1
|
Zhao G, Khosravi A, Sharma S, Musaev DG, Ngai MY. Cobalt-Hydride-Catalyzed Alkene-Carboxylate Transposition (ACT) of Allyl Carboxylates. J Am Chem Soc 2024. [PMID: 39530786 DOI: 10.1021/jacs.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The alkene-carboxylate transposition (ACT) of allyl carboxylates is one of the most atom-economic and synthetically reliable transformations in organic chemistry, as allyl carboxylates are versatile synthetic intermediates. Classic ACT transformations, including [3,3]-sigmatropic rearrangement and transition metal-catalyzed allylic rearrangement, typically yield 1,2-alkene/1,3-acyloxy shifted products through a two-electron process. However, position-altered ACT to produce distinct 1,3-alkene/1,2-acyloxy shifted products remains elusive. Here, we report the first cobalt-hydride-catalyzed ACT of allyl carboxylates, enabling access to these unprecedented 1,3-alkene/1,2-acyloxy shifted products via a 1,2-radical migration (RaM) strategy. This transformation demonstrates broad functional group tolerance, is suitable for late-stage modification of complex molecules, and is amenable to gram-scale synthesis. It also expands the reaction profiles of both allyl carboxylates and cobalt catalysis. Preliminary experimental and computational studies suggest a mechanism involving metal-hydride hydrogen atom transfer (MHAT) and the 1,2-RaM process. This reaction is expected to serve as the basis for the development of versatile Co-H-catalyzed transformations of allyl carboxylates, generating a wide array of valuable building blocks for synthetic, medicinal, and materials chemistry.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arman Khosravi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sahil Sharma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Gharpure SJ, Chavan RS, Fartade DJ. Iron-Mediated Segment Coupling of Alkenols with Acceptors via C-C Radical Translocation and Remote Oxidative 1,5/6-Hydrogen Atom Transfer. Org Lett 2024. [PMID: 39516177 DOI: 10.1021/acs.orglett.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Iron-mediated segment coupling followed by oxidative 1,5/6-hydrogen atom transfer (HAT) for synthesis of ε-oxo alkene derivatives is developed. This transformation involved translocation of the radical from H-to-C-to-C-to-C followed by the oxidation under MHAT conditions providing rapid access to 1,6/1,7-keto functionalized esters/ketone/sulfones/phosphonates/arenes. The different outcomes of coupling with acceptors could be explained by bond dissociation energies (BDEs), and mechanistic insights were gained through control experiments, including deuterium labeling studies.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rupali S Chavan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Jankins TC, Blank PM, Brugnetti A, Boehm P, Aouane FA, Morandi B. Shuttle HAT for mild alkene transfer hydrofunctionalization. Nat Commun 2024; 15:9397. [PMID: 39477933 PMCID: PMC11525564 DOI: 10.1038/s41467-024-53281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen atom transfer (HAT) from a metal-hydride is a reliable and powerful method for functionalizing unsaturated C-C bonds in organic synthesis. Cobalt hydrides (Co-H) have garnered significant attention in this field, where the weak Co-H bonds are most commonly generated in a catalytic fashion through a mixture of stoichiometric amounts of peroxide oxidant and silane reductant. Here we show that the reverse process of HAT to an alkene, i.e. hydrogen atom abstraction of a C-H adjacent to a radical, can be leveraged to generate catalytically active Co-H species in an application of shuttle catalysis coined shuttle HAT. This method obviates the need for stoichiometric reductant/oxidant mixtures thereby greatly simplifying the generation of Co-H. To demonstrate the generality of this shuttle HAT platform, five different reaction manifolds are shown, and the reaction can easily be scaled up to 100 mmol.
Collapse
Affiliation(s)
- Tanner C Jankins
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip M Blank
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrea Brugnetti
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Françoise A Aouane
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
4
|
Lou SJ, Wang P, Wen X, Mishra A, Cong X, Zhuo Q, An K, Nishiura M, Luo Y, Hou Z. ( Z)-Selective Isomerization of 1,1-Disubstituted Alkenes by Scandium-Catalyzed Allylic C-H Activation. J Am Chem Soc 2024; 146:26766-26776. [PMID: 39303300 DOI: 10.1021/jacs.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The isomerization of 1,1-disubstituted alkenes through 1,3-hydrogen shift is an atom-efficient route for synthesizing trisubstituted alkenes, which are important moieties in many natural products, pharmaceuticals, and organic materials. However, this reaction often encounters regio- and stereoselectivity challenges, typically yielding E/Z-mixtures of the alkene products or thermodynamically favored (E)-alkenes. Herein, we report the (Z)-selective isomerization of 1,1-disubstituted alkenes to trisubstituted (Z)-alkenes via the regio- and stereospecific activation of an allylic C-H bond. The key to the success of this unprecedented transformation is the use of a sterically demanding half-sandwich scandium catalyst in combination with a bulky quinoline compound, 2-tert-butylquinoline. Deuterium-labeling experiments and density functional theory (DFT) calculations have revealed that 2-tert-butylquinoline not only facilitates the C═C bond transposition through hydrogen shuttling but also governs the regio- and stereoselectivity due to the steric hindrance of the tert-butyl group. This protocol enables the synthesis of diverse (Z)-configured acyclic trisubstituted alkenes and endocyclic trisubstituted alkenes from readily accessible 1,1-disubstituted alkenes. It offers an efficient and selective route for preparing a new family of synthetically challenging (Z)-trisubstituted alkenes with broad substrate scope, 100% atom efficiency, high regio- and stereoselectivity, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Pan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Wen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Mukherjee K, Cheung KPS, Gevorgyan V. Photoinduced Pd-Catalyzed Direct Sulfonylation of Allylic C-H Bonds. Angew Chem Int Ed Engl 2024:e202413646. [PMID: 39287933 DOI: 10.1002/anie.202413646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Allylic sulfones are valuable motifs due to their medicinal and biological significance and their versatile chemical reactivities. While direct allylic C-H sulfonylation represents a straightforward and desirable approach, these methods are primarily restricted to terminal alkenes, leaving the engagement of the internal counterparts a formidable challenge. Herein we report a photocatalytic approach that accommodates both cyclic and acyclic internal alkenes with diverse substitution patterns and electronic properties. Importantly, the obtained allylic sulfones can be readily diversified into a wide range of products, thus enabling formal alkene transposition and all-carbon quaternary center formation through the sequential C-H functionalization.
Collapse
Affiliation(s)
- Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| |
Collapse
|
6
|
Yang F, Oladokun A, Porco JA. Evolution of a Strategy for the Unified, Asymmetric Total Syntheses of DMOA-Derived Spiromeroterpenoids. J Org Chem 2024; 89:11891-11908. [PMID: 39133739 PMCID: PMC11382302 DOI: 10.1021/acs.joc.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
DMOA-derived spiromeroterpenoids are a group of natural products with complex structures and varied biological activities. Recently, we reported the first enantioselective total synthesis of five spiromeroterpenoids based on a fragment coupling strategy. This full account describes details of a strategy evolution that culminated in successful syntheses of the targeted natural products. Although our alkylative dearomatization methodology was unable to deliver the desired spirocyclic products in our first-generation approach, our second-generation approach based on oxidative [3 + 2] cycloaddition produced the asnovolin H core along with several complex dimers. Challenges with the dearomatization approach finally led us to develop a third generation, non-dearomatization approach based on a fragment coupling strategy to construct the conserved, sterically hindered bis-neopentyl linkage of the spiromeroterpenoids through 1,2-addition. To enable scalable access of the natural products, a refined, multigram-scale synthesis of the coupling partners was developed. A series of stereoselective transformations were developed through judicious choice of reagents and conditions. Finally, modular spirocycle construction logic was demonstrated through the synthesis of a small library of spiromeroterpenoid analogues.
Collapse
Affiliation(s)
- Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Amira Oladokun
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
Essayan DE, Schubach MJ, Smoot JM, Puri T, Pronin SV. Directed Hydrogen Atom Transfer for Selective Reactions of Polyenols. J Am Chem Soc 2024; 146:18224-18229. [PMID: 38917421 DOI: 10.1021/jacs.4c06601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Directed hydrogen atom transfer to alkenes is described. The process is catalyzed by iron complexes and allows for the site-selective hydrofunctionalization of polyenols. Experimental data suggest that coordination of the hydroxy group to the iron hydride intermediate plays an important role in preferential engagement of the allylic alcohol motif and provides a new basis for selectivity in radical hydrofunctionalization events. As a proof of concept, β- and γ-amino alcohols are prepared from the corresponding polyenols in a selective manner.
Collapse
Affiliation(s)
- Daniel E Essayan
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Matthew J Schubach
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jeanelle M Smoot
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Taranee Puri
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey V Pronin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Bodnar AK, Newhouse TR. Accessing Z-Enynes via Cobalt-Catalyzed Propargylic Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202402638. [PMID: 38591826 DOI: 10.1002/anie.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Alkenes constitute an enabling motif in organic synthesis, as they can be functionalized to form highly substituted molecules. Z-alkenes are generally challenging to access due to the thermodynamic preference for the formation of E-alkenes compared to Z-alkenes. Dehydrogenation methodologies to selectively form Z-alkenes have not yet been reported. Herein, we report a Z-selective, propargylic dehydrogenation that provides 1,3-enynes through the invention of a Co-catalyzed oxidation system. Observation of a kinetic isotope effect (KIE) revealed that deprotonation of the propargylic position is the rate limiting step. Additionally, isomerization experiments were conducted and confirmed that the observed Z-selectivity is a kinetic effect. A proposed stereomechanistic model for the Z-selectivity is included.
Collapse
Affiliation(s)
- Alexandra K Bodnar
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, Connecticut, 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, Connecticut, 06520-8107, United States
| |
Collapse
|
9
|
Chang ASM, Kascoutas MA, Valentine QP, How KI, Thomas RM, Cook AK. Alkene Isomerization Using a Heterogeneous Nickel-Hydride Catalyst. J Am Chem Soc 2024; 146:15596-15608. [PMID: 38771258 DOI: 10.1021/jacs.4c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Transition metal-catalyzed alkene isomerization is an enabling technology used to install an alkene distal to its original site. Due to their well-defined structure, homogeneous catalysts can be fine-tuned to optimize reactivity, stereoselectivity, and positional selectivity, but they often suffer from instability and nonrecyclability. Heterogeneous catalysts are generally highly robust but continue to lack active-site specificity and are challenging to rationally improve through structural modification. Known single-site heterogeneous catalysts for alkene isomerization utilize precious metals and bespoke, expensive, and synthetically intense supports. Additionally, they generally have mediocre reactivity, inspiring us to develop a heterogeneous catalyst with an active site made from readily available compounds made of Earth-abundant elements. Previous work demonstrated that a very active homogeneous catalyst is formed upon protonation of Ni[P(OEt)3]4 by H2SO4, generating a [Ni-H]+ active site. This catalyst is incredibly active, but also decomposes readily, which severely limits its utility. Herein we show that by using a solid acid (sulfated zirconia, SZO300), not only is this decomposition prevented, but high activity is maintained, improved selectivity is achieved, and a broader scope of functional groups is tolerated. Preliminary mechanistic experiments suggest that the catalytic reaction likely goes through an intermolecular, two-electron pathway. A detailed kinetic study comparing the state-of-the-art Ni and Pd isomerization catalysts reveals that the highest activity and selectivity is seen with the Ni/SZO300 system. The reactivity of Ni/SZO300, is not limited to alkene isomerization; it is also a competent catalyst for hydroalkenylation, hydroboration, and hydrosilylation, demonstrating the broad application of this heterogeneous catalyst.
Collapse
Affiliation(s)
- Alison Sy-Min Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Melanie A Kascoutas
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Quinn P Valentine
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kiera I How
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Rachel M Thomas
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
10
|
Rubel CZ, Ravn AK, Ho HC, Yang S, Li ZQ, Engle KM, Vantourout JC. Stereodivergent, Kinetically Controlled Isomerization of Terminal Alkenes via Nickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202320081. [PMID: 38494945 DOI: 10.1002/anie.202320081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/19/2024]
Abstract
Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal-catalyzed olefin mono-transposition (i.e., positional isomerization) approaches have emerged to afford valuable E- or Z- internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel-catalyzed platform for the stereodivergent E/Z-selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one-carbon transposition of terminal alkenes to valuable E- or Z-internal alkenes via a Ni-H-mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with the Z-selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and the E-selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over-isomerization.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Anne K Ravn
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hang Chi Ho
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shenghua Yang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Julien C Vantourout
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| |
Collapse
|
11
|
Zhang W, Ren J, Wang D, Sun TY, Xia XF. Selective Reduction of Triple Bond via Proton-Coupled Electron Transfer for the Synthesis of α, β-Unsaturated γ-Lactams. Org Lett 2024; 26:3982-3986. [PMID: 38690829 DOI: 10.1021/acs.orglett.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,β-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian-Yu Sun
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Lindner H, Amberg WM, Martini T, Fischer DM, Moore E, Carreira EM. Photo- and Cobalt-Catalyzed Synthesis of Heterocycles via Cycloisomerization of Unactivated Olefins. Angew Chem Int Ed Engl 2024; 63:e202319515. [PMID: 38415968 DOI: 10.1002/anie.202319515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
We report a general, intramolecular cycloisomerization of unactivated olefins with pendant nucleophiles. The reaction proceeds under mild conditions and tolerates ethers, esters, protected amines, acetals, pyrazoles, carbamates, and arenes. It is amenable to N-, O-, as well as C-nucleophiles, yielding a number of different heterocycles including, but not limited to, pyrrolidines, piperidines, oxazolidinones, and lactones. Use of both a benzothiazinoquinoxaline as organophotocatalyst and a Co-salen catalyst obviates the need for stoichiometric oxidant or reductant. We showcase the utility of the protocol in late-stage drug diversification and synthesis of several small natural products.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Willi M Amberg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Tristano Martini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - David M Fischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Eléonore Moore
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
13
|
Zhong J, Wang X, Luo M, Zeng X. Chromium-Catalyzed Alkene Isomerization with Switchable Selectivity. Org Lett 2024; 26:3124-3129. [PMID: 38592221 DOI: 10.1021/acs.orglett.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We report a single additive-responsive chromium-catalyzed system for selectively producing either of two different internal alkene isomers. The chromium catalyst, in the presence of HBpin/LiOtBu, enables the isomerization of alkenes over multiple carbon atoms to give the most thermodynamically stable isomers. The same catalyst allows for the selective isomerization of terminal alkenes over one carbon atom without an additive, exhibiting efficient and controllable alkene transposition selectivity.
Collapse
Affiliation(s)
- Jiaoyue Zhong
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuelan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
14
|
Moser AJ, Funk BE, West JG. Vitamin B 12 in Photocatalysis - An Underexplored Frontier in Cooperative Catalysis. ChemCatChem 2024; 16:e202301231. [PMID: 39372221 PMCID: PMC11452056 DOI: 10.1002/cctc.202301231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 10/08/2024]
Abstract
Vitamin B12 (VB12) is a flexible and sustainable catalyst both in nature and the reaction flask, facilitating varied organic transformations of high value to both enzymatic processes and synthetic chemists. Key to this value is the breadth of reactivity it possesses, capable of both ionic, 2 electron chemistry, and radical, 1 electron chemistry. In particular, the ability to generate carbon-centered radical intermediates via photolysis of organocobalt intermediates formed from alkyl electrophiles opens the door to powerful new radical transformations challenging to achieve using classical photoredox or ligand-to-metal charge transfer (LMCT) catalysis. While this unique photocatalytic reactivity of VB12 has been increasingly leveraged in monocatalytic schemes, recent reports have demonstrated VB12 is able to function as the photocatalytic component in cooperative schemes, driving diverse reactivity including remote elimination of alkyl halides, regioselective epoxide arylation, and regioselective epoxide reduction. This concept briefly overviews the enabling photochemical properties of VB12 and recent applications in cooperative catalysis, providing a framework for the continued development of new cooperative catalyst systems using this powerful photoactive complex.
Collapse
Affiliation(s)
- Austin J. Moser
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| | - Brian E. Funk
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| | - Julian G. West
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| |
Collapse
|
15
|
Raje S, Sheikh Mohammad T, de Ruiter G. A Neutral PC NHCP Co(I)-Me Pincer Complex as a Catalyst for N-Allylic Isomerization with a Broad Substrate Scope. J Org Chem 2024; 89:4319-4325. [PMID: 38520345 PMCID: PMC11002938 DOI: 10.1021/acs.joc.3c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Earth-abundant-metal catalyzed double bond transposition offers a sustainable and atom-economical route toward the synthesis of internal alkenes. With an emphasis specifically on internal olefins and ethers, the isomerization of allylic amines has been particularly under represented in the literature. Herein, we report an efficient methodology for the selective isomerization of N-allylic organic compounds, including amines, amides, and imines. The reaction is catalyzed by a neutral PCNHCP cobalt(I) pincer complex and proceeds via a π-allyl mechanism. The isomerization occurs readily at 80-90 °C, and it is compatible with a wide variety of functional groups. The in situ formed enamines could additionally be used for a one-pot inverse-electron-demand Diels-Alder reaction to furnish a series of diversely substituted heterobiaryls, which is further discussed in this report.
Collapse
Affiliation(s)
- Sakthi Raje
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Tofayel Sheikh Mohammad
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
16
|
Liu J, Rong J, Wood DP, Wang Y, Liang SH, Lin S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J Am Chem Soc 2024; 146:4380-4392. [PMID: 38300825 PMCID: PMC11219133 DOI: 10.1021/jacs.3c10989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The hydrofluorination of alkenes represents an attractive strategy for the synthesis of aliphatic fluorides. This approach provides a direct means to form C(sp3)-F bonds selectively from readily available alkenes. Nonetheless, conducting hydrofluorination using nucleophilic fluorine sources poses significant challenges due to the low acidity and high toxicity associated with HF and the poor nucleophilicity of fluoride. In this study, we present a new Co(salen)-catalyzed hydrofluorination of simple alkenes utilizing Et3N·3HF as the sole source of both hydrogen and fluorine. This process operates via a photoredox-mediated polar-radical-polar crossover mechanism. We also demonstrated the versatility of this method by effectively converting a diverse array of simple and activated alkenes with varying degrees of substitution into hydrofluorinated products. Furthermore, we successfully applied this methodology to 18F-hydrofluorination reactions, enabling the introduction of 18F into potential radiopharmaceuticals. Our mechanistic investigations, conducted using rotating disk electrode voltammetry and DFT calculations, unveiled the involvement of both carbocation and CoIV-alkyl species as viable intermediates during the fluorination step, and the contribution of each pathway depends on the structure of the starting alkene.
Collapse
Affiliation(s)
- Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Devin P. Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Wilson CV, Holland PL. Mechanism of Alkene Hydrofunctionalization by Oxidative Cobalt(salen) Catalyzed Hydrogen Atom Transfer. J Am Chem Soc 2024; 146:2685-2700. [PMID: 38227206 PMCID: PMC10872242 DOI: 10.1021/jacs.3c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Oxidative MHAT hydrofunctionalization of alkenes provides a mild cobalt-catalyzed route to forming C-N and C-O bonds. Here, we characterize relevant salen-supported cobalt complexes and their reactions with alkenes, silanes, oxidant, and solvent. These stoichiometric investigations are complemented by kinetic studies of the catalytic reaction and catalyst speciation. We describe the solution characterization of an elusive cobalt(III) fluoride complex, which surprisingly is not the species that reacts with silane under catalytic conditions; rather, a cobalt(III) aquo complex is more active. Accordingly, the addition of water (0.15 M) speeds the catalytic reaction, and kinetic studies show that water addition enables catalytic product formation in 2 h at -50 °C in acetone. Under these conditions, cobalt(III) resting states can be observed by UV-vis spectrophotometry, including a cobalt(III)-alkyl complex. It comes from a transient cobalt(III) hydride complex that is formed in the turnover-limiting step of the catalytic cycle. This hydride readily degrades but not to H2; it releases H+ through a bimetallic pathway that explains the [Co]2 dependence of the off-cycle reaction. In contrast, the rate of the catalytic reaction follows the power law kobs[Co]1[silane]1. Because of the different [Co] dependence of the catalytic reaction and the degradation reaction, lower catalyst loading improves the yield of the catalytic reaction by reducing the relative rate of unproductive silane/oxidant consumption. These studies illuminate mechanistic details of oxidative MHAT hydrofunctionalization of alkenes and lay the groundwork for understanding other catalytic reactions mediated by cobalt hydride and cobalt alkyl complexes.
Collapse
Affiliation(s)
- Conner V. Wilson
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| |
Collapse
|
18
|
Barras BJ, Ling T, Rivas F. Recent Advances in Chemistry and Antioxidant/Anticancer Biology of Monoterpene and Meroterpenoid Natural Product. Molecules 2024; 29:279. [PMID: 38202861 PMCID: PMC10780832 DOI: 10.3390/molecules29010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Monoterpenes and meroterpenes are two large classes of isoprene-based molecules produced by terrestrial plants and unicellular organisms as diverse secondary metabolites. The global rising incidence of cancer has led to a renewed interest in natural products. These monoterpenes and meroterpenes represent a novel source of molecular scaffolds that can serve as medicinal chemistry platforms for the development of potential preclinical leads. Furthermore, some of these natural products are either abundant, or their synthetic strategies are scalable as it will be indicated here, facilitating their derivatization to expand their scope in drug discovery. This review is a collection of representative updates (from 2016-2023) in biologically active monoterpene and meroterpenoid natural products and focuses on the recent findings of the pharmacological potential of these bioactive compounds as well as the newly developed synthetic strategies employed to access them. Particular emphasis will be placed on the anticancer and antioxidant potential of these compounds in order to raise knowledge for further investigations into the development of potential anti-cancer therapeutics. The mounting experimental evidence from various research groups across the globe regarding the use of these natural products at pre-clinical levels, renders them a fast-track research area worth of attention.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| |
Collapse
|
19
|
Kotesova S, Shenvi RA. Inner- and Outer-Sphere Cross-Coupling of High F sp3 Fragments. Acc Chem Res 2023; 56:3089-3098. [PMID: 37889168 PMCID: PMC10979517 DOI: 10.1021/acs.accounts.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Natural product research originates from a desire to explore, understand, and perturb biological function with atomic precision. To reach these goals at all, let alone efficiently, requires thoughtful and creative problem solving. Often this means bold disconnections that would simplify access to complex structures, if only the methods existed to bridge these theoretical gaps. Whereas biological interrogations provide long-term intellectual value and impetus, methods come as attractive fringe benefits of natural product synthesis. This Account describes strategic, methodological solutions to the syntheses of natural products [(-)-eugenial C, Galbulimima alkaloids GB18, GB22, GB13, and himgaline] featuring new, convergent disconnections as important problem-solving steps, which themselves were inspired by recent methods that arose from our group. Each target required the invention of first-row transition metal-catalyzed cross-coupling procedures to satisfy the biological goals of the project. In these cases, synthetic strategy identified the methodological gap (the absence of stereo- and chemoselective couplings of appropriate fragments), but the tactical advantage conferred by first-row metals met the challenge. These methods were competent to handle the dense, sterically encumbered motifs common to natural products due to, in many cases, elementary steps that did not require bond formation between the hindered substrate and the metal center. Instead, these sterically lenient reactions appeared to involve metal-ligand-substrate reactions (i.e., outer-sphere steps), in contrast to the metal-substrate, coordinative reactions of precious metals (i.e., inner-sphere steps). Key observations from our previous studies, combined with the observations in seminal publications from other laboratories (Mattay, Weix, and MacMillan), led to the optimization of ligand-controlled, stereoselective reactions and the introduction of complementary catalytic cycles that revealed new modes of reactivity and generated novel structural motifs. Optimized access to bioactive natural product space accelerated our timeline of biological characterization, fulfilling a common premise of natural products research. The integration of methodology, complex natural product synthesis, diversification, and bioassay into a single Ph.D. dissertation would have been unmanageable in a prior era. The unique ability of first-row transition metals to effect Csp3-Csp3 cross-coupling with high chemo- and stereoselectivity has significantly lowered the barrier to reach the avowed goal of natural product synthesis and reduced the burden (real or perceived) of integrating natural products into functional campaigns.
Collapse
Affiliation(s)
- Simona Kotesova
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Qin J, Barday M, Jana S, Sanosa N, Funes-Ardoiz I, Teskey CJ. Photoinduced Cobalt Catalysis for the Reductive Coupling of Pyridines and Dienes Enabled by Paired Single-Electron Transfer. Angew Chem Int Ed Engl 2023; 62:e202310639. [PMID: 37676106 DOI: 10.1002/anie.202310639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Selective hydroarylation of dienes has potential to provide swift access to useful building blocks. However, most existing methods rely on dienes stabilised by an aromatic group and transmetallation or nucleophilic attack steps require electron-rich aryl coupling partners. As such, there are few examples which tolerate wide-spread heteroarenes such as pyridine. Whilst allylic C-H functionalisation could be considered an alternative approach, the positional selectivity of unsymmetrical substrates is hard to control. Here, we report a general approach for selective hydropyridylation of dienes under mild conditions using metal catalysed hydrogen-atom transfer. Photoinduced, reductive conditions enable simultaneous formation of a cobalt-hydride catalyst and the persistent radical of easily-synthesised pyridyl phosphonium salts. This facilitates selective coupling of dienes in a traceless manner at the C4-position of a wide-range of pyridine substrates. The mildness of the method is underscored by its functional-group tolerance and demonstrated by applications in late-stage functionalisation. Based on a combination of experimental and computational studies, we propose a mechanistic pathway which proceeds through non-reversible hydrogen-atom transfer (HAT) from a cobalt hydride species which is uniquely selective for dienes in the presence of other olefins due to a much higher relative barrier associated with olefin HAT.
Collapse
Affiliation(s)
- Jingyang Qin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Manuel Barday
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Samikshan Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Nil Sanosa
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
21
|
Garrido-Castro AF, Hioki Y, Kusumoto Y, Hayashi K, Griffin J, Harper KC, Kawamata Y, Baran PS. Scalable Electrochemical Decarboxylative Olefination Driven by Alternating Polarity. Angew Chem Int Ed Engl 2023; 62:e202309157. [PMID: 37656907 DOI: 10.1002/anie.202309157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
A mild, scalable (kg) metal-free electrochemical decarboxylation of alkyl carboxylic acids to olefins is disclosed. Numerous applications are presented wherein this transformation can simplify alkene synthesis and provide alternative synthetic access to valuable olefins from simple carboxylic acid feedstocks. This robust method relies on alternating polarity to maintain the quality of the electrode surface and local pH, providing a deeper understanding of the Hofer-Moest process with unprecedented chemoselectivity.
Collapse
Affiliation(s)
- Alberto F Garrido-Castro
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Yuta Hioki
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Science and Innovation Center, Mitsubishi Chemical Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | - Yoshifumi Kusumoto
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kyohei Hayashi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jeremy Griffin
- AbbVie Process Research and Development, 1401 North Sheridan Road, North Chicago, IL, 60064, USA
| | - Kaid C Harper
- AbbVie Process Research and Development, 1401 North Sheridan Road, North Chicago, IL, 60064, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
22
|
Fernandes RA. Deciphering the quest in the divergent total synthesis of natural products. Chem Commun (Camb) 2023; 59:12205-12230. [PMID: 37746673 DOI: 10.1039/d3cc03564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The divergent synthesis of natural products is rapidly developing towards achieving the goal of efficiency and economy in total synthesis. However, presently, the sustainable development of the synthesis of natural products does not permit the linear synthesis of a single target. In this case, divergent total synthesis is based on the identification of an advanced intermediate with structural features that can be mapped in more than two molecules. However, the identification of this intermediate and its scalable synthesis in enantiopure form are challenging. Herein, we present the details of the ingenious efforts by researchers in the last six years toward the divergent synthesis of two to as many as eight natural products initially via a single route, and then diverging from a common intermediate and further branching out toward several natural products. The planning and strategies adopted can serve as guidelines for the future development of efficient divergent routes aimed at achieving higher efficiency toward multiple targets, causing divergent synthesis to become an accepted common practice.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
23
|
Jana S, Mayerhofer VJ, Teskey CJ. Photo- and Electrochemical Cobalt Catalysed Hydrogen Atom Transfer for the Hydrofunctionalisation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202304882. [PMID: 37184388 DOI: 10.1002/anie.202304882] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
Catalytic hydrogen atom transfer from metal-hydrides to alkenes allows feedstock olefins to be used as alkyl radical precursors. The chemoselectivity of this process makes it an attractive synthetic tool and as such it has been regularly used in synthesis of complex molecules. However, onwards reactivity is limited by compatibility with the conditions which form the key metal-hydride species. Now, through the merger with photocatalysis or electrochemistry, milder methods are emerging which can unlock entirely new reactivity and offer perspectives on expanding these methods in unprecedented directions. This review outlines the most recent developments in electro- and photochemical cobalt catalysed methods and offers suggestions on the future outlook.
Collapse
Affiliation(s)
- Samikshan Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
24
|
Palani V, Wendlandt AE. Strain-Inducing Positional Alkene Isomerization. J Am Chem Soc 2023; 145:20053-20061. [PMID: 37647593 DOI: 10.1021/jacs.3c06935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Small, strained ring systems are important pharmacophores in medicinal chemistry and versatile intermediates in organic synthesis. However, the kinetic and thermodynamic instability of many strained organic molecules renders them challenging to prepare. Here, we report a strain-inducing positional alkene isomerization reaction that provides mild and selective access to cyclobutene building blocks from readily obtained cyclobutylidene precursors. This endergonic isomerization relies on the sequential and synergistic action of a decatungstate polyanion photocatalyst and cobaloxime co-catalyst to store potential energy in the form of ring strain. The versatility of the cyclobutene products is demonstrated through diverse subsequent strain-releasing transformations. Mechanistic studies reveal a steric basis for strain-selective product formation.
Collapse
Affiliation(s)
- Vignesh Palani
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Hoogesteger RH, Murdoch N, Cordes DB, Johnston CP. Cobalt-Catalyzed Wagner-Meerwein Rearrangements with Concomitant Nucleophilic Hydrofluorination. Angew Chem Int Ed Engl 2023; 62:e202308048. [PMID: 37409777 DOI: 10.1002/anie.202308048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
We report a cobalt-catalyzed Wagner-Meerwein rearrangement of gem-disubstituted allylarenes that generates fluoroalkane products with isolated yields up to 84 %. Modification of the counteranion of the N-fluoropyridinium oxidant suggests the substrates undergo nucleophilic fluorination during the reaction. Subjecting the substrates to other known metal-mediated hydrofluorination procedures did not lead to observable 1,2-aryl migration. Thus, indicating the unique ability of these cobalt-catalyzed conditions to generate a sufficiently reactive electrophilic intermediate capable of promoting this Wagner-Meerwein rearrangement.
Collapse
Affiliation(s)
- Reece H Hoogesteger
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Nicola Murdoch
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Craig P Johnston
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
26
|
Boucher DG, Pendergast AD, Wu X, Nguyen ZA, Jadhav RG, Lin S, White HS, Minteer SD. Unraveling Hydrogen Atom Transfer Mechanisms with Voltammetry: Oxidative Formation and Reactivity of Cobalt Hydride. J Am Chem Soc 2023; 145:17665-17677. [PMID: 37530748 DOI: 10.1021/jacs.3c03815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The utility of transition metal hydride catalyzed hydrogen atom transfer (MHAT) has been widely demonstrated in organic transformations such as alkene isomerization and hydrofunctionalization reactions. However, the highly reactive nature of the hydride and radical intermediates has hindered mechanistic insight into this pivotal reaction. Recent advances in electrochemical MHAT have opened up the possibility for new analytical approaches for mechanistic diagnosis. Here, we report a voltammetric interrogation of Co-based MHAT reactivity, describing in detail the oxidative formation and reactivity of the key Co-H intermediate and its reaction with aryl alkenes. Insights from cyclic voltammetry and finite element simulations help elucidate the rate-limiting step as metal hydride formation, which we show to be widely tunable based on ligand design. Voltammetry is also suggestive of the formation of Co-alkyl intermediates and a dynamic equilibrium with the reactive neutral radical. These mechanistic studies provide information for the design of future hydrofunctionalization reactions, such as catalyst and silane choice, the relative stability of metal-alkyl species, and how hydrofunctionalization reactions utilize Co-alkyl intermediates. In summary, these studies establish an important template for studying MHAT reactions from the perspective of electrochemical kinetic frameworks.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Andrew D Pendergast
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
27
|
Takekawa Y, Nakagawa M, Nagao K, Ohmiya H. A Quadruple Catalysis Enabling Intermolecular Branch-Selective Hydroacylation of Styrenes. Chemistry 2023; 29:e202301484. [PMID: 37260048 DOI: 10.1002/chem.202301484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
A quadruple N-heterocyclic carbene/cobalt/photoredox/Brønsted base catalysis to realize branch-selective hydroacylation of styrenes with aromatic and aliphatic aldehydes is demonstrated. This protocol allows access to branched ketones from readily available materials in an atom-economical manner. The quadruple catalysis can transfer a formyl hydrogen of aldehydes as a hydrogen radical equivalent onto the terminal carbon of an alkene by controlled electron and proton transfers.
Collapse
Affiliation(s)
- Yunosuke Takekawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masanari Nakagawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kazunori Nagao
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
28
|
Gan XC, Kotesova S, Castanedo A, Green SA, Mølle SLB, Shenvi RA. Iron-Catalyzed Hydrobenzylation: Stereoselective Synthesis of (-)-Eugenial C. J Am Chem Soc 2023; 145:15714-15720. [PMID: 37437221 PMCID: PMC11055631 DOI: 10.1021/jacs.3c05428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Metal-hydride hydrogen atom transfer (MHAT) has emerged as a useful tool to form quaternary carbons from alkenes via hydrofunctionalization. Methods to date that cross-couple alkenes with sp3 partners rely on heterobimetallic catalysis to merge the two cycles. Here, we report an iron-only cross-coupling via putative MHAT/SH2 steps that solves a key stereochemical problem in the synthesis of meroterpenoid eugenial C and obviates the need for nickel. The concise synthesis benefits from a conformationally locked o,o'-disubstituted benzyl bromide and a locally sourced chiral pool terpene coupling partner.
Collapse
Affiliation(s)
- Xu-cheng Gan
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Simona Kotesova
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Alberto Castanedo
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Samantha A. Green
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | | | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
29
|
Park SH, Bae G, Choi A, Shin S, Shin K, Choi CH, Kim H. Electrocatalytic Access to Azetidines via Intramolecular Allylic Hydroamination: Scrutinizing Key Oxidation Steps through Electrochemical Kinetic Analysis. J Am Chem Soc 2023. [PMID: 37428820 DOI: 10.1021/jacs.3c03172] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Azetidines are prominent structural scaffolds in bioactive molecules, medicinal chemistry, and ligand design for transition metals. However, state-of-the-art methods cannot be applied to intramolecular hydroamination of allylic amine derivatives despite their underlying potential as one of the most prevalent synthetic precursors to azetidines. Herein, we report an electrocatalytic method for intramolecular hydroamination of allylic sulfonamides to access azetidines for the first time. The merger of cobalt catalysis and electricity enables the regioselective generation of key carbocationic intermediates, which could directly undergo intramolecular C-N bond formation. The mechanistic investigations including electrochemical kinetic analysis suggest that either the catalyst regeneration by nucleophilic cyclization or the second electrochemical oxidation to access the carbocationic intermediate is involved in the rate-determining step (RDS) of our electrochemical protocol and highlight the ability of electrochemistry in providing ideal means to mediate catalyst oxidation.
Collapse
Affiliation(s)
- Steve H Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunsu Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ahhyeon Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Shin
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
30
|
Luan YY, Li JY, Gou XY, Shi WY, Ding T, Zhang Z, Chen X, Liu XY, Liang YM. Stereoselective Synthesis of Multisubstituted Alkenes via Ruthenium-Catalyzed Remote Migration Arylation of Nonactivated Olefins. Org Lett 2023. [PMID: 37399076 DOI: 10.1021/acs.orglett.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Polysubstituted alkenes are an important class of organic intermediates that widely exist in various natural products and drug molecules. Herein, we reported a stereoselective synthesis of multisubstituted alkenes via ruthenium-catalyzed remote migration arylation of nonactivated olefins. This strategy exhibited wide substrate suitability and excellent functional group tolerance. In addition, we demonstrated the indispensable role of two types of ruthenium through mechanism experiments.
Collapse
Affiliation(s)
- Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jin-Ye Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Tian Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
31
|
Johnson LK, Barnes GL, Fernandez SA, Vanderwal CD. Hydrogen-Atom-Transfer-Initiated Radical/Polar Crossover Annulation Cascade for Expedient Access to Complex Tetralins. Angew Chem Int Ed Engl 2023; 62:e202303228. [PMID: 36952637 PMCID: PMC10164078 DOI: 10.1002/anie.202303228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/25/2023]
Abstract
A radical/polar crossover annulation between allyl-substituted arenes and electron-deficient alkenes is described. Cobalt-catalyzed hydrogen atom transfer (HAT) facilitates tandem radical C-C bond formation that generates functionalized tetralin products in the face of potentially problematic hydrofluorination, hydroalkoxylation, hydrogenation, alkene isomerization, and radical polymerization reactions. The reactions proceed under mild conditions that tolerate many functional groups, leading to a broad substrate scope. This powerful ring-forming reaction very quickly assembles complex tetralins that are the formal products of the largely infeasible Diels-Alder cycloadditions of styrenes.
Collapse
Affiliation(s)
- Lucas K Johnson
- 1102 Natural Sciences II, Department of Chemistry, University of California, 92697-2025, Irvine, CA, USA
| | - Griffin L Barnes
- 1102 Natural Sciences II, Department of Chemistry, University of California, 92697-2025, Irvine, CA, USA
| | - Sebastian A Fernandez
- 1102 Natural Sciences II, Department of Chemistry, University of California, 92697-2025, Irvine, CA, USA
| | - Christopher D Vanderwal
- 1102 Natural Sciences II, Department of Chemistry, University of California, 92697-2025, Irvine, CA, USA
- Department of Pharmaceutical Sciences, 101 Theory, University of California, 92697, Irvine, CA, USA
| |
Collapse
|
32
|
Ren YZ, Fang CZ, Zhang BB, He L, Tu YL, Chen XY. Photocatalytic Charge-Transfer Complex Enables Hydroarylation of Alkenes for Heterocycle Synthesis. Org Lett 2023; 25:3585-3589. [PMID: 37154474 DOI: 10.1021/acs.orglett.3c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here, we report a photocatalytic charge-transfer complex (CTC) strategy for one electron reduction of alkenes using thiolate as a catalytic electron donor. This catalytic CTC system could engage hydroarylation of both activated and unactivated alkenes for the synthesis of various heterocycles. The reactions do not require any photocatalysts or acids and are easy to perform. Mechanistic studies revealed the formation of a CTC between catalytic thiolate and alkene.
Collapse
Affiliation(s)
- Ying-Zheng Ren
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Chang-Zhen Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, People's Republic of China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yong-Liang Tu
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, People's Republic of China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, People's Republic of China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, People's Republic of China
| |
Collapse
|
33
|
Kong L, Yu H, Deng M, Wu F, Chen SC, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies. J Org Chem 2023; 88:6017-6038. [PMID: 37094797 DOI: 10.1021/acs.joc.3c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. The unique 7-endo-trig cyclization based on a bridgehead carbocation was designed and implemented to construct the 5/7/6/5 tetracyclic skeleton, demonstrating the practical value of the bridgehead carbocation-based cyclization strategy. Extensive studies of late-stage functional group manipulation were performed to forge the C1 stereogenic center, during which a photoexcited intramolecular hydrogen atom transfer reaction was discovered and the mechanism was further studied through density functional theory (DFT) calculations. The biomimetic 1,2-rearrangement from the grayanoid skeleton provided a 5/8/5/5 tetracyclic framework and resulted in the first total synthesis of (+)-kalmanol.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
34
|
Chung J, Capani JS, Göhl M, Roosen PC, Vanderwal CD. Enantioselective Syntheses of Wickerols A and B. J Am Chem Soc 2023; 145:6486-6497. [PMID: 36883956 PMCID: PMC10037325 DOI: 10.1021/jacs.3c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The evolution of a successful strategy for the synthesis of the strained, cage-like antiviral diterpenoids wickerols A and B is described. Initial attempts to access the carbocyclic core were surprisingly challenging and in retrospect, presaged the many detours needed to ultimately arrive at the fully adorned wickerol architecture. In most cases, conditions to trigger desired outcomes with respect to both reactivity and stereochemistry were hard-won. The successful synthesis ultimately leveraged alkenes in virtually all productive bond-forming events. A series of conjugate addition reactions generated the fused tricyclic core, a Claisen rearrangement was used to install an otherwise unmanageable methyl-bearing stereogenic center, and a Prins cyclization closed the strained bridging ring. This final reaction proved enormously interesting because the strain of the ring system permitted diversion of the presumed initial Prins product into several different scaffolds.
Collapse
Affiliation(s)
- Jonathan Chung
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Joseph S Capani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Matthias Göhl
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Philipp C Roosen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christopher D Vanderwal
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory #100, Irvine, California 92617, United States
| |
Collapse
|
35
|
Zhao G, Mukherjee U, Zhou L, Mauro JN, Wu Y, Liu P, Ngai MY. Excited-State Palladium-Catalyzed α-Selective C1-Ketonylation. CCS CHEMISTRY 2023; 5:106-116. [PMID: 36920159 PMCID: PMC10010662 DOI: 10.31635/ccschem.022.202202282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
C-Glycosides are important carbohydrate mimetics found in natural products, bioactive compounds, and marketed drugs. However, stereoselective preparation of this class of glycomimetics remains a significant challenge in organic synthesis. Herein, we report an excited-state palladium-catalyzed α-selective C-ketonylation strategy using readily available 1-bromosugars to access a range of C-glycosides. The reaction features excellent α-selectivity and mild conditions that tolerate a wide range of functional groups and complex molecular architectures. The resulting α-ketonylsugars can serve as versatile precursors for their β-isomers and other C-glycosides. Preliminary experimental and computational studies of the mechanism suggest a radical pathway involving the formation of palladoradical and glycosyl radical that undergoes polarity-mismatched coupling with silyl enol ether, affording the desired α-ketonylsugars. Insight into the reactivity and mechanism will inspire new reaction development and provide straightforward access to both α- and β-C-glycosides, greatly expanding the chemical and patent spaces of glycomimetics.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Upasana Mukherjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Lin Zhou
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jaclyn N Mauro
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Yue Wu
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Peng Liu
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ming-Yu Ngai
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
36
|
Momeni T, Zadsirjan V, Hadi Meshkatalsadat M, Pourmohammadi‐Mahunaki M. Applications of Cobalt‐Catalyzed Reactions in the Total Synthesis of Natural Products. ChemistrySelect 2022. [DOI: 10.1002/slct.202202816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tayebeh Momeni
- Department of Chemistry Qom University of Technology Qom Iran 3718146645
- Department of Chemistry School of Science Alzahra University Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry Malek Ashtar University of Technology Tehran Iran
| | | | | |
Collapse
|
37
|
Buzsaki SR, Bian KJ, West JG. HAT Lessons Help Hydrogen Hop, Skip, and Jump. TRENDS IN CHEMISTRY 2022; 4:1062-1064. [PMID: 37389032 PMCID: PMC10305794 DOI: 10.1016/j.trechm.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nagib and Rajanbabu share a clever approach to remote desaturation triggered by metal-catalysed hydrogen atom transfer (mHAT) to an alkene, followed by intramolecular 1,6-HAT, and terminated via mHAT. This method both realizes a valuable synthetic transformation and provides multiple lessons for the design of HAT-mediated reactions.
Collapse
Affiliation(s)
- Sarah R. Buzsaki
- equal contribution. Both authors have the right to list their name first in citations
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Kang-Jie Bian
- equal contribution. Both authors have the right to list their name first in citations
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
38
|
Kustiana BA, Elsherbeni SA, Linford‐Wood TG, Melen RL, Grayson MN, Morrill LC. B(C 6 F 5 ) 3 -Catalyzed E-Selective Isomerization of Alkenes. Chemistry 2022; 28:e202202454. [PMID: 35943082 PMCID: PMC9804281 DOI: 10.1002/chem.202202454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/05/2023]
Abstract
Herein, we report the B(C6 F5 )3 -catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.
Collapse
Affiliation(s)
- Betty A. Kustiana
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | - Salma A. Elsherbeni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
39
|
Modular total syntheses of trans-clerodanes and sesquiterpene (hydro)quinones via tail-to-head cyclization and reductive coupling strategies. Nat Commun 2022; 13:6633. [PMID: 36333313 PMCID: PMC9636166 DOI: 10.1038/s41467-022-34404-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The trans-clerodanes and sesquiterpene (hydro)quinones are a growing class of natural products that exhibit a wide range of biological activities. Although they are different types of natural products, some of them feature the same trans-decalin core structure. Here, we report the total syntheses of two members of trans-clerodanes, five members of sesquiterpene (hydro)quinones as well as the proposed structure of dysidavarone D via a modular synthetic route. A bioinspired tail-to-head cyclization strategy was developed to syntheses of the trans-decalin architectures by using two diastereochemically complementary radical polyene cyclization reactions catalyzed by Ti(III) and mediated by Mn(III), respectively. The different types of side chains were introduced by challenging nickel catalyzed reductive couplings of sterically hindered alkyl halides. The synthesis of the proposed dysidavarone D proved a wrong structural assignment of the natural product.
Collapse
|
40
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
41
|
Yang Z, Hou S, Cheng Y, Sun L, Yang CH. Co-Catalyzed Reductive Cyclization of Acrylate-Containing 1,6-Enynes. J Org Chem 2022; 87:13339-13345. [PMID: 36137272 DOI: 10.1021/acs.joc.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Co-catalyzed reductive cyclization of acrylate-containing 1,6-enynes is reported, providing an approach to construct five-membered carbocyclic and heterocyclic scaffolds containing enol ethers and all-carbon quaternary carbons. This novel process enables an E/Z mixture of 1,6-enynes to react with good functional group tolerance and good isolated yields, in an operationally simple manner.
Collapse
Affiliation(s)
- Zhantao Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Shenyin Hou
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Yunfan Cheng
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Li Sun
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Chun-Hua Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| |
Collapse
|
42
|
Wu X, Gannett CN, Liu J, Zeng R, Novaes LFT, Wang H, Abruña HD, Lin S. Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes. J Am Chem Soc 2022; 144:17783-17791. [PMID: 36137298 DOI: 10.1021/jacs.2c08278] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-atom transfer mediated by earth-abundant transition-metal hydrides (M-Hs) has emerged as a powerful tool in organic synthesis. Current methods to generate M-Hs most frequently rely on oxidatively initiated hydride transfer. Herein, we report a reductive approach to generate Co-H, which allows for canonical hydrogen evolution reactions to be intercepted by hydrogen-atom transfer to an alkene. Electroanalytical and spectroscopic studies provided mechanistic insights into the formation and reactivity of Co-H, which enabled the development of two new alkene hydrofunctionalization reactions.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cara N Gannett
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
43
|
Zhang Y, Xu W, Gao T, Guo M, Yang CH, Xie H, Kong X, Yang Z, Chang J. Pd-Catalyzed Borylsilylative Cyclization of 1,6-Allenynes. Org Lett 2022; 24:7021-7025. [PMID: 36129417 DOI: 10.1021/acs.orglett.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Pd-catalyzed borylsilylative cyclization of 1,6-allenynes with PhMe2SiBpin was developed. This method provides a practical and general method to afford the carbocycles and heterocycles bearing silyl and boryl groups with excellent regioselectivities and stereoselectivities in high to excellent yields.
Collapse
Affiliation(s)
- Yinchao Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenxiu Xu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Tongtong Gao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Mengjuan Guo
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Chun-Hua Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Zhantao Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
44
|
Lusi RF, Sennari G, Sarpong R. Strategy Evolution in a Skeletal Remodeling and C-H Functionalization-Based Synthesis of the Longiborneol Sesquiterpenoids. J Am Chem Soc 2022; 144:17277-17294. [PMID: 36098550 DOI: 10.1021/jacs.2c08136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detailed herein are our synthesis studies of longiborneol and related natural products. Our overarching goals of utilizing a "camphor first" strategy enabled by skeletal remodeling of carvone, and late-stage diversification using C-H functionalizations, led to divergent syntheses of the target natural products. Our initial approach proposed a lithiate addition to unite two fragments followed by a Conia-ene or Pd-mediated cycloalkylation reaction sequence to install the seven-membered ring emblematic of the longibornane core. This approach was unsuccessful and evolved into a revised plan that employed a Wittig coupling and a radical cyclization to establish the core. A reductive radical cyclization, which was explored first, led to a synthesis of copaborneol, a structural isomer of longiborneol. Alternatively, a metal-hydride hydrogen atom transfer-initiated cyclization was effective for a synthesis of longiborneol. Late-stage C-H functionalization of the longibornane core led to a number of hydroxylated longiborneol congeners. The need for significant optimization of the strategies that were employed as well as the methods for C-H functionalization to implement these strategies highlights the ongoing challenges in applying these powerful reactions. Nevertheless, the reported approach enables functionalization of every natural product-relevant C-H bond in the longibornane skeleton.
Collapse
Affiliation(s)
- Robert F Lusi
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Goh Sennari
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States.,O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Richmond Sarpong
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Mittas D, Mawunu M, Magliocca G, Lautenschläger T, Schwaiger S, Stuppner H, Marzocco S. Bioassay-Guided Isolation of Anti-Inflammatory Constituents of the Subaerial Parts of Cyperus articulatus (Cyperaceae). Molecules 2022; 27:molecules27185937. [PMID: 36144672 PMCID: PMC9504922 DOI: 10.3390/molecules27185937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Based on data from a previous ethnobotanical study in northern Angola, phytochemical investigations into the methanolic rhizomes and roots extract of Cyperus articulatus, monitored by in vitro assays, resulted in the recovery of 12 sesquiterpenes, 3 stilbenes, 2 phenolic acids, 1 monoterpene, and 1 flavonoid. Among them, 14 compounds were isolated for the first time from this species. Their inhibitory potential against nitric oxide (NO) production, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, was evaluated in LPS-treated J774A.1 murine macrophages. Especially, both stilbene dimer trans-scirpusin B and trimer cyperusphenol B showed promising inhibitory activity against the production of the inflammatory mediator, NO, in a concentration-dependent manner (10−1 µM). The obtained data are the first results confirming the anti-inflammatory potential of C. articulatus and support its indigenous use as a traditional remedy against inflammation-related disorders.
Collapse
Affiliation(s)
- Domenic Mittas
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Monizi Mawunu
- University of Kimpa Vita, Province of Uíge, Rua Henrique Freitas No. 1, Bairro Popular, Uíge, Angola
| | - Giorgia Magliocca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Thea Lautenschläger
- Department of Biology, Institute of Botany, Faculty of Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-51250758409
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| |
Collapse
|
46
|
Maliori A, Athanasiadou T, Psomiadou V, Bagkavou GG, Stathakis CI. Syntheses of ent-Aquilanol A and ent-Aquilanol B via Retro-Cycloisomerization of (-)-Caryophyllene Oxide. Access to Medium-Sized Oxygenated Carbocyclic Scaffolds. Org Lett 2022; 24:6242-6246. [PMID: 35997277 DOI: 10.1021/acs.orglett.2c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first syntheses of the enantiomers of naturally occurring aquilanols A and B, two unprecedented 7/10 bicyclic sesquiterpenoids, are presented. Key features are a retro-cycloisomerization event on (-)-caryophyllene oxide to formulate the 11-membered carbocycle and an intramolecular epoxide opening to construct the bicyclic skeleton. The latter provides evidence of the plausible biosynthesis of natural compounds, rendering our syntheses biomimetic. Selective access to other medium-sized carbocyclic oxygenated compounds was achieved, enhancing the structural diversity of the final products.
Collapse
Affiliation(s)
- Anastasia Maliori
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Theodora Athanasiadou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Venetia Psomiadou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Georgia G Bagkavou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Christos I Stathakis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| |
Collapse
|
47
|
Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes. ACS Catal 2022; 12:10818-10825. [PMID: 36082051 PMCID: PMC9442580 DOI: 10.1021/acscatal.2c02963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Indexed: 11/30/2022]
Abstract
![]()
While Mn-catalyzed (de)hydrogenation of carbonyl derivatives
has
been well established, the reactivity of Mn hydrides with olefins
remains very rare. Herein, we report a Mn(I) pincer complex that effectively
promotes site-controlled transposition of olefins. This reactivity
is shown to emerge once the N–H functionality within the Mn/NH
bifunctional complex is suppressed by alkylation. While detrimental
for carbonyl (de)hydrogenation, such masking of the cooperative N–H
functionality allows for the highly efficient conversion of a wide
range of allylarenes to higher-value 1-propenybenzenes in near-quantitative
yield with excellent stereoselectivities. The reactivity toward a
single positional isomerization was also retained for long-chain alkenes,
resulting in the highly regioselective formation of 2-alkenes, which
are less thermodynamically stable compared to other possible isomerization
products. The detailed mechanistic analysis of the reaction between
the activated Mn catalyst and olefins points to catalysis operating
via a metal–alkyl mechanism—one of the three conventional
transposition mechanisms previously unknown in Mn complexes.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
48
|
Li S, Mao W, Zhang L, Huang H, Xiao Y, Mao L, Tan R, Fu Z, Yu N, Yin D. Ionic liquid-modulated aerobic oxidation of isoeugenol and β-caryophyllene via nanoscale Cu-MOFs under mild conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Herbort JH, Bednar TN, Chen AD, RajanBabu TV, Nagib DA. γ C-H Functionalization of Amines via Triple H-Atom Transfer of a Vinyl Sulfonyl Radical Chaperone. J Am Chem Soc 2022; 144:13366-13373. [PMID: 35820104 PMCID: PMC9405708 DOI: 10.1021/jacs.2c05266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A selective, remote desaturation has been developed to rapidly access homoallyl amines from their aliphatic precursors. The strategy employs a triple H-atom transfer (HAT) cascade, entailing (i) cobalt-catalyzed metal-HAT (MHAT), (ii) carbon-to-carbon 1,6-HAT, and (iii) Co-H regeneration via MHAT. A new class of sulfonyl radical chaperone (to rapidly access and direct remote, radical reactivity) enables remote desaturation of diverse amines, amino acids, and peptides with excellent site-, chemo-, and regioselectivity. The key, enabling C-to-C HAT step in this cascade was computationally designed to satisfy both thermodynamic (bond strength) and kinetic (polarity) requirements, and it has been probed via regioselectivity, isomerization, and competition experiments. We have also interrupted this radical transfer dehydrogenation to achieve γ-selective C-Cl, C-CN, and C-N bond formations.
Collapse
Affiliation(s)
- James H Herbort
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Taylor N Bednar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
50
|
Yang F, Porco JA. Unified, Asymmetric Total Synthesis of the Asnovolins and Related Spiromeroterpenoids: A Fragment Coupling Approach. J Am Chem Soc 2022; 144:12970-12978. [DOI: 10.1021/jacs.2c05366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|