1
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Activation of Carbon Dioxide by 9-Carbene-9-borafluorene Monoanion: Carbon Monoxide Releasing Transformation of Trioxaborinanone to Luminescent Dioxaborinanone. J Am Chem Soc 2022; 144:16276-16281. [PMID: 36037435 DOI: 10.1021/jacs.2c06845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first structurally characterized example of a trioxaborinanone (2) is produced by the reaction of a 9-carbene-9-borafluorene monoanion and carbon dioxide. When compound 2 is heated or irradiated with UV light, carbon monoxide (CO) is released, and a luminescent dioxaborinanone (3) is formed. Notably, carbon monoxide releasing molecules (CORMs) are of interest for their ability to deliver a specific amount of CO. Due to the turn-on fluorescence observed as a result of the conversion to 3, CORM 2 serves as a means to optically observe CO loss "by eye" under thermal or photochemical conditions.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and Its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022; 61:e202205785. [DOI: 10.1002/anie.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/07/2022]
|
3
|
Ding Y, Li Y, Zhang J, Cui C. Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yazhou Ding
- Nankai University Institute of elemento-organic chemistry CHINA
| | - Yang Li
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Jianying Zhang
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Chunming Cui
- Nankai University Institute of Elemento-Organic Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
4
|
Jing Y, Jiang J, Liu Y, Ke Z. Electronic and Steric Properties of N-Heterocyclic Boryl Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaru Jing
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jingxing Jiang
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming 525000, P. R. China
| |
Collapse
|
5
|
Seidel FW, Nozaki K. A Ni
0
σ‐Borane Complex Bearing a Rigid Bidentate Borane/Phosphine Ligand: Boryl Complex Formation by Oxidative Dehydrochloroborylation and Catalytic Activity for Ethylene Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Falk William Seidel
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| |
Collapse
|
6
|
Seidel FW, Nozaki K. A Ni 0 σ-Borane Complex Bearing a Rigid Bidentate Borane/Phosphine Ligand: Boryl Complex Formation by Oxidative Dehydrochloroborylation and Catalytic Activity for Ethylene Polymerization. Angew Chem Int Ed Engl 2021; 61:e202111691. [PMID: 34854528 DOI: 10.1002/anie.202111691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/08/2022]
Abstract
While of interest, synthetically feasible access to boryl ligands and complexes remains limited, meaning such complexes remain underexploited in catalysis. For bidentate boryl ligands, oxidative addition of boranes to low-valent IrI or Pt0 are the only examples yet reported. As part of our interest in developing improved group 10 ethylene polymerization catalysts, we present here an optimized synthesis of a novel, rigid borane/phosphine ligand and its Ni0 σ-borane complex. From the latter, an unprecedented oxidative dehydrochloroborylation, to give a NiII boryl complex, was achieved. Furthermore, this new B/P ligand allowed the nickel-catalyzed polymerization of ethylene, which suggests that Ni0 σ-hydroborane complexes act as masked NiII boryl hydride reagents.
Collapse
Affiliation(s)
- Falk William Seidel
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Eleazer BJ, Jayaweera HDAC, Gange GB, Smith MD, Martin CR, Park KC, Popov AA, Peryshkov DV. Bimetallic Ru-Pd and Trimetallic Ru-Pd-Cu Assemblies on the Carborane Cluster Surface. Inorg Chem 2021; 60:16911-16916. [PMID: 34710327 DOI: 10.1021/acs.inorgchem.1c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of well-defined heterometallic complexes remains a frontier challenge in inorganic chemistry. We report an approach that relies on the sequential insertion of electrophilic metal fragments into electron-rich Ru-B bonds of the η2-BB-carboryne complex (POBBOP)Ru(CO)2 [POBBOP = 1,7-OP(iPr)2-m-2,6-dehydrocarborane]. Utilizing this synthetic strategy, bimetallic (POBBOP)(Ru)(CO)2[Pd(PtBu3)] and trimetallic (POBBOP)(Ru)(CO)2[Pd(PtBu3)](CuBr) complexes were selectively prepared. Structural and theoretical analysis of the features of chemical bonding within Ru-B-B-Cu and Ru-B-B-Pd fragments is presented.
Collapse
Affiliation(s)
- Bennett J Eleazer
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - H D A Chathumal Jayaweera
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gayathri B Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Bailey GA, Agapie T. Terminal Mo Carbide and Carbyne Reactivity: H2 Cleavage, B–C Bond Activation, and C–C Coupling. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gwendolyn A. Bailey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Donnelly LJ, Parsons S, Morrison CA, Thomas SP, Love JB. Synthesis and structures of anionic rhenium polyhydride complexes of boron-hydride ligands and their application in catalysis. Chem Sci 2020; 11:9994-9999. [PMID: 34094263 PMCID: PMC8162066 DOI: 10.1039/d0sc03458d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rhenium complex, [K(DME)(18-c-6)][ReH4(Bpin)(η2-HBpin)(κ2-H2Bpin)] 1, comprising hydride and boron ligands only, has been synthesized by exhaustive deoxygenation of the commercially available perrhenate anion (ReO4 -) with pinacol borane (HBpin). The structure of 1 was analysed by X-ray crystallography, NMR spectroscopy, and DFT calculations. While no hydrides were located in the X-ray crystal structure, it revealed a trigonal arrangement of pinacol boron ligands. Variable-temperature NMR spectroscopy supported the presence of seven hydride ligands but further insight was hindered by the fluxionality of both hydride and boron ligands at low temperature. Further evaluation of the structure by Ab Initio Random Structure Searching (AIRSS) identified the presence of hydride, boryl, σ-borane, and dihydroborate ligands. This complex, either isolated or prepared in situ, is a catalyst for the 1,4-hydroboration of N-heteroaromatic substrates under simple operating procedures. It also acts as a reagent for the stoichiometric C-H borylation of toluene, displaying high meta regioselectivity in the borylated products. Reaction of 1 with 9-BBN resulted in HBpin substitution to form the new anionic tetra(dihydroborate) complex [K(DME)(18-c-6)][Re(κ2-H-9-BBN)4] 4 for which the hydride positions were clearly identified by X-ray crystallography. The method used to generate these isolable yet reactive boron-hydride complexes is direct and straightforward and has potential utility for the exploitation of other metal oxo compounds in operationally simple catalytic reactions.
Collapse
Affiliation(s)
- Liam J Donnelly
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Simon Parsons
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| |
Collapse
|
10
|
Price JS, DeJordy DM, Emslie DJH, Britten JF. Reactions of [(dmpe) 2MnH(C 2H 4)]: synthesis and characterization of manganese(i) borohydride and hydride complexes. Dalton Trans 2020; 49:9983-9994. [PMID: 32627789 DOI: 10.1039/d0dt01726d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactions of trans-[(dmpe)2MnH(C2H4)] (1) with BH3(NMe3), 9-BBN, and HBMes2 yielded the manganese(i) borohydride complexes [(dmpe)2Mn(μ-H)2BR2] (3: R = H, 4: R2 = C8H14, 5: R = Mes). The reaction of 1 with BH3(NMe3) proceeds via ethylene substitution. By contrast, a detuerium labelling study indicates that the reaction of 1 with HBMes2 involves initial isomerization of 1 to an unobserved 5-coordinate ethyl intermediate, [(dmpe)2MnEt], which reacts with the hydroborane to afford EtBR2 and [(dmpe)2MnH], followed by reaction with a second equivalent of hydroborane to generate 5 (an analogous pathway is likely followed for other base-free hydroboranes such as 9-BBN). Identification of 3-5 as κ2-borohydride complexes, as opposed to boryl dihydride or hydroborane hydride isomers, is supported by 11B NMR spectroscopy, X-ray diffraction, and Atoms in Molecules calculations. Two byproducts were observed in the syntheses of 3-5: [{(dmpe)2MnH}2(μ-dmpe)] (6) and [(dmpe)2MnH(κ1-dmpe)] (7). These complexes were independently prepared by exposure of 1 to free dmpe under an atmosphere of Ar or H2, and the generality of this synthetic route was demonstrated by the reaction of 1 with PMe3 (under H2) to form [(dmpe)2MnH(PMe3)] (8). Complexes 6-8 can exist as isomers with either a trans or a cis relationship between the hydride and κ1-coordinated phosphine ligands on manganese. trans to cis isomerization of 6-8 is photochemically induced, whereas the reverse reaction occurs under thermal conditions. X-ray crystal structures were obtained for 3-5, trans,trans-6, cis,cis-6, trans-7, and trans-8.
Collapse
Affiliation(s)
- Jeffrey S Price
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | | | | | | |
Collapse
|
11
|
Drescher W, Schmitt-Monreal D, Jacob CR, Kleeberg C. [(Me3P)3Co(Bcat)3]: Equilibrium Oxidative Addition of a B–B Bond and Interconversion between the fac-Tris-Boryl and the mer-Tris-Boryl Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wiebke Drescher
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel Schmitt-Monreal
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Rami F, Bächtle F, Plietker B. Hydroboration of internal alkynes catalyzed by FeH(CO)(NO)(PPh3)2: a case of boron-source controlled regioselectivity. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02461a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Fe–H complex FeH(CO)(NO)(Ph3P)2 catalyzes the stereoselective, regiodivergent hydroboration of internal alkynes using either pinacolborane (HBpin) or bis(pinacolato)diboron (B2pin2) as a boron source.
Collapse
Affiliation(s)
- Fabian Rami
- Institut für Organische Chemie
- Universität Stuttgart
- DE-70569 Stuttgart
- Germany
| | - Franziska Bächtle
- Institut für Organische Chemie
- Universität Stuttgart
- DE-70569 Stuttgart
- Germany
| | - Bernd Plietker
- Institut für Organische Chemie
- Universität Stuttgart
- DE-70569 Stuttgart
- Germany
| |
Collapse
|
13
|
Schröder J, Böttcher T. 2,6‐Bis(diazaboryl)pyridine – A Ligand with Hemilabile Donor and Lewis Acid Functionalities. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Schröder
- Institut für Anorganische und Analytische Chemie Universität Freiburg Albertstr. 19 79104 Freiburg Germany
| | - Tobias Böttcher
- Institut für Anorganische und Analytische Chemie Universität Freiburg Albertstr. 19 79104 Freiburg Germany
| |
Collapse
|
14
|
Alvarez MA, García ME, García-Vivó D, Huergo E, Ruiz MA. Coordination and Dehydrogenation of Diphosphine-Borane Ph 2PCH 2PPh 2·BH 3 at a Heterometallic MoRe Center to Give an Agostic Boryl-Bridged Derivative. Inorg Chem 2019; 58:16134-16143. [PMID: 31713414 DOI: 10.1021/acs.inorgchem.9b02693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coordination chemistry of the title diphosphine-borane adduct at heterometallic MoRe centers was examined through its reactions with the hydride complex [MoReCp(μ-H)(μ-PCy2)(CO)5(NCMe)] (Cp = η5-C5H5). The latter reacted rapidly with stoichiometric amounts of dppm·BH3 (dppm = Ph2PCH2PPh2) in refluxing toluene solution, with displacement of the nitrile ligand, to give [MoReCp(μ-H)(μ-PCy2)(CO)5(κ1P-dppm·BH3)], with a P-bound diphosphine-borane ligand arranged trans to the PCy2 group. Decarbonylation of the latter complex was accomplished rapidly upon irradiation with visible-UV light in toluene solution at 263 K, to give the agostic derivative [MoReCp(μ-H)(μ-PCy2)(CO)4(κ1P,η2-dppm·BH3)] as major product (Mo-Re = 3.2075(5) Å), along with small amounts of the diphosphine-bridged complex [MoReCp(μ-H)(μ-PCy2)(CO)4(μ-dppm)]. Extended photolysis of the agostic complex at 288 K promoted an unprecedented dehydrogenation process involving the borane group and the hydride ligand, to give the diphosphine-boryl complex [MoReCp(μ-η2:κ2P,B-H2B·dppm)(μ-PCy2)(CO)4] (Mo-Re = 3.075(1) Å). The latter displayed a boryl ligand in a novel bridging coordination mode, it being σ-bound to one of the metal atoms (B-Re = 2.38(2) Å) while interacting with the second metal atom via a strong side-on tricentric B-H-M interaction (B-Mo = 2.31(1); H-Mo = 1.9(1) Å). The overall dehydrogenation process was endergonic by 43 kJ/mol, according to density functional theory calculations.
Collapse
Affiliation(s)
- M Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - M Esther García
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Estefanía Huergo
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Miguel A Ruiz
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| |
Collapse
|
15
|
Romeo LJ, Kaur A, Wilson DJD, Martin CD, Dutton JL. Evaluation of the σ-Donating and π-Accepting Properties of N-Heterocyclic Boryl Anions. Inorg Chem 2019; 58:16500-16509. [DOI: 10.1021/acs.inorgchem.9b02433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lorenzo J. Romeo
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - David J. D. Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Caleb D. Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jason L. Dutton
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
16
|
Kristinsdóttir L, Oldroyd NL, Grabiner R, Knights AW, Heilmann A, Protchenko AV, Niu H, Kolychev EL, Campos J, Hicks J, Christensen KE, Aldridge S. Synthetic, structural and reaction chemistry of N-heterocyclic germylene and stannylene compounds featuring N-boryl substituents. Dalton Trans 2019; 48:11951-11960. [PMID: 31318369 DOI: 10.1039/c9dt02449b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study details the syntheses of N-heterocyclic germylenes and stannylenes featuring diazaborolyl groups, {(HCDippN)2B} (Dipp = 2,6-iPr2C6H3), as both of the N-bound substituents, with a view to generating electron rich and sterically protected metal centres. The energies of their key frontier orbitals - the group 14-centred lone pair and orthogonal pπ-orbital (typically the HOMO-2 and LUMO) have been probed by DFT calculations and compared with a related acyclic analogue, revealing (in the case of the stannylenes) a correlation with the measured 119Sn chemical shifts. The reactivity of the germylene systems towards oxygen atom transfer agents has been examined, with 2 : 1 reaction stoichiometries being observed for both Me3NO and pyridine N-oxide, leading to the formation of products thought to be derived from the activation of C-H bonds by a transient first-formed germanone.
Collapse
Affiliation(s)
- Lilja Kristinsdóttir
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Nicola L Oldroyd
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Rachel Grabiner
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Alastair W Knights
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Andrey V Protchenko
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Haoyu Niu
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Eugene L Kolychev
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Jesús Campos
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Kirsten E Christensen
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
17
|
Rohman SS, Sarmah B, Borthakur B, Remya GS, Suresh CH, Phukan AK. Extending the Library of Boron Bases: A Contribution from Theory. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Bikash Sarmah
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam India
| | - Bitupon Borthakur
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam India
| | - Geetha S. Remya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Ashwini K. Phukan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam India
| |
Collapse
|
18
|
Maser L, Schneider C, Vondung L, Alig L, Langer R. Quantifying the Donor Strength of Ligand-Stabilized Main Group Fragments. J Am Chem Soc 2019; 141:7596-7604. [DOI: 10.1021/jacs.9b02598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leon Maser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christian Schneider
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lisa Vondung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lukas Alig
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Robert Langer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
19
|
Kristinsdóttir L, Vasko P, Niu H, Kolychev EL, Campos J, Fuentes MÁ, Hicks J, Thompson AL, Aldridge S. Borylated N-Heterocyclic Carbenes: Rearrangement and Chemical Trapping. Chemistry 2019; 25:2556-2568. [PMID: 30537403 DOI: 10.1002/chem.201804808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Indexed: 01/11/2023]
Abstract
This study details attempts to access N-heterocyclic carbenes (NHCs) featuring the diazaborolyl group, {(HCNDipp)2 B}, as one or both of the N-bound substituents, to generate strongly electron-donating and sterically imposing new carbene ligands. Attempts to isolate N-heterocyclic carbenes based around imidazolylidene or related heterocycles, are characterized by facile N-to-C migration of the boryl substituent. In the cases of imidazolium precursors bearing one N-bound diazaborolyl group and one methyl substituent, deprotonation leads to the generation of the target carbenes, which can be characterized in situ by NMR measurements, and trapped by reactions with metal fragments and elemental selenium. The half-lives of the free carbenes at room temperature range from 4-50 h (depending on the pattern of ancillary substituents) with N-to-C2 migration of the boryl function being shown to be the predominant rearrangement pathway. Kinetic studies show this to be a first-order process that occurs with an entropy of activation close to zero. DFT calculations imply that an intramolecular 1,2-shift is mechanistically feasible, with calculated activation energies of the order of 90-100 kJ mol-1 , reflecting the retention of significant aromatic character in the imidazole ring in the transition state. Trapping of the carbene allows for evaluation of steric and electronic properties through systems of the type LAuCl, LRh(CO)2 Cl, and LSe. A highly unsymmetrical (but nonetheless bulky) steric profile and moderately enhanced σ-donor capabilities (compared with IMes) are revealed.
Collapse
Affiliation(s)
- Lilja Kristinsdóttir
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Petra Vasko
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Haoyu Niu
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Eugene L Kolychev
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jesús Campos
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Amber L Thompson
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
20
|
Iron sandwiched between group 13 analogues of N-Heterocyclic carbene: A theoretical investigation. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Böser R, Haufe LC, Freytag M, Jones PG, Hörner G, Frank R. Completing the series of boron-nucleophilic cyanoborates: boryl anions of type NHC-B(CN) 2. Chem Sci 2017; 8:6274-6280. [PMID: 28989661 PMCID: PMC5628389 DOI: 10.1039/c7sc02238g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/02/2017] [Indexed: 12/02/2022] Open
Abstract
Since the first seminal report of boron-centred nucleophiles, the area of boryl anions has developed only sporadically and requires further systematisation. The boryl anions of type NHC-B(CN)2- (NHC = N-heterocyclic carbene) described herein complete a consistent series with the known anions cAAC-B(CN)2- [cAAC = cyclic(alkyl)(amino)carbene] and B(CN)32-. A novel approach towards NHC-stabilised cyanoboranes based on alkylthio-cyano exchange at boron is presented, and in contrast to other methods affords the products in better purity and yield. Reduction of suitable NHC-dicyanoboranes gave two unprecedented examples of NHC-B(CN)2- boryl anions. The latter were shown to react as boron-centred nucleophiles with facile formation of B-E bonds, where E = C, Si, Sn, P, Au. Bonding analysis by DFT calculations suggests a systematic variation of the energy of the boron-centred HOMO depending on the carbene, which in turn can control the nucleophilic character.
Collapse
Affiliation(s)
- Richard Böser
- Technical University of Braunschweig , Department of Life Sciences , Institute of Analytical and Inorganic Chemistry , Hagenring 30 , 38106 , Braunschweig , Germany .
| | - Lisa C Haufe
- Technical University of Braunschweig , Department of Life Sciences , Institute of Analytical and Inorganic Chemistry , Hagenring 30 , 38106 , Braunschweig , Germany .
| | - Matthias Freytag
- Technical University of Braunschweig , Department of Life Sciences , Institute of Analytical and Inorganic Chemistry , Hagenring 30 , 38106 , Braunschweig , Germany .
| | - Peter G Jones
- Technical University of Braunschweig , Department of Life Sciences , Institute of Analytical and Inorganic Chemistry , Hagenring 30 , 38106 , Braunschweig , Germany .
| | - Gerald Hörner
- Technical University of Berlin , Department of Chemistry , Institute of Bioinorganic Chemistry , Strasse des 17. Juni 135 , 10623 Berlin , Germany .
| | - René Frank
- Technical University of Braunschweig , Department of Life Sciences , Institute of Analytical and Inorganic Chemistry , Hagenring 30 , 38106 , Braunschweig , Germany .
| |
Collapse
|
22
|
Campos J, Nova A, Kolychev EL, Aldridge S. A Combined Experimental/Computational Study of the Mechanism of a Palladium-Catalyzed Bora-Negishi Reaction. Chemistry 2017; 23:12655-12667. [DOI: 10.1002/chem.201702703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jesús Campos
- Inorganic Chemistry Laboratory; South Parks Road Oxford OX1 3QR UK
- Instituto de Investigaciones Químicas (IIQ); Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA); Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC).; Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Ainara Nova
- Centre for Theoretical and Computational Chemistry (CTCC); Department of Chemistry; University of Oslo, P. O. Box 1033 Blindern; 0315 Oslo Norway
| | | | - Simon Aldridge
- Inorganic Chemistry Laboratory; South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
23
|
1,3,2‐Diazaborolyl Anions – From Laboratory Curiosities to Versatile Reagents in Synthesis. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700629] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Kong L, Lu W, Yongxin L, Ganguly R, Kinjo R. Formation of Boron–Main-Group Element Bonds by Reactions with a Tricoordinate Organoboron L2PhB: (L = Oxazol-2-ylidene). Inorg Chem 2017; 56:5586-5593. [DOI: 10.1021/acs.inorgchem.6b02993] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingbing Kong
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei Lu
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, Singapore 637371, Singapore
| | - Li Yongxin
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, Singapore 637371, Singapore
| | - Rakesh Ganguly
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, Singapore 637371, Singapore
| | - Rei Kinjo
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
25
|
Scharnagl FK, Bose SK, Marder TB. Acylboranes: synthetic strategies and applications. Org Biomol Chem 2017; 15:1738-1752. [DOI: 10.1039/c6ob02425d] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acylboranes are an attractive class of compounds, of which the synthesis has very recently been documented as summarised in this review. Access to these compounds provides a path to study their properties and reactivity.
Collapse
Affiliation(s)
- Florian Korbinian Scharnagl
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| | - Shubhankar Kumar Bose
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
- Centre for Nano and Material Sciences (CNMS)
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|
26
|
Agnew DW, Moore CE, Rheingold AL, Figueroa JS. Comparison of nucleophilic- and radical-based routes to the formation of manganese-main group element single bonds. Dalton Trans 2017; 46:6700-6707. [DOI: 10.1039/c7dt01102d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One-electron activation of main-group substrates by a stable manganese metalloradical provides a facile pathway to Mn-element single bonds.
Collapse
Affiliation(s)
- Douglas W. Agnew
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
| | | | - Joshua S. Figueroa
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
| |
Collapse
|
27
|
Lu W, Hu H, Li Y, Ganguly R, Kinjo R. Isolation of 1,2,4,3-Triazaborol-3-yl-metal (Li, Mg, Al, Au, Zn, Sb, Bi) Derivatives and Reactivity toward CO and Isonitriles. J Am Chem Soc 2016; 138:6650-61. [DOI: 10.1021/jacs.6b03432] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wei Lu
- Division of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, 637371, Singapore
| | - Haitao Hu
- Division of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, 637371, Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, 637371, Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences and ‡NTU-CBC Crystallography Facility, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
28
|
Wang B, Kang X, Nishiura M, Luo Y, Hou Z. Isolation, structure and reactivity of a scandium boryl oxycarbene complex. Chem Sci 2016; 7:803-809. [PMID: 28966773 PMCID: PMC5580044 DOI: 10.1039/c5sc03138a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/16/2015] [Indexed: 11/21/2022] Open
Abstract
The reaction of a half-sandwich scandium boryl complex 1 with CO (1 atm) afforded a novel boryl oxycarbene complex 2. The structure of 2 was characterized by 1H, 13C and 11B NMR, X-ray diffraction, and DFT analysis. Further reaction of 2 with CO (1 atm) yielded a phenylamido- and boryl-substituted enediolate complex 3 through C-C bond formation between CO and the carbene unit in 2 and cleavage and rearrangement of the Si-N bond in the silylene-linked Cp-amido ligand. Upon heating, insertion of the carbene atom into a methine C-H bond in the boryl ligand of 2 took place to give an alkoxide complex 4. The reactions of 2 with pyridine and 2-methylpyridine led to insertion of the carbene atom into an ortho-C-H bond of pyridine and into a methyl C-H bond of 2-methylpyridine, respectively. The reaction of 2 with ethylene yielded a borylcyclopropyloxy complex 7 through cycloaddition of the carbene atom to ethylene.
Collapse
Affiliation(s)
- Baoli Wang
- Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan .
| | - Xiaohui Kang
- Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan .
- State Key Laboratory of Fine Chemicals , School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian 116024 , China .
| | - Masayoshi Nishiura
- Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan .
| | - Yi Luo
- State Key Laboratory of Fine Chemicals , School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian 116024 , China .
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan .
- State Key Laboratory of Fine Chemicals , School of Pharmaceutical Science and Technology , Dalian University of Technology , Dalian 116024 , China .
| |
Collapse
|
29
|
Campos J, Aldridge S. Catalytic Borylation using an Air‐Stable Zinc Boryl Reagent: Systematic Access to Elusive Acylboranes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507627] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jesús Campos
- Inorganic Chemistry Laboratory, Dept. of Chemistry, University of Oxford, South Parks Rd, Oxford (UK) OX1 3QR
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Dept. of Chemistry, University of Oxford, South Parks Rd, Oxford (UK) OX1 3QR
| |
Collapse
|
30
|
Campos J, Aldridge S. Catalytic Borylation using an Air-Stable Zinc Boryl Reagent: Systematic Access to Elusive Acylboranes. Angew Chem Int Ed Engl 2015; 54:14159-63. [DOI: 10.1002/anie.201507627] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 12/11/2022]
|
31
|
Frank R, Howell J, Campos J, Tirfoin R, Phillips N, Zahn S, Mingos DMP, Aldridge S. Cobalt Boryl Complexes: Enabling and Exploiting Migratory Insertion in Base-Metal-Mediated Borylation. Angew Chem Int Ed Engl 2015; 54:9586-90. [DOI: 10.1002/anie.201504929] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Indexed: 11/10/2022]
|
32
|
Cobalt Boryl Complexes: Enabling and Exploiting Migratory Insertion in Base-Metal-Mediated Borylation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Kong L, Ganguly R, Li Y, Kinjo R. Diverse reactivity of a tricoordinate organoboron L 2PhB: (L = oxazol-2-ylidene) towards alkali metal, group 9 metal, and coinage metal precursors. Chem Sci 2015; 6:2893-2902. [PMID: 29308167 PMCID: PMC5655907 DOI: 10.1039/c5sc00404g] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/22/2015] [Indexed: 12/31/2022] Open
Abstract
The reactivity of a tricoordinate organoboron L2PhB: (L = oxazol-2-ylidene) 1 towards metal precursors and its coordination chemistry were comprehensively studied. While the boron center in 1 is reluctant to coordinate to the alkali metals in their trifluoromethanesulfonate salts (MOTf) (M = Li, Na, K), the unprecedented compound 2 containing two L2PhB: units linked by a cyclic Li(OTf)2Li spacer was obtained from the reaction of 1 with LiOTf. Treatment of 1 with group 9 metal complexes [MCl(COD)]2 (M = Rh, Ir) afforded the first zwitterionic rhodium(i)-boronium complex 3 and the iridium(iii)-borane complex 4, respectively. The reaction pathway may involve C-H activation followed by proton migration from the metals to the boron center, demonstrating the first example of the deprotonation of metal hydrides by a basic boron. In the reactions with coinage metals, 1 could act as a two-electron reducing agent towards the metal chlorides MCl (M = Cu, Ag, Au). Meanwhile, the reaction of 1 with gold chloride supported by a N-heterocyclic carbene (NHC) produced a heteroleptic cationic gold complex [(L2PhB)Au(NHC)]Cl (6) featuring both carbene and L2PhB: ligands on the gold atom. In contrast, an isolable gold chloride complex (L2PhB)AuCl (8) was obtained by direct complexation between 1 and triphenylphosphine-gold chloride via ligand exchange. X-ray diffraction analysis and computational studies revealed the nature of the B:→Au bonding interaction in complexes 6 and 8. Natural Population Analysis (NPA) and Natural Bond Orbital (NBO) analysis support the strong σ-donating property of the L2PhB: ligand. Moreover, preliminary studies showed that complex 8 can serve as an efficient precatalyst for the addition of X-H (X = N, O, C) to alkynes under ambient conditions, demonstrating the first application of a metal complex featuring a neutral boron-based ligand in catalysis.
Collapse
Affiliation(s)
- Lingbing Kong
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| | - Rakesh Ganguly
- NTU-CBC Crystallography Facility , Nanyang Technological University , Singapore 637371 , Singapore
| | - Yongxin Li
- NTU-CBC Crystallography Facility , Nanyang Technological University , Singapore 637371 , Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| |
Collapse
|
34
|
Noda H, Bode JW. Synthesis of Chemically and Configurationally Stable Monofluoro Acylboronates: Effect of Ligand Structure on their Formation, Properties, and Reactivities. J Am Chem Soc 2015; 137:3958-66. [DOI: 10.1021/jacs.5b00822] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hidetoshi Noda
- LaboratoriumfurOrganischeChemie,
Department of Chemistry and Applied Biosciences, ETH−Zurich, 8093 Zurich, Switzerland
| | - Jeffrey W. Bode
- LaboratoriumfurOrganischeChemie,
Department of Chemistry and Applied Biosciences, ETH−Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
35
|
Mazzacano TJ, Mankad NP. Thermal C–H borylation using a CO-free iron boryl complex. Chem Commun (Camb) 2015; 51:5379-82. [DOI: 10.1039/c4cc09180a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thermal C–H borylation was observed from a phosphine-supported iron boryl complex.
Collapse
Affiliation(s)
| | - Neal P. Mankad
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|