes University, Grahamstown, 6410, South Africa
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown, 6410, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, 6410, South Africa
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University; Nanjing 210023 (P.R. China)
| |
Collapse
|
47
|
Kubheka G, Mack J, Kobayashi N, Kimura M, Nyokong T. Optical limiting properties of 2,6-dibromo-3,5- distyrylBODIPY dyes at 532 nm. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Optical limiting properties of 2,6-dibromo-3,5-distyrylBODIPY dyes were investigated by using the z-scan technique at 532 nm in the nanosecond pulse range. A strong reverse saturable absorption response was observed even in solution, which suggests that compounds of this type are potentially suitable for use in optical limiting applications.
Collapse
Affiliation(s)
- Gugu Kubheka
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Nagao Kobayashi
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Mitsumi Kimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
48
|
Banala S, Fokong S, Brand C, Andreou C, Kräutler B, Rueping M, Kiessling F. Quinone-fused porphyrins as contrast agents for photoacoustic imaging. Chem Sci 2017; 8:6176-6181. [PMID: 28989649 PMCID: PMC5628350 DOI: 10.1039/c7sc01369h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL-1. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the 'quinone-fusing' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.
Collapse
Affiliation(s)
- Srinivas Banala
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , D-52074 Aachen , Germany
| | - Stanley Fokong
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
| | - Christian Brand
- Department of Radiology , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , NY 10065 , USA
| | - Chrysafis Andreou
- Department of Radiology , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , NY 10065 , USA
| | - Bernhard Kräutler
- Institute of Organic Chemistry , University of Innsbruck , Innrain 80-82 , A6020 , Innsbruck , Austria
| | - Magnus Rueping
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , D-52074 Aachen , Germany
- KAUST Catalysis Center (KCC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
| |
Collapse
|
49
|
Gawale Y, Adarsh N, Kalva SK, Joseph J, Pramanik M, Ramaiah D, Sekar N. Carbazole-Linked Near-Infrared Aza-BODIPY Dyes as Triplet Sensitizers and Photoacoustic Contrast Agents for Deep-Tissue Imaging. Chemistry 2017; 23:6570-6578. [DOI: 10.1002/chem.201605702] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Yogesh Gawale
- Dyestuff Technology Department; Institute of Chemical Technology; Matunga, Mumbai 400 019 India
| | - Nagappanpillai Adarsh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram 695 019 Kerala India
| | - Sandeep Kumar Kalva
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Joshy Joseph
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram 695 019 Kerala India
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Danaboyina Ramaiah
- CSIR-North East Institute of Science and Technology, Jorhat; 785 006 Assam India
| | - Nagaiyan Sekar
- Dyestuff Technology Department; Institute of Chemical Technology; Matunga, Mumbai 400 019 India
| |
Collapse
|
50
|
Yin TT, Zhao ZX, Zhang HX. A theoretical study on the thermal cis–trans isomerization of azoheteroarene photoswitches. NEW J CHEM 2017. [DOI: 10.1039/c6nj03095e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Azoheteroarene photoswitches exhibit superior properties and the thermal cis–trans isomerization processes are sensitive to the different substitution patterns.
Collapse
Affiliation(s)
- Ting-Ting Yin
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- 130023 Changchun
| | - Zeng-Xia Zhao
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- 130023 Changchun
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- 130023 Changchun
| |
Collapse
|