1
|
Song Z, Liu J, Luo J, Ngai T, Kwok MH, Sun G. Photo-responsive Pickering emulsions triggered by in-situ pH modulation using a photoacid generator. J Colloid Interface Sci 2024; 679:1150-1158. [PMID: 39423681 DOI: 10.1016/j.jcis.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
HYPOTHESIS Pickering emulsions that respond to changes in pH by the addition of acid or alkali have been extensively studied, but the development of photo-responsive Pickering emulsions has been more challenging. This study attempts to demonstrate a novel approach to achieve photo-responsiveness in Pickering emulsions by incorporating a photoacid generator (PAG) into the oil phase. Upon UV irradiation, the PAG is expected to release protons (H+), which can then regulate the pH of the emulsion system and control its stability. EXPERIMENTS Amphiphilic colloidal particles obtained by modifying silica particles with poly (2-(dimethylamino)ethyl methacrylate) (SiO2-PDMAEMA) are used to stabilize the Pickering emulsions. The protonation and deprotonation of the SiO2-PDMAEMA particles at different pH values allow for the tuning of emulsion stability. By introducing the PAG into the stable Pickering emulsion system and applying UV irradiation to trigger the in-situ release of H+, the pH of the emulsion is systematically decreased, and the corresponding changes in emulsion stability are investigated. FINDINGS The results show that UV irradiation alone cannot induce emulsion instability. However, when PAG is added to the oil phase, the Pickering emulsions exhibit a significant decrease in pH under UV irradiation, ultimately leading to emulsion destabilization and phase separation. At a UV intensity of 20 mW/cm2 for 2 min, the H+ release from the PAG significantly lower the emulsion's pH, causing the SiO2-PDMAEMA particles to detach from the oil-water interface and resulting in emulsion instability. Higher concentrations of SiO2-PDMAEMA particles in the emulsion require more PAG to induce instability, as confirm by confocal laser scanning microscopy (CLSM) image. This study presents a versatile approach to develop photo-responsive Pickering emulsions which can have potential applications in areas such as drug delivery, cosmetics, and responsive materials.
Collapse
Affiliation(s)
- Zichun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - To Ngai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Man-Hin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Guanqing Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wei D, Yin N, Xu D, Ge L, Gao Z, Zhang Y, Guo R. Complex Droplet Microreactor for Highly Efficient and Controllable Esterification and Cascade Reactions. CHEMSUSCHEM 2024; 17:e202400279. [PMID: 38705858 DOI: 10.1002/cssc.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
A highly efficient complex emulsion microreactor has been successfully developed for multiphasic water-labile reactions, providing a powerful platform for atom economy and spatiotemporal control of reaction kinetics. Complex emulsions, composing a hydrocarbon phase (H) and a fluorocarbon phase (F) dispersed in an aqueous phase (W), are fabricated in batch scale with precisely controlled droplet morphologies. A biphasic esterification reaction between 2-bromo-1,2-diphenylethane-1-ol (BPO) and perfluoro-heptanoic acid (PFHA) is chosen as a reversible and water-labile reaction model. The conversion reaches up to 100 % under mild temperature without agitation, even with nearly equivalent amounts of reactants. This efficiency surpasses all reported single emulsion microreactors, i. e., 84~95 %, stabilized by various emulsifiers with different catalysts, which typically necessitate continuous stirring, a high excess of one reactant, and/or extended reaction time. Furthermore, over 3 times regulation threshold in conversion rate is attained by manipulating the droplet morphologies, including size and topology, e. g., transition from completely engulfed F/H/W double to partially engulfed (F+H)/W Janus. Addition-esterification, serving as a model for triple phasic cascade reaction, is also successfully implemented under agitating-free and mild temperature with controlled reaction kinetics, demonstrating the versatility and effectiveness of the complex emulsion microreactor.
Collapse
Affiliation(s)
- Duo Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Nuoqing Yin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dehua Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zihan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yanyan Zhang
- Testing Center, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
3
|
Sun Z, Wu C. Pickering Emulsions Biocatalysis: Recent Developments and Emerging Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402208. [PMID: 38716793 DOI: 10.1002/smll.202402208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Indexed: 10/01/2024]
Abstract
Biocatalysis within biphasic systems is gaining significant attention in the field of synthetic chemistry, primarily for its ability to solve the problem of incompatible solubilities between biocatalysts and organic compounds. By forming an emulsion from these two-phase systems, a larger surface area is created, which greatly improves the mass transfer of substrates to the biocatalysts. Among the various types of emulsions, Pickering emulsions stand out due to their excellent stability, compatibility with biological substances, and the ease with which they can be formed and separated. This makes them ideal for reusing both the emulsifiers and the biocatalysts. This review explores the latest developments in biocatalysis using Pickering emulsions. It covers the structural features, methods of creation, innovations in flow biocatalysis, and the role of interfaces in these processes. Additionally, the challenges and future directions are discussed in combining chemical and biological catalysts within Pickering emulsion frameworks to advance synthetic methodologies.
Collapse
Affiliation(s)
- Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Chaowang road 18, Hangzhou, 310014, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| |
Collapse
|
4
|
Yao XR, Jia MZ, Miao XL, Chen YR, Pan JQ, Zhang J. One-pot Tandem Synthesis and Spontaneous Product Separation of N-heterocycles based on Bifunctional Small-molecule Photocatalyst. CHEMSUSCHEM 2024; 17:e202301495. [PMID: 38086787 DOI: 10.1002/cssc.202301495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024]
Abstract
Homogeneous and heterogeneous reactions wherein the resulting products remain dissolved in solvents generally require complicated separation and purification process, despite the advantage of heterogeneous systems allowing retrieval of catalysts. Herein, we have developed an efficient approach for the one-pot tandem synthesis of quinazolines, quinazolinones and benzothiadiazine 1,1-dioxides from alcohols and amines utilizing a bifunctional bipyridinium photocatalyst with redox and Lewis acid sites using air as an oxidant. Through solvent-modulation strategy, the photocatalytic system exhibits high performance and enables most products to separate spontaneously. Consequently, the homogeneous catalyst can be reused by direct centrifugation isolation of the products. Notably, the method is also applicable to the less active substrates, such as heterocyclic alcohols and aliphatic alcohols, and thus provides an efficient and environmentally friendly photocatalytic route with spontaneous separation of N-heterocycles to reduce production costs and meet the needs of atomic economy and green chemistry.
Collapse
Affiliation(s)
- Xin-Rong Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Meng-Ze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiao-Li Miao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Rui Chen
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jia-Qi Pan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
5
|
Zhang Q, Kong B, Liu H, Du X, Sun F, Xia X. Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Compr Rev Food Sci Food Saf 2024; 23:e13279. [PMID: 38284612 DOI: 10.1111/1541-4337.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Pickering emulsion (PE) technology effectively addresses the issues of poor compatibility and low retention of hydrophobic active ingredients in food packaging. Nonetheless, it is important to recognize that each stage of the preparation process for PE films/coatings (PEFCs) can significantly influence their functional properties. With the fundamental considerations of environmental friendliness and human safety, this review extensively explores the potential of raw materials for PEFC and introduces the preparation methods of nanoparticles, emulsification technology, and film-forming techniques. The critical factors that impact the performance of PEFC during the preparation process are analyzed to enhance food preservation effectiveness. Moreover, the latest advancements in PE packaging across diverse food applications are summarized, along with prospects for innovative food packaging materials. Finally, the preservation mechanism and application safety have been systematically elucidated. The study revealed that the PEFCs provide structural flexibility, where designable nanoparticles offer unique functional properties for intelligent control over active ingredient release. The selection of the dispersed and continuous phases, along with component proportions, can be customized for specific food characteristics and storage conditions. By employing suitable preparation and emulsification techniques, the stability of the emulsion can be improved, thereby enhancing the effectiveness of the films/coatings in preserving food. Including additional substances broadens the functionality of degradable materials. The PE packaging technology provides a safe and innovative solution for extending the shelf life and enhancing the quality of food products by protecting and releasing active components.
Collapse
Affiliation(s)
- Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Wan C, Wu Y, Cheng Q, Yu X, Song Y, Guan C, Tan X, Huang C, Zhu J, Russell TP. Reversible Emulsions from Polyoxometalate-Polymer: A Robust Strategy to Cyclic Emulsion Catalysis and High-Internal-Phase Emulsion Materials. J Am Chem Soc 2023; 145:25431-25439. [PMID: 37955662 DOI: 10.1021/jacs.3c10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Reversible Pickering emulsions, achieved by switchable, interfacially active colloidal particles, that enable on-demand emulsification/demulsification or phase inversion, hold substantial promise for biphasic catalysis, emulsion polymerization, cutting fluids, and crude oil pipeline transportation. However, particles with such a responsive behavior usually require complex chemical syntheses and surface modifications, limiting their extensive use. Herein, we report a simple route to generate emulsions that can be controlled and reversibly undergo phase inversion. The emulsions are prepared and stabilized by the interfacial assembly of polyoxometalate (POM)-polymer, where their electrostatic interaction at the interface is dynamic. The wettability of the POMs that dictates the emulsion type can be readily regulated by tuning the number of polymer chains bound to POMs, which, in turn, can be controlled by varying the concentrations of both components and the water/oil ratio. In addition, the number of polymer chains anchored to the POMs can be varied by controlling the number of negative charges on the POMs through an in situ redox reaction. As such, a reversible inversion of the emulsions can be triggered by switching between exposure to ultraviolet light and the introduction of oxygen. Combining the functions of POM itself, a cyclic interfacial catalysis system was realized. Inversion of the emulsion also affords a pathway to high-internal-phase emulsions. The diversity of the POMs, the polymers, and the responsive switching groups open numerous new, simple strategies for designing a wide range of responsive soft matter for cargo loading, controlled release, and delivery in biomedical and engineering applications without time-consuming particle syntheses.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yutian Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Quanyong Cheng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiang Yu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuhang Song
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Chengshu Guan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xuemei Tan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Caili Huang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Let S, K Dam G, Fajal S, Ghosh SK. Organic porous heterogeneous composite with antagonistic catalytic sites as a cascade catalyst for continuous flow reaction. Chem Sci 2023; 14:10591-10601. [PMID: 37799985 PMCID: PMC10548525 DOI: 10.1039/d3sc03525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
One-pot cascade catalytic reactions easily allow the circumvention of pitfalls of traditional catalytic reactions, such as multi-step syntheses, longer duration, waste generation, and high operational cost. Despite advances in this area, the facile assimilation of chemically antagonistic bifunctional sites in close proximity inside a well-defined scaffold via a process of rational structural design still remains a challenge. Herein, we report the successful fusion of incompatible acid-base active sites in an ionic porous organic polymer (iPOP), 120-MI@OH, via a simple ion-exchange strategy. The fabricated polymer catalyst, 120-MI@OH, performed exceedingly well as a cascade acid-base catalyst in a deacetylation-Knoevenagel condensation reaction under mild and eco-friendly continuous flow conditions. In addition, the abundance of spatially isolated distinct acidic (imidazolium cations) and basic (hydroxide anions) catalytic sites give 120-MI@OH its excellent solid acid and base catalytic properties. To demonstrate the practical relevance of 120-MI@OH, stable millimeter-sized spherical composite polymer bead microstructures were synthesized and utilized in one-pot cascade catalysis under continuous flow, thus illustrating promising catalytic activity. Additionally, the heterogeneous polymer catalyst displayed good recyclability, scalability, as well as ease of fabrication. The superior catalytic activity of 120-MI@OH can be rationalized by its unique structure that reconciles close proximity of antagonistic catalytic sites that are sufficiently isolated in space.
Collapse
Affiliation(s)
- Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
- Centre for Water Research, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
8
|
Ahmed E, Cho J, Jang SS, Weck M. Nonorthogonal Cascade Catalysis in Multicompartment Micelles. Chemistry 2023; 29:e202301231. [PMID: 37183699 DOI: 10.1002/chem.202301231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Multicompartment micelles (MCMs) containing acid and base sites in discrete domains are prepared from poly(norbornene)-based amphiphilic bottlebrush copolymers in aqueous media. The acid and base sites are localized in different compartments of the micelle, enabling the nonorthogonal reaction sequence: deacetalization - Knoevenagel condensation - Michael addition of acetals to 2-amino chromene derivatives. Computational simulations using dissipative particle dynamics (DPD) elucidated the bottlebrush composition required to effectively site-isolate the nonorthogonal catalysts. This contribution presents MCMs as a new class of nanostructures for one-pot multistep nonorthogonal cascade catalysis, laying the groundwork for the isolation of three or more incompatible catalysts to synthesize value-added compounds in a single reaction vessel, in water.
Collapse
Affiliation(s)
- Eman Ahmed
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Jinwon Cho
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA, 30332-0245, USA
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA, 30332-0245, USA
| | - Marcus Weck
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
9
|
Sarkar A, Mistry S, Bhattacharya S, Natarajan S. Multistep Cascade Catalytic Reactions Employing Bifunctional Framework Compounds. Inorg Chem 2023. [PMID: 37393542 DOI: 10.1021/acs.inorgchem.3c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multistep cascade reactions are important to achieve atom as well as step economy over conventional synthesis. This approach, however, is limited due to the incompatibility of the available reactive centers in a catalyst. In the present study, new MOF compounds, [Zn2(SDBA)(3-ATZ)2]·solvent, I and II, with tetrahedral Zn centers as good Lewis acidic sites and the free amino group of the 3-amino triazole ligand as a strong Lewis base center were shown to perform 4-step cascade/tandem reaction in a facile manner. Effective conversion of benzaldehyde dimethyl acetal in the presence of excess nitromethane at 100 °C in water to 1-(1,3-dinitropropan-2-yl) benzene was achieved in 10 h with yields of ∼95% (I) and ∼94% (II). This 4-step cascade reaction proceeds via deacetalization (Lewis acid), Henry (Lewis base), and Michael (Lewis base) reactions. The present work highlights the importance of spatially separated functional groups in multistep tandem catalysis─the examples of which are not common.
Collapse
Affiliation(s)
- Anupam Sarkar
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| | - Subhradeep Mistry
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University, SRT Campus, New Tehri 249199, Uttarakhand, India
| | - Saurav Bhattacharya
- Department of Chemistry, BITS Pilani K. K. Birla Goa Campus, Goa 403726, India
| | - Srinivasan Natarajan
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Zhang H, Cui D, Shen T, He T, Chen X, An S, Qi B, Song YF. Insight into the In-Situ Encapsulation-Reassembly Strategy To Fabricate PW 12@NiCo-LDH Acid-Base Bifunctional Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37364053 DOI: 10.1021/acsami.3c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Acid-base bifunctional catalysts have attracted increasing attention due to the improved overall efficiency of synthetic reactions. Herein, we reported the successful fabrication of a PW12@NiCo-LDH acid-base bifunctional catalyst by using the in-situ encapsulation-reassembly strategy. The evolution process of morphology and structure was monitored carefully by various time-dependent characterizations. X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculations demonstrated that the terminal oxygen of PW12 in PW12@NiCo-LDH preferred to assemble with the oxygen vacancies on NiCo-LDH. When applied for deacetalization-Knoevenagel condensation, the PW12@NiCo-LDH displayed >99% conversion of benzaldehyde dimethyl acetal (BDMA) and >99% yield of ethyl α-cyanocinnamate (ECC). Moreover, PW12@NiCo-LDH can be recycled at least 10 cycles without obvious structural change, which can be attributed to the confinement of PW12 into the NiCo-LDH nanocage. Such excellent catalytic activity of PW12@NiCo-LDH was benefited from the short mass transfer pathway between acid sites and base sites, which was caused by the stable assembly between PW12 and NiCo-LDH.
Collapse
Affiliation(s)
- Huaiying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dongyuan Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tong He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuejie Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Sai An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bo Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province 324000, P. R. China
| |
Collapse
|
11
|
Tang T, Fei J, Zheng Y, Xu J, He H, Ma M, Shi Y, Chen S, Wang X. Water‐soluble Lignosulfonates: Structure, Preparation, and Application. ChemistrySelect 2023. [DOI: 10.1002/slct.202204941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Tao Tang
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Junhao Fei
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Yi Zheng
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Jian Xu
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Huiwen He
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Meng Ma
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Yanqin Shi
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Si Chen
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Xu Wang
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| |
Collapse
|
12
|
Zhu X, Wang X, Dong X, Zhang L, Qi D, Hua Z, Chen T. Design of Polymer-Based Nanoreactors for Efficient Acid/Base Cascade Catalysis: A Comparative Study of Site Isolation Strategies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Liu Y, Zhang H, Zhang W, Binks BP, Cui Z, Jiang J. Charge Density Overcomes Steric Hindrance of Ferrocene Surfactant in Switchable Oil-in-Dispersion Emulsions. Angew Chem Int Ed Engl 2023; 62:e202210050. [PMID: 36328980 DOI: 10.1002/anie.202210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
A ferrocene surfactant can be switched between single and double head form (FcN+ C12 /Fc+ N+ C12 ) triggered by redox reaction. FcN+ C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+ N+ C12 , so that oil-in-dispersion emulsions can be co-stabilized by Fc+ N+ C12 and alumina nanoparticles at very low concentrations (1×10-7 M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.
Collapse
Affiliation(s)
- Yunshan Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
14
|
Yang M, Bao YS, Zhou ML, Wang S, Cui YH, Liu W, Li LC, Meng LX, Zhang YY, Han ZB. An Efficient Bifunctional Core–Shell MIL-101(Cr)@MOF-867 Composite to Catalyze Deacetalization–Knoevenagel Tandem Reaction. Catal Letters 2023. [DOI: 10.1007/s10562-022-04259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Wang Y, Zhao Q, Haag R, Wu C. Biocatalytic Synthesis Using Self-Assembled Polymeric Nano- and Microreactors. Angew Chem Int Ed Engl 2022; 61:e202213974. [PMID: 36260531 PMCID: PMC10100074 DOI: 10.1002/anie.202213974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Biocatalysis is increasingly being explored for the sustainable development of green industry. Though enzymes show great industrial potential with their high efficiency, specificity, and selectivity, they suffer from poor usability and stability under abiological conditions. To solve these problems, researchers have fabricated nano- and micro-sized biocatalytic reactors based on the self-assembly of various polymers, leading to highly stable, functional, and reusable biocatalytic systems. This Review highlights recent progress in self-assembled polymeric nano- and microreactors for biocatalytic synthesis, including polymersomes, reverse micelles, polymer emulsions, Pickering emulsions, and static emulsions. We categorize these reactors into monophasic and biphasic systems and discuss their structural characteristics and latest successes with representative examples. We also consider the challenges and potential solutions associated with the future development of this field.
Collapse
Affiliation(s)
- Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, P.R. China
| | - Qingcai Zhao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
16
|
Emulsion Gel: a Dual Drug Delivery Platform for Osteoarthritis Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers. Nat Commun 2022; 13:6136. [PMID: 36253472 PMCID: PMC9576742 DOI: 10.1038/s41467-022-33856-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Multi-chambered architectures have attracted much attention due to the ability to establish multifunctional partitions in different chambers, but manipulating the chamber numbers and coupling multi-functionality within the multi-chambered mesoporous nanoparticle remains a challenge. Herein, we propose a nanodroplet remodeling strategy for the synthesis of hierarchical multi-chambered mesoporous silica nanoparticles with tunable architectures. Typically, the dual-chambered nanoparticles with a high surface area of ~469 m2 g−1 present two interconnected cavities like a calabash. Furthermore, based on this nanodroplet remodeling strategy, multiple species (magnetic, catalytic, optic, etc.) can be separately anchored in different chamber without obvious mutual-crosstalk. We design a dual-chambered mesoporous nanoreactors with spatial isolation of Au and Pd active-sites for the cascade synthesis of 2-phenylindole from 1-nitro-2-(phenylethynyl)benzene. Due to the efficient mass transfer of reactants and intermediates in the dual-chambered structure, the selectivity of the target product reaches to ~76.5%, far exceeding that of single-chambered nanoreactors (~41.3%). Multi-chambered structures have attracted great attention due to their ability to create multifunctional partitions in different chambers. Here, the authors prepared mesoporous silica nanoreactors with hierarchical chambers for catalytic cascades.
Collapse
|
18
|
Ghanooni S, Karimi B, Nikfarjam N. Preparation of a Dual-Functionalized Acid-Base Macroporous Polymer via High Internal Phase Emulsion Templating as a Reusable Catalyst for One-Pot Deacetalization-Henry Reaction. ACS OMEGA 2022; 7:30989-31002. [PMID: 36092616 PMCID: PMC9453793 DOI: 10.1021/acsomega.2c02973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
A macroporous dual-functional acid-base covalent organic polymer catalyst poly(St-VBC)-NH2-SO3H was prepared using high internal phase emulsion polymerization using vinylbenzyl chloride (VBC), styrene (St), and divinylbenzene (DVB) as substrates toluene as a porogenic solvent, and subsequent modification with ethylenediamine and 1,3-propane sultone. The role of various amounts of toluene as the porogenic solvent as well as the amount of 1,3-propane sultone (different ratio of acid/base sites) on the structure of the prepared materials have been carefully investigated. The prepared materials were characterized by Fourier transform infrared (FT-IR), CHNS elemental analysis, energy-dispersive X-ray (EDX), elemental mapping, field emission scanning electron microscopy (FE-SEM), and thermalgravimetric analysis (TGA). The catalytic activity of the poly(St-VBC)-NH2-SO3H series with different acid/base densities was assessed for one-pot cascade C-C bond-forming reactions involving deacetylation-Henry reactions. The poly(St-VBC)-NH2-SO3H(20) sample bearing 1.82 mmol/g of N (base site) and 1.16 mmol/g (acid site) showed the best catalytic activity. The catalyst demonstrated superior activity compared to the homogeneous catalysts, poly(St-DVB)-SO3H+EDA, poly(St-VBC)-NH2+chlorosulfonic acid, and poly(St-DVB)-SO3H+poly(St-VBC)-NH2 as the catalyst system. The optimized catalyst showed excellent catalytic performance with 100% substrate conversion and 100% yield of the final product in the one-pot production of β-nitrostyrene from benzaldehyde dimethyl acetal under cascade reactions comprising acid-catalyzed deacetalization and base-catalyzed Henry reactions. It was shown that these catalysts were reusable for up to four consecutive runs with a very slight loss of activity. The excellent performance of the catalyst was attributed to the excellent chemical and physical properties of the developed support since it provides an elegant route for preparing site-isolated acid-base dual heterogenized functional groups and preventing their deactivation via chemical neutralization.
Collapse
Affiliation(s)
- Saeed Ghanooni
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Babak Karimi
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
- Research
Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Nasser Nikfarjam
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| |
Collapse
|
19
|
Dabodiya TS, Yu H, Li M, Zhang X. Sequential droplet reactions for surface-bound gold nanocrater array. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Fapojuwo DP, Akinnawo CA, Oseghale CO, Meijboom R. Tailoring the surface wettability of mesoporous silica for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde in a Pickering emulsion system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Lim J, Kumari N, Mete TB, Kumar A, Lee IS. Magnetic-Plasmonic Multimodular Hollow Nanoreactors for Compartmentalized Orthogonal Tandem Catalysis. NANO LETTERS 2022; 22:6428-6434. [PMID: 35748753 DOI: 10.1021/acs.nanolett.2c01817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In tandem catalytic systems, controlling the reaction steps and side reactions is extremely challenging. Here, we demonstrate a nanoreactor platform comprising magnetic- and plasmonic-coupled catalytic modules that synchronizes reaction steps at unconnected neighboring reaction sites via decoupled nanolocalized energy harvested using distinct antennae reactors while minimizing the interconflicting effects. As was desired, the course of the reaction and product yields can be controlled by a convenient remote operation of alternating magnetic field (AMF) and near-infrared light (NIR). Following this strategy, a tandem reaction involving [Pd]-catalyzed Suzuki-Miyaura C-C cross-coupling and [Pt]-catalyzed aerobic alcohol oxidation enabled an excellent yield of cinnamaldehyde (ca. 95%) by overcoming the risk of side reactions. The customization scope for using different catalytic metals (Pt, Pd, Ru, and Rh) with in situ control over product release through remotely operable benign energy sources opens avenues for designing diverse catalytic schemes for targeted applications.
Collapse
Affiliation(s)
- Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Trimbak B Mete
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
22
|
Huang J, Zhu X, Wang Y, Min Y, Li X, Zhang R, Qi D, Hua Z, Chen T. Compartmentalization of incompatible catalysts by micelles from bottlebrush copolymers for one-pot cascade catalysis. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Efficient Epoxidation of Styrene within Pickering Emulsion-Based Compartmentalized Microreactors. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
25
|
Onisuru OR, Fapojuwo DP, Oseghale CO, Alimi OA, Meijboom R. Transfer hydrogenation of ketone; an in situ approach toward an eco-friendly reduction. RSC Adv 2022; 12:19890-19900. [PMID: 35865205 PMCID: PMC9262422 DOI: 10.1039/d2ra02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
The use of water as a solvent in chemical reactions has recently been brought to public attention, especially in the exploration of eco-friendly procedures. It is readily available, abundantly accessible, non-toxic, non-flammable, and at a low cost. As opposed to the previous limitation of reactant solubilities associated with aqueous media, a hydrogel such as a hydroxypropyl methylcellulose (HPMC) solution can significantly improve the reactant solubility. This investigation employed water and HPMC as the reaction solvent, and the reaction medium viscosity was impressively enhanced. Silica-supported Pd particles (Pd@SiO2) were synthesized and effectively catalyzed the reduction of acetophenone in the presence of sodium borohydride (NaBH4) as the hydrogen source. The conversion of acetophenone to 1-phenyl ethanol remained at a very high value of >99.34% with 100% selectivity towards 1-phenyl ethanol. The use of water as a solvent in chemical reactions has recently been brought to public attention, especially in the exploration of eco-friendly procedures.![]()
Collapse
Affiliation(s)
- Oluwatayo Racheal Onisuru
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Dele Peter Fapojuwo
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Charles O Oseghale
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Oyekunle Azeez Alimi
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Reinout Meijboom
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| |
Collapse
|
26
|
Li Z, Zeng H, Zhang X. Growth Rates of Hydrogen Microbubbles in Reacting Femtoliter Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6638-6646. [PMID: 35588476 DOI: 10.1021/acs.langmuir.2c00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical reactions in small droplets are extensively explored to accelerate the discovery of new materials and increase the efficiency and specificity in catalytic biphasic conversion and high-throughput analytics. In this work, we investigate the local rate of the gas-evolution reaction within femtoliter droplets immobilized on a solid surface. The growth rate of hydrogen microbubbles (≥500 nm in radius) produced from the reaction was measured online with high-resolution confocal microscopic images. The growth rate of bubbles was faster in smaller droplets and near the droplet rim in the same droplet. The results were consistent for both pure and binary reacting droplets and on substrates of different wettability. Our theoretical analysis based on diffusion, chemical reaction, and bubble growth predicted that the concentration of the reactant depended on the droplet size and the bubble location inside the droplet, in good agreement with experimental results. Our results reveal that the reaction rate may be spatially nonuniform in the reacting microdroplets. The findings may have implications for formulating the chemical properties and uses of these droplets.
Collapse
Affiliation(s)
- Zhengxin Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
27
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ni
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chang Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Qianbing Wei
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Dongming Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jieshan Qiu
- Dalian University of Technology School of Chemical Engineering High Technology Zone, No. 2 Ling Gong Road 116024 Dalian CHINA
| |
Collapse
|
28
|
Dhasaiyan P, Ghosh T, Lee HG, Lee Y, Hwang I, Mukhopadhyay RD, Park KM, Shin S, Kang IS, Kim K. Cascade reaction networks within audible sound induced transient domains in a solution. Nat Commun 2022; 13:2372. [PMID: 35501325 PMCID: PMC9061750 DOI: 10.1038/s41467-022-30124-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSpatiotemporal control of chemical cascade reactions within compartmentalized domains is one of the difficult challenges to achieve. To implement such control, scientists have been working on the development of various artificial compartmentalized systems such as liposomes, vesicles, polymersomes, etc. Although a considerable amount of progress has been made in this direction, one still needs to develop alternative strategies for controlling cascade reaction networks within spatiotemporally controlled domains in a solution, which remains a non-trivial issue. Herein, we present the utilization of audible sound induced liquid vibrations for the generation of transient domains in an aqueous medium, which can be used for the control of cascade chemical reactions in a spatiotemporal fashion. This approach gives us access to highly reproducible spatiotemporal chemical gradients and patterns, in situ growth and aggregation of gold nanoparticles at predetermined locations or domains formed in a solution. Our strategy also gives us access to nanoparticle patterned hydrogels and their applications for region specific cell growth.
Collapse
|
29
|
Wang Q, Bu W, Li Z, Qi Y, Wang X. PIC catalysis based on polyoxometalates promoting 5-HMF oxidation in H2O/MIBK biphase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Kibbelaar HV, Dekker RI, Morcy A, Kegel WK, Velikov KP, Bonn D. Ethyl cellulose nanoparticles as stabilizers for Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
32
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
33
|
Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat Commun 2022; 13:305. [PMID: 35027566 PMCID: PMC8758787 DOI: 10.1038/s41467-022-27983-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023] Open
Abstract
Biocatalytic transformations in living organisms, such as multi-enzyme catalytic cascades, proceed in different cellular membrane-compartmentalized organelles with high efficiency. Nevertheless, it remains challenging to mimicking biocatalytic cascade processes in natural systems. Herein, we demonstrate that multi-shelled metal-organic frameworks (MOFs) can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency. Encapsulating multi-enzymes with multi-shelled MOFs by epitaxial shell-by-shell overgrowth leads to 5.8~13.5-fold enhancements in catalytic efficiencies compared with free enzymes in solution. Importantly, multi-shelled MOFs can act as a multi-spatial-compartmental nanoreactor that allows physically compartmentalize multiple enzymes in a single MOF nanoparticle for operating incompatible tandem biocatalytic reaction in one pot. Additionally, we use nanoscale Fourier transform infrared (nano-FTIR) spectroscopy to resolve nanoscale heterogeneity of vibrational activity associated to enzymes encapsulated in multi-shelled MOFs. Furthermore, multi-shelled MOFs enable facile control of multi-enzyme positions according to specific tandem reaction routes, in which close positioning of enzyme-1-loaded and enzyme-2-loaded shells along the inner-to-outer shells could effectively facilitate mass transportation to promote efficient tandem biocatalytic reaction. This work is anticipated to shed new light on designing efficient multi-enzyme catalytic cascades to encourage applications in many chemical and pharmaceutical industrial processes. Mimicking multi-enzyme catalytic cascades in natural systems with spatial organization in confined structures is gaining increasing attention in the emerging field of systems chemistry. Here, the authors demonstrate that multi-shelled metal-organic frameworks can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency.
Collapse
|
34
|
Kumar L, Verma N, Sehrawat H, Tomar R, Kumar R, Chandra R. Successive oxidation–condensation reactions using a multifunctional gold-supported nanocomposite (Au/MgCe–HDO). NEW J CHEM 2022. [DOI: 10.1039/d1nj05690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successive oxidation–condensation reactions of substituted benzyl alcohol were carried out using a Au/MgCe–HDO nanocomposite catalyst.
Collapse
Affiliation(s)
- Loveneesh Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Nishant Verma
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hitesh Sehrawat
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ravi Tomar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana 122505, India
| | - Rupesh Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
- Dr B. R. Ambedkar, Centre for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
35
|
Yu H, Wang R, Zhang Z, Qiu S. Yolk-shell smart Pickering nanoreactors for base-free one-pot cascade Knoevenagel-Hydrogenation with high catalytic efficiency in water. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00005a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In present work, Au@Pd nanoparticles, catalytic active centers, were first implanted in amphiphilic hollow vinyl-pyridyl groups-doped periodic mesoporous organosilica (PMO) shells, and we got yolk–shell smart Pickering Au@Pd@Py-PMO nanoreactors. Two...
Collapse
|
36
|
Lian SWM, Guo S, Ren K, Xu Y, Ho JS, Chen CH. Heterogeneous multi-compartmental DNA hydrogel particles prepared via microfluidic assembly for lymphocyte-inspired precision medicine. NANOSCALE 2021; 13:20531-20540. [PMID: 34859803 DOI: 10.1039/d1nr06594g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lymphocytes play a vital role in immunosurveillance through sensing biomolecules and eliminating targeted invaders. Compared with conventional therapies that depend on drug loading, lymphocytes are advantageous as they are able to ensure self-regulated therapeutics. Here, novel multi-compartmental DNA hydrogel particles were synthesized using a microfluidic assembly for intelligent cancer treatment via the logic-based control of siRNA release without external stimulation. The sensing sequence (D1) was compartmentalized from the treatment sequence (D2) with the use of core-shell DNA hydrogel particles. When D1 detects a cancer-associated biomarker, miRNA-21, a sequence cascade is triggered to release siRNA from D2, effectively eliminating the targeted cancer cells via lymphocyte-inspired precision medicine.
Collapse
Affiliation(s)
- Sophie Wan Mei Lian
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), MD6, 14 Medical Drive #14-01, Singapore 117599
| | - Song Guo
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), MD6, 14 Medical Drive #14-01, Singapore 117599
| | - Kewei Ren
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, 117583, Singapore
| | - Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - John S Ho
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), MD6, 14 Medical Drive #14-01, Singapore 117599
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
37
|
Qu P, Cleveland JW, Ahmed E, Liu F, Dubrawski S, Jones CW, Weck M. Compartmentalisation of molecular catalysts for nonorthogonal tandem catalysis. Chem Soc Rev 2021; 51:57-70. [PMID: 34881750 DOI: 10.1039/d1cs00530h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of nonorthogonal tandem catalysis enables the use of a combination of arbitrary catalysts to rapidly synthesize complex products in a substainable, efficient, and timely manner. The key is to compartmentalise the molecular catalysts, thereby overcoming inherent incompatibilities between individual catalysts or reaction conditions. This tutorial review analyses the development of the past two decades in the field of nonorthogonal tandem catalysis with an emphasis on compartmentalisation strategies. We highlight design principles of functional materials for compartmentalisation and suggest future directions in the field of nonorthogonal tandem catalysis.
Collapse
Affiliation(s)
- Peiyuan Qu
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Jacob W Cleveland
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| | - Eman Ahmed
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Fangbei Liu
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Sage Dubrawski
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| |
Collapse
|
38
|
Chang F, Vis CM, Bergmeijer M, Howes SC, Bruijnincx PCA. Bifunctional Janus Silica Spheres for Pickering Interfacial Tandem Catalysis. CHEMSUSCHEM 2021; 14:5328-5335. [PMID: 34668343 PMCID: PMC9297878 DOI: 10.1002/cssc.202101238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Nature provides much inspiration for the design of multistep conversion processes, with numerous reactions running simultaneously and without interference in cells, for example. A key challenge in mimicking nature's strategies is to compartmentalize incompatible reagents and catalysts, for example, for tandem catalysis. Here, we present a new strategy for antagonistic catalyst compartmentalization. The synthesis of bifunctional Janus catalyst particles carrying acid and base groups on the particle's opposite patches is reported as is their application as acid-base catalysts in oil/water emulsions. The synthesis strategy involved the use of monodisperse, hydrophobic and amine-functionalized silica particles (SiO2 -NH2 -OSi(CH3 )3 ) to prepare an oil-in-water Pickering emulsion (PE) with molten paraffin wax. After solidification, the exposed patch of the silica particles was selectively etched and refunctionalized with acid groups to yield acid-base Janus particles (Janus A-B). These materials were successfully applied in biphasic Pickering interfacial catalysis for the tandem dehydration-Knoevenagel condensation of fructose to 5-(hydroxymethyl)furfural-2-diethylmalonate (5-HMF-DEM) in a water/4-propylguaiacol PE. The results demonstrate the advantage of rapid extraction of 5-hydroxymethylfurfural (5-HMF), a prominent platform molecule prone to side product formation in acidic media. A simple strategy to tune the acid/base balance using PE with both Janus A-B and monofunctional SiO2 -NH2 -OSi(CH3 )3 base catalysts proved effective for antagonistic tandem catalysis.
Collapse
Affiliation(s)
- Fuqiang Chang
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Carolien M. Vis
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Menno Bergmeijer
- Structural BiochemistryBijvoet Centre for Biomolecular ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Stuart C. Howes
- Structural BiochemistryBijvoet Centre for Biomolecular ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
39
|
Hydrodynamic characterization of continuous flow of Pickering droplets with solid nanoparticles in microchannel reactors. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Sadgar AL, Deore TS, Hase DV, Jayaram RV. Graphene Oxide Pickering Emulsion – A Novel Reaction Medium for the Synthesis of 2‐Aminothiazole. ChemistrySelect 2021. [DOI: 10.1002/slct.202102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Amid L. Sadgar
- Department of Chemistry Institute of Chemical Technology Nathalal Parekh Marg, Matunga Mumbai 400019
| | - Tushar S. Deore
- Department of Chemistry Institute of Chemical Technology Nathalal Parekh Marg, Matunga Mumbai 400019
| | - Dattatraya V. Hase
- Department of Chemistry Institute of Chemical Technology Nathalal Parekh Marg, Matunga Mumbai 400019
| | - Radha V. Jayaram
- Department of Chemistry Institute of Chemical Technology Nathalal Parekh Marg, Matunga Mumbai 400019
| |
Collapse
|
41
|
Huang Z, Sun X, Liu Y, Cui J, Song A, Hao J. Metal ion-triggered Pickering emulsions and foams for efficient metal ion extraction. J Colloid Interface Sci 2021; 602:187-196. [PMID: 34119757 DOI: 10.1016/j.jcis.2021.05.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
Emulsions and foams were constructed by using surfactant particles as stabilizers. Bis(2-ethylhexyl) phosphate, abbreviated as HDEHP, was used as both an oil in neutral form and an anionic surfactant in deprotonated form, DEHP-. In the system of HDEHP/H2O, upon adding NaOH, a portion of HDEHP was deprotonated to form DEHP- as stabilizers of O/W emulsions. After introducing some certain metal ions, the O/W emulsions were transformed to W/O Pickering emulsions due to the generation of insoluble particles by DEHP- and metal ions. In addition, DEHP- could also combine with some metal ions to produce particles absorbed at air/water interface, forming ultrastable foams. Accompanied with the formation of Pickering emulsions and foams, the extraction of metal ions from water could be realized with high removal efficiency. The extractant, HDEHP, could be effectively recycled through convenient demulsification of Pickering emulsions or destruction of foams. This work provides new ideas for the construction of particle-stabilized dispersion systems and proposes methods with potential applications in industrial wastewater treatments.
Collapse
Affiliation(s)
- Zhaohui Huang
- Key Laboratory of Colloids and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Xiuping Sun
- Key Laboratory of Colloids and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Yihan Liu
- Key Laboratory of Colloids and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloids and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Aixin Song
- Key Laboratory of Colloids and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Jingcheng Hao
- Key Laboratory of Colloids and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
42
|
Jenkins AH, Medlin JW. Controlling Heterogeneous Catalysis with Organic Monolayers on Metal Oxides. Acc Chem Res 2021; 54:4080-4090. [PMID: 34644060 DOI: 10.1021/acs.accounts.1c00469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ConspectusA key theme of heterogeneous catalysis research is achieving control of the environment surrounding the active site to precisely steer the reactivity toward desired reaction products. One method toward this goal has been the use of organic ligands or self-assembled monolayers (SAMs) on metal nanoparticles. Metal-bound SAMs are typically employed to improve catalyst selectivity but often decrease the reaction rate as a result of site blocking from the ligands. Recently, the use of metal oxide-bound organic modifiers such as organophosphonic acid (PA) SAMs has shown promise as an additional method for tuning reactions on metal oxide surfaces as well as modifying oxide-supported metal catalysts. In this Account, we summarize recent approaches to enhance catalyst performance with oxide-bound monolayers. These approaches include (1) modification of metal oxide catalysts to tune surface reactions, (2) formation of SAMs on the oxide component of supported metal catalysts to modify sites at the metal-support interface, and (3) enhancement of catalyst performance (e.g., stability) through modification of sites remote from the active sites.Both the headgroups and organic tail groups of PA SAMs or other ligands can influence reactions on metal oxide surfaces. Binding of the headgroup can selectively poison certain active sites, altering the selectivity in a manner analogous to metal-bound ligands (at the expense of active site quantity). Moreover, tail groups can be functionalized to interact favorably with reactants and intermediates, for instance through dipole-dipole interactions. On supported metal catalysts like Pt/Al2O3, PA SAMs can selectively form on the oxide support. This selective deposition allows for modification of the metal-support interface with minimal blockage of metal sites. PA headgroups were shown to provide tunable acid sites at the interface, dramatically improving hydrodeoxygenation rates of various alcohols. Additionally, organic tail functionality was used to activate or stabilize specific reactants at the interface, such as with the use of amine-functionalized PAs to stabilize chemisorption of CO2 during the reverse water gas shift reaction. PAs have also been found to affect the electronic properties of bulk metal sites through long-range electron withdrawal via the oxide, providing an additional avenue to tune catalytic behavior. Finally, organic modifiers were shown to enhance catalytic performance without directly modifying the active site. For instance, in biphasic liquid environments the modification of catalyst particles with hydrophobic or hydrophilic SAMs shifts the selectivity of multipath reactions on the basis of the hydrophobicities of different intermediates and products. As another "long-range" effect, the deposition of ligands on oxide supports improved catalyst stability through both improved resistance to sintering and suppression of active site poisoning. The recent contributions discussed in this Account demonstrate the versatility and significant potential for the approach of modifying catalysts with oxide-bound organic monolayers.
Collapse
Affiliation(s)
- Alexander H. Jenkins
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - J. Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
43
|
Hao Y, Hao S, Li Q, Liu X, Zou H, Yang H. Metal-Nanoparticles-Loaded Ultrathin g-C 3N 4 Nanosheets at Liquid-Liquid Interfaces for Enhanced Biphasic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47236-47243. [PMID: 34553905 DOI: 10.1021/acsami.1c13903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploiting new interface-active solid catalysts is crucial to construct efficient Pickering emulsion systems for biphasic catalysis. In this work, ultrathin g-C3N4 nanosheets (g-C3N4-NSs) were developed as a new solid emulsifier to directly position catalytic sites at oil-water interfaces for improving the reaction efficiency of a biphasic reaction. Exemplified by a metal-involved biphasic reaction of nitroarenes reduction, the developed Pd/g-C3N4-NSs catalyst with Pd nanoparticles loaded on the surface of g-C3N4-NSs exhibited excellent activity with a catalytic efficiency of 1220 h-1. Such activity was 4.2 and 17.9 times higher than those of Pd/g-C3N4-bulk and the ordinary Pd/C8-SiO2 catalyst, respectively. Also, in the biphasic oxidation reaction of alcohols, Pd/g-C3N4-NSs achieved a 2.3-fold activity enhancement. It was found by analyzing the solidified emulsion droplets that the Pd/g-C3N4-NSs catalyst was parallelly assembled at the oil-water interfaces. Because of the ultrathin thickness of g-C3N4-NSs, such a unique interfacial assembly behavior allowed precise positioning of Pd nanoparticles at the oil-water interfaces. As a result, the oil-soluble reactant could directly react with the water-soluble reactant at the oil-water interface hosting the Pd nanoparticles. Our elaborately designed reaction interface was believed to substantially avoid the diffusion barrier between oil-soluble and water-soluble reactants and then to significantly enhance the reactivity of biphasic reactions. This work highlights the importance of the interfacial location of catalytic sites in biphasic catalysis.
Collapse
Affiliation(s)
- Yajuan Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shijiao Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qibiao Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xian Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
44
|
Zou H, Dai J, Suo J, Ettelaie R, Li Y, Xue N, Wang R, Yang H. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat Commun 2021; 12:4968. [PMID: 34404796 PMCID: PMC8371113 DOI: 10.1038/s41467-021-25226-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
Controlling localization of multiple metal nanoparticles on a single support is at the cutting edge of designing cascade catalysts, but is still a scientific and technological challenge because of the lack of nanostructured materials that can not only host metal nanoparticles in different sub-compartments but also enable efficient molecular transport between different metals. Herein we report a multicompartmentalized mesoporous organosilica with spatially separated sub-compartments that are connected by short nanochannels. Such a unique structure allows co-localization of Ru and Pd nanoparticles in a nanoscale proximal fashion. The so designed cascade catalyst exhibits an order of magnitude activity enhancement in the sequential hydrogenation of nitroarenes to cyclohexylamines compared with its mono/bi-metallic counterparts. Crucially, an interesting phenomenon of neighboring metal-assisted hydrogenation via hydrogen spillover is observed, contributing to the significant enhancement in catalytic efficiency. The multicompartmentalized architectures along with the revealed mechanism of accelerated hydrogenation provide vast opportunity for designing efficient cascade catalysts.
Collapse
Affiliation(s)
- Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Jinyu Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Yuan Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Nan Xue
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China.
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China.
| |
Collapse
|
45
|
Sicard F, Toro-Mendoza J. Armored Droplets as Soft Nanocarriers for Encapsulation and Release under Flow Conditions. ACS NANO 2021; 15:11406-11416. [PMID: 34264056 PMCID: PMC8397430 DOI: 10.1021/acsnano.1c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 05/05/2023]
Abstract
Technical challenges in precision medicine and environmental remediation create an increasing demand for smart materials that can select and deliver a probe load to targets with high precision. In this context, soft nanomaterials have attracted considerable attention due to their ability to simultaneously adapt their morphology and functionality to complex ambients. Two major challenges are to precisely control this adaptability under dynamic conditions and provide predesigned functionalities that can be manipulated by external stimuli. Here, we report on the computational design of a distinctive class of soft nanocarriers, built from armored nanodroplets, able to selectively encapsulate or release a probe load under specific flow conditions. First, we describe in detail the mechanisms at play in the formation of pocket-like structures in armored nanodroplets and their stability under external flow. Then we use that knowledge to test the capacity of these pockets to yield flow-assisted encapsulation or expulsion of a probe load. Finally, the rheological properties of these nanocarriers are put into perspective with those of delivery systems employed in pharmaceutical and cosmetic technology.
Collapse
Affiliation(s)
- François Sicard
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, U.K.
- Department
of Chemical Engineering, University College
London, WC1E 7JE London, U.K.
| | - Jhoan Toro-Mendoza
- Centro
de Estudios Interdisciplinarios de la Fisica, Instituto Venezolano de Investigaciones Cientificas, Caracas 1020A, Venezuela
| |
Collapse
|
46
|
Frank B, Perovic M, Djalali S, Antonietti M, Oschatz M, Zeininger L. Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to Promote Gas Delivery in Aqueous Reaction Media. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32510-32519. [PMID: 34185504 PMCID: PMC8283753 DOI: 10.1021/acsami.1c07259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Janus particles exhibit a strong tendency to directionally assemble and segregate to interfaces and thus offer advantages as colloidal analogues of molecular surfactants to improve the stability of multiphasic mixtures. Investigation and application of the unique adsorption properties require synthetic procedures that enable careful design and reliable control over the particles' asymmetric chemistry and wettability profiles with high morphological uniformity across a sample. Herein, we report on a novel one-step synthetic approach for the generation of amphiphilic polymer Janus particles with highly uniform and tunable wettability contrasts, which is based on using reconfigurable bi-phasic Janus emulsions as versatile particle scaffolds. Two phase-separated acrylate oils were used as the constituent droplet phases and transformed into their solidified Janus particle replicas via UV-induced radical polymerization. Using Janus emulsions as particle precursors offers the advantage that their internal droplet geometry can be fine-tuned by changing the force balance of surface tensions acting at the individual interfaces via surfactants or the volume ratio of the constituent phases. In addition, preassembled functional surfactants at the droplet interfaces can be locked in position upon polymerization, which enables both access toward postfunctionalization reaction schemes and the generation of highly uniform Janus particles with adjustable wettability profiles. Depending on the particle morphology and wettability, their interfacial position can be adjusted, which allows us to stabilize either air bubbles-in-water or water droplets-in-air (liquid marbles). Motivated by the interfacial activity of the particles and particularly the longevity of the resulting particle-stabilized air-in-water bubbles, we explored their ability to promote the delivery of oxygen inside a liquid-phase reaction medium, namely, for the heterogeneous Au-NP-mediated catalytic oxidation of d-glucose. We observed a 2.2-fold increase in the reaction rate attributed to the increase of the local concentration of oxygen around catalysts, thus showcasing a new strategy to overcome the limited solubility of gases in aqueous reaction media.
Collapse
Affiliation(s)
- Bradley
D. Frank
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Milena Perovic
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saveh Djalali
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Oschatz
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Faculty
of Chemistry and Earth Sciences, Friedrich-Schiller-University
of Jena, Philosophenweg
7a, 07743 Jena, Germany
| | - Lukas Zeininger
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
47
|
Fapojuwo DP, Oseghale CO, Akinnawo CA, Meijboom R. Bimetallic PdM (M = Co, Ni) catalyzed hydrogenation of nitrobenzene at the water/oil interface in a Pickering emulsion. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Jiang J, Yu S, Zhang W, Zhang H, Cui Z, Xia W, Binks BP. Charge-Reversible Surfactant-Induced Transformation Between Oil-in-Dispersion Emulsions and Pickering Emulsions. Angew Chem Int Ed Engl 2021; 60:11793-11798. [PMID: 33739584 DOI: 10.1002/anie.202102098] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 11/08/2022]
Abstract
A novel charge-reversible surfactant, (CH3 )2 N-(CH2 )10 COONa, was designed and synthesized, which together with silica nanoparticles can stabilize a smart n-octane-in-water emulsion responsive to pH. At high pH (9.3) the surfactant is anionic carboxylate, which together with the negatively charged silica nanoparticles co-stabilize flowable oil-in-dispersion emulsions, whereas at low pH (4.1) it is turned to cationic form by forming amine salt which can hydrophobize in situ the negatively charged silica nanoparticles to stabilize viscous oil-in-water (O/W) Pickering emulsions. At neutral pH (7.5), however, this surfactant is converted to zwitterionic form, which only weakly hydrophobises the silica particles to stabilize O/W Pickering emulsions of large droplet size. Moreover, demulsification can be achieved rapidly triggered by pH. With this strategy particles can be controlled either dispersed in water or adsorbed at the oil-water interface endowing emulsions with the capacity for intelligent and precise control of stability as well as viscosity and droplet size.
Collapse
Affiliation(s)
- Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shijie Yu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
49
|
Wei Q, Yu C, Song X, Zhong Y, Ni L, Ren Y, Guo W, Yu J, Qiu J. Recognition of Water-Induced Effects toward Enhanced Interaction between Catalyst and Reactant in Alcohol Oxidation. J Am Chem Soc 2021; 143:6071-6078. [PMID: 33829778 DOI: 10.1021/jacs.0c10618] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pickering emulsion stabilized by solid nanoparticles provides a diverse solvent microenvironment and enables to promote the phase transfer of reaction substrates/products in catalytic reactions, but the intrinsic role of solvent is still not clear. Herein, using benzyl alcohol (BA) as a model reactant, we demonstrate the nature of the water-promoted activity for alcohol oxidation over the Pd/MgAl-LDO catalyst. Depending on the water in the solvent, we observe different reactivities regarding the proportion of the water in the system. Kinetic isotope effects confirm the participation and positive effects of water for oxidation of BA. The water promotion effects are recognized and identified by the water vapor pulse adsorption coupled with temperature program desorption. Moreover, the adsorption behavior of BA or benzaldehyde at the interface of water and Pd/MgAl-LDO is also investigated by quasi-in-situ Raman spectroscopy. In addition, the mechanism of water-promoted alcohol oxidation is rationally proposed based on the Langmuir-Hinshelwood mechanism. The general applicability of the water promotion effects is further demonstrated over different supports and substrates, which well achieves excellent catalytic activity and selectivity in Pickering emulsion compared to that in the pure toluene system.
Collapse
Affiliation(s)
- Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xuedan Song
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yiping Zhong
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yongwen Ren
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Wei Guo
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jinhe Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
50
|
Zhang L, Yu H, Gao S, Wang H, He Z, Huang K. In Situ Synthesis of Incompatible Polymers within Hollow Porous Organic Nanosphere Networks for Cascade Reactions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University 500 N, Dongchuan Road Shanghai 200241 P. R. China
| | - Haitao Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University 500 N, Dongchuan Road Shanghai 200241 P. R. China
| | - Shengguang Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University 500 N, Dongchuan Road Shanghai 200241 P. R. China
| | - Huaqing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University 500 N, Dongchuan Road Shanghai 200241 P. R. China
| | - Zhiwei He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University 500 N, Dongchuan Road Shanghai 200241 P. R. China
| | - Kun Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University 500 N, Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|