1
|
Jiang K, Chen X, Yan X, Li G, Lin Z, Deng Z, Luo S, Qu X. An unusual aromatase/cyclase programs the formation of the phenyldimethylanthrone framework in anthrabenzoxocinones and fasamycin. Proc Natl Acad Sci U S A 2024; 121:e2321722121. [PMID: 38446858 PMCID: PMC10945814 DOI: 10.1073/pnas.2321722121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Aromatic polyketides are renowned for their wide-ranging pharmaceutical activities. Their structural diversity is mainly produced via modification of limited types of basic frameworks. In this study, we characterized the biosynthesis of a unique basic aromatic framework, phenyldimethylanthrone (PDA) found in (+)/(-)-anthrabenzoxocinones (ABXs) and fasamycin (FAS). Its biosynthesis employs a methyltransferase (Abx(+)M/Abx(-)M/FasT) and an unusual TcmI-like aromatase/cyclase (ARO/CYC, Abx(+)D/Abx(-)D/FasL) as well as a nonessential helper ARO/CYC (Abx(+)C/Abx(-)C/FasD) to catalyze the aromatization/cyclization of polyketide chain, leading to the formation of all four aromatic rings of the PDA framework, including the C9 to C14 ring and a rare angular benzene ring. Biochemical and structural analysis of Abx(+)D reveals a unique loop region, giving rise to its distinct acyl carrier protein-dependent specificity compared to other conventional TcmI-type ARO/CYCs, all of which impose on free molecules. Mutagenic analysis discloses critical residues of Abx(+)D for its catalytic activity and indicates that the size and shape of its interior pocket determine the orientation of aromatization/cyclization. This study unveils the tetracyclic and non-TcmN type C9 to C14 ARO/CYC, significantly expanding our cognition of ARO/CYCs and the biosynthesis of aromatic polyketide framework.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai201203, China
| | - Xu Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaoli Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai201203, China
| | - Guangjun Li
- Abiochem Biotechnology Co. Ltd, Shanghai200240, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai201203, China
| | - Shukun Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai201203, China
| |
Collapse
|
2
|
Gao Y, Zhao Y, Zhou J, Yang M, Lin L, Wang W, Tao M, Deng Z, Jiang M. Unexpected Role of a Short‐Chain Dehydrogenase/Reductase Family Protein in Type II Polyketide Biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Jie Zhou
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Maohua Yang
- Ministry of Education Key Laboratory of Computational Physical Sciences Department of Chemistry Institutes of Biomedical Sciences Fudan University Shanghai 200438 China
| | - Lin Lin
- Bio-X Institutes Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education Shanghai Jiao Tong University Shanghai 200240 China
| | - Wenning Wang
- Ministry of Education Key Laboratory of Computational Physical Sciences Department of Chemistry Institutes of Biomedical Sciences Fudan University Shanghai 200438 China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| |
Collapse
|
3
|
Gao Y, Zhao Y, Zhou J, Yang M, Lin L, Wang W, Tao M, Deng Z, Jiang M. Unexpected Role of a Short-Chain Dehydrogenase/Reductase Family Protein in Type II Polyketide Biosynthesis. Angew Chem Int Ed Engl 2021; 61:e202110445. [PMID: 34927786 DOI: 10.1002/anie.202110445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/05/2022]
Abstract
We investigated the biosynthetic pathway of type II polyketide murayaquinone. The murayaquinone biosynthetic cluster contains genes for three putative short-chain dehydrogenase/reductase family enzymes including MrqF and MrqH with known functions and MrqM with unclear function. We report the functional characterization of MrqM for its role in murayaquinone biosynthesis. Our gene deletion experiment and structural elucidation of the accumulated intermediates revealed that MrqM is related with the second polyketide ring cyclization, because the inactivation of mrqM resulted in the accumulation of an off-pathway intermediate SEK43 and disrupted the second and third ring cyclization. Site-directed mutagenesis studies showed that two conserved residues in MrqM and homologous proteins Y151 and K155 are essential for its activity. The previously proposed second/third ring cyclase, MrqD, might instead play another important role in the chain releasing step of the murayaquinone biosynthesis.
Collapse
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jie Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Maohua Yang
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenning Wang
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
4
|
Fan S, Zhuang J, Guo C, Lin D, Liao X. 1H, 13C, 15N backbone and side-chain chemical shift assignments of the polyketide cyclase from Mycobacterium tuberculosis. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:397-402. [PMID: 34247331 DOI: 10.1007/s12104-021-10036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Polyketide cyclase from Mycobacterium tuberculosis (MtPC) is related to the formation of sterol derivatives, which may play a role in immune escape in the initial stage of macrophage infection by Mycobacterium tuberculosis. However, the structure and specific functions of MtPC are still unknown. Here we report the backbone and side-chain NMR resonance assignments for the MtPC. Most resonances were assigned and the secondary structure was predicted according to the assigned backbone resonances by TALOS-N and PECAN. These NMR assignments represent a first step towards researching the structure and function of MtPC.
Collapse
Affiliation(s)
- Shihui Fan
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jie Zhuang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Xinli Liao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Ishida K, Shabuer G, Schieferdecker S, Pidot SJ, Stinear TP, Knuepfer U, Cyrulies M, Hertweck C. Oak-Associated Negativicute Equipped with Ancestral Aromatic Polyketide Synthase Produces Antimycobacterial Dendrubins. Chemistry 2020; 26:13147-13151. [PMID: 32597507 PMCID: PMC7693217 DOI: 10.1002/chem.202001939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/26/2020] [Indexed: 11/07/2022]
Abstract
Anaerobic bacteria have only recently been recognized as a source of antibiotics; yet, the metabolic potential of Negativicutes (Gram-negative staining Firmicutes) such as the oak-associated Dendrosporobacter quercicolus has remained unknown. Genome mining of D. quercicolus and phylogenetic analyses revealed a gene cluster for a type II polyketide synthase (PKS) complex that belongs to the most ancestral enzyme systems of this type. Metabolic profiling, NMR analyses, and stable-isotope labeling led to the discovery of a new family of anthraquinone-type polyphenols, the dendrubins, which are diversified by acylation, methylation, and dimerization. Dendrubin A and B were identified as strong antibiotics against a range of clinically relevant, human-pathogenic mycobacteria.
Collapse
Affiliation(s)
- Keishi Ishida
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gulimila Shabuer
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sebastian Schieferdecker
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, 3000, Melbourne, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, 3000, Melbourne, Australia
| | - Uwe Knuepfer
- Biopilot Plant, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Michael Cyrulies
- Biopilot Plant, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany.,Institute for Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
6
|
Qin Z, Devine R, Hutchings MI, Wilkinson B. A role for antibiotic biosynthesis monooxygenase domain proteins in fidelity control during aromatic polyketide biosynthesis. Nat Commun 2019; 10:3611. [PMID: 31399587 PMCID: PMC6689052 DOI: 10.1038/s41467-019-11538-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/19/2019] [Indexed: 11/09/2022] Open
Abstract
The formicamycin biosynthetic gene cluster encodes two groups of type 2 polyketide antibiotics: the formicamycins and their biosynthetic precursors the fasamycins, both of which have activity against methicillin-resistant Staphylococcus aureus. Here, we report the formicapyridines which are encoded by the same gene cluster and are structurally and biosynthetically related to the fasamycins and formicamycins but comprise a rare pyridine moiety. These compounds are trace-level metabolites formed by derailment of the major biosynthetic pathway. Inspired by evolutionary logic we show that rational mutation of a single gene in the biosynthetic gene cluster encoding an antibiotic biosynthesis monooxygenase (ABM) superfamily protein leads to a significant increase both in total formicapyridine production and their enrichment relative to the fasamycins/formicamycins. Our observations broaden the polyketide biosynthetic landscape and identify a non-catalytic role for ABM superfamily proteins in type II polyketide synthase assemblages for maintaining biosynthetic pathway fidelity.
Collapse
Affiliation(s)
- Zhiwei Qin
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rebecca Devine
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
7
|
Cummings M, Peters AD, Whitehead GFS, Menon BRK, Micklefield J, Webb SJ, Takano E. Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli. PLoS Biol 2019; 17:e3000347. [PMID: 31318855 PMCID: PMC6638757 DOI: 10.1371/journal.pbio.3000347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases (PKSs); however, despite more than 3 decades of research, the large and important group of type II PKSs has until now been elusive in E. coli. Here, we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II PKSs. We successfully express 5 ketosynthase (KS) and chain length factor (CLF) pairs-e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2S, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer-as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal PKS components and utilise this biosynthetic system to synthesise anthraquinones, dianthrones, and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in 2 new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II PKSs in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for high-throughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid, and versatile fashion.
Collapse
Affiliation(s)
- Matthew Cummings
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Anna D. Peters
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - George F. S. Whitehead
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Binuraj R. K. Menon
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
- Warwick Integrative Synthetic Biology Centre, WISB, School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Jason Micklefield
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Simon J. Webb
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Adamek M, Alanjary M, Ziemert N. Applied evolution: phylogeny-based approaches in natural products research. Nat Prod Rep 2019; 36:1295-1312. [DOI: 10.1039/c9np00027e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we highlight how phylogenetic analyses can be used to facilitate natural product discovery and structure elucidation.
Collapse
Affiliation(s)
- Martina Adamek
- Applied Natural Products Genome Mining
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen (IMIT)
- University of Tuebingen
- 72076 Tuebingen
- Germany
| | | | - Nadine Ziemert
- Applied Natural Products Genome Mining
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen (IMIT)
- University of Tuebingen
- 72076 Tuebingen
- Germany
| |
Collapse
|
9
|
Hou XF, Song YJ, Zhang M, Lan W, Meng S, Wang C, Pan HX, Cao C, Tang GL. Enzymology of Anthraquinone-γ-Pyrone Ring Formation in Complex Aromatic Polyketide Biosynthesis. Angew Chem Int Ed Engl 2018; 57:13475-13479. [DOI: 10.1002/anie.201806729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yu-Jiao Song
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Song Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
10
|
Hou XF, Song YJ, Zhang M, Lan W, Meng S, Wang C, Pan HX, Cao C, Tang GL. Enzymology of Anthraquinone-γ-Pyrone Ring Formation in Complex Aromatic Polyketide Biosynthesis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yu-Jiao Song
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Song Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
11
|
Tsai SC(S. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases. Annu Rev Biochem 2018; 87:503-531. [DOI: 10.1146/annurev-biochem-063011-164509] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Collapse
Affiliation(s)
- Shiou-Chuan (Sheryl) Tsai
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| |
Collapse
|
12
|
Nadysev GY, Tikhomirov AS, Lin MH, Yang YT, Dezhenkova LG, Chen HY, Kaluzhny DN, Schols D, Shtil AA, Shchekotikhin AE, Chueh PJ. Aminomethylation of heliomycin: Preparation and anticancer characterization of the first series of semi-synthetic derivatives. Eur J Med Chem 2018; 143:1553-1562. [DOI: 10.1016/j.ejmech.2017.10.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
|
13
|
Gao G, Liu X, Xu M, Wang Y, Zhang F, Xu L, Lv J, Long Q, Kang Q, Ou HY, Wang Y, Rohr J, Deng Z, Jiang M, Lin S, Tao M. Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Cell Chem Biol 2017; 24:881-891.e4. [PMID: 28712746 DOI: 10.1016/j.chembiol.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022]
Abstract
Bacterial aromatic polyketides are a group of natural products synthesized by polyketide synthases (PKSs) that show diverse structures and biological activities. They are structurally subclassified into linear, angular, and discoid aromatic polyketides, the formation of which is commonly determined by the shaping and folding of the poly-β-keto intermediates under the concerted actions of the minimal PKSs, cyclases and ketoreductases. Murayaquinone, found in several streptomycetes, possesses an unusual tricyclic angular aromatic polyketide core containing a 9,10-phenanthraquinone. In this study, genes essential for murayaquinone biosynthesis were identified, and a linear anthraoxirene intermediate was discovered. A unique biosynthetic model for the angular aromatic polyketide formation was discovered and confirmed through in vivo and in vitro studies. Three oxidoreductases, MrqO3, MrqO6, and MrqO7, were identified to catalyze the conversion of the linear aromatic polyketide intermediate into the final angularly arranged framework, which exemplifies a novel strategy for the biosynthesis of angular aromatic polyketides.
Collapse
Affiliation(s)
- Guixi Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Xiangyang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Lijun Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Jin Lv
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ying Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou 510632, P. R. China
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| |
Collapse
|
14
|
Molecular Genetic Characterization of an Anthrabenzoxocinones Gene Cluster in Streptomyces Sp. FJS31-2 for the Biosynthesis of BE-24566B and Zunyimycin Ale. Molecules 2016; 21:molecules21060711. [PMID: 27248985 PMCID: PMC6273070 DOI: 10.3390/molecules21060711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/08/2016] [Accepted: 05/18/2016] [Indexed: 12/05/2022] Open
Abstract
Genome mining is an effective tool used to discover novel natural products from actinomycetes. Genome sequence analysis of Streptomyces sp. FJS31-2 revealed the presence of one putative type II polyketide gene cluster (ABX), which may correspond to type II polyketide products including BE-24566B and its chloro-derivatives. The addition of natural humus acid successfully activated the biosynthsis of the abx gene cluster. BE-24566B and its chloro-derivatives, named zunyimycin A, were also detected. The targeted deletion of the polyketide skeleton synthesis genes such as abxp, abxk, and abxs was performed in the wild strain to identify the gene cluster for BE-24566B biosynthesis.
Collapse
|
15
|
Gao SS, Duan A, Xu W, Yu P, Hang L, Houk KN, Tang Y. Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase. J Am Chem Soc 2016; 138:4249-59. [PMID: 26978228 PMCID: PMC4988900 DOI: 10.1021/jacs.6b01528] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn biosynthetic gene cluster responsible for herqueinone biosynthesis was identified from the genome of Penicillium herquei. A nonreducing polyketide synthase (NR-PKS) PhnA was shown to synthesize the heptaketide backbone and cyclize it into the angular, hemiketal-containing naphtho-γ-pyrone prephenalenone. The product template (PT) domain of PhnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains. The transformation of prephenalenone to phenalenone requires an FAD-dependent monooxygenase (FMO) PhnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the γ-pyrone ring simultaneously. Density functional theory calculations provide insights into why the hydroxylated intermediate undergoes an aldol-like phenoxide-ketone cyclization to yield the phenalenone core. This study therefore unveiled new routes and biocatalysts for polyketide cyclization.
Collapse
Affiliation(s)
- Shu-Shan Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Abing Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Leibniz Hang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Rinkel J, Dickschat JS. Recent highlights in biosynthesis research using stable isotopes. Beilstein J Org Chem 2015; 11:2493-508. [PMID: 26734097 PMCID: PMC4685789 DOI: 10.3762/bjoc.11.271] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/23/2015] [Indexed: 02/03/2023] Open
Abstract
The long and successful history of isotopic labeling experiments within natural products research has both changed and deepened our understanding of biosynthesis. As demonstrated in this article, the usage of isotopes is not at all old-fashioned, but continues to give important insights into biosynthetic pathways of secondary metabolites. This review with 85 cited references is structured by separate discussions of compounds from different classes including polyketides, non-ribosomal peptides, their hybrids, terpenoids, and aromatic compounds formed via the shikimate pathway. The text does not aim at a comprehensive overview, but instead a selection of recent important examples of isotope usage within biosynthetic studies is presented, with a special emphasis on mechanistic surprises.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
17
|
Evolution of chemical diversity by coordinated gene swaps in type II polyketide gene clusters. Proc Natl Acad Sci U S A 2015; 112:13952-7. [PMID: 26499248 DOI: 10.1073/pnas.1511688112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Natural product biosynthetic pathways generate molecules of enormous structural complexity and exquisitely tuned biological activities. Studies of natural products have led to the discovery of many pharmaceutical agents, particularly antibiotics. Attempts to harness the catalytic prowess of biosynthetic enzyme systems, for both compound discovery and engineering, have been limited by a poor understanding of the evolution of the underlying gene clusters. We developed an approach to study the evolution of biosynthetic genes on a cluster-wide scale, integrating pairwise gene coevolution information with large-scale phylogenetic analysis. We used this method to infer the evolution of type II polyketide gene clusters, tracing the path of evolution from the single ancestor to those gene clusters surviving today. We identified 10 key gene types in these clusters, most of which were swapped in from existing cellular processes and subsequently specialized. The ancestral type II polyketide gene cluster likely comprised a core set of five genes, a roster that expanded and contracted throughout evolution. A key C24 ancestor diversified into major classes of longer and shorter chain length systems, from which a C20 ancestor gave rise to the majority of characterized type II polyketide antibiotics. Our findings reveal that (i) type II polyketide structure is predictable from its gene roster, (ii) only certain gene combinations are compatible, and (iii) gene swaps were likely a key to evolution of chemical diversity. The lessons learned about how natural selection drives polyketide chemical innovation can be applied to the rational design and guided discovery of chemicals with desired structures and properties.
Collapse
|
18
|
Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster ALH, Wyatt MA, Magarvey NA. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 2015; 43:9645-62. [PMID: 26442528 PMCID: PMC4787774 DOI: 10.1093/nar/gkv1012] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/24/2015] [Indexed: 12/05/2022] Open
Abstract
Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/.
Collapse
Affiliation(s)
- Michael A Skinnider
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chris A Dejong
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Philip N Rees
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chad W Johnston
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Haoxin Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew L H Webster
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Morgan A Wyatt
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nathan A Magarvey
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
19
|
Maier S, Heitzler T, Asmus K, Brötz E, Hardter U, Hesselbach K, Paululat T, Bechthold A. Functional characterization of different ORFs including luciferase-like monooxygenase genes from the mensacarcin gene cluster. Chembiochem 2015; 16:1175-82. [PMID: 25907804 DOI: 10.1002/cbic.201500048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/06/2022]
Abstract
The biologically active compound mensacarcin is produced by Streptomyces bottropensis. The cosmid cos2 contains a large part of the mensacarcin biosynthesis gene cluster. Heterologous expression of this cosmid in Streptomyces albus J1074 led to the production of the intermediate didesmethylmensacarcin (DDMM). In order to gain more insights into the biosynthesis, gene inactivation experiments were carried out by λ-Red/ET-mediated recombination, and the deletion mutants were introduced into the host S. albus. In total, 23 genes were inactivated. Analysis of the metabolic profiles of the mutant strains showed the complete collapse of DDMM biosynthesis, but upon overexpression of the SARP regulatory gene msnR1 in each mutant new intermediates were detected. The compounds were isolated, and their structures were elucidated. Based on the results the specific functions of several enzymes were determined, and a pathway for mensacarcin biosynthesis is proposed.
Collapse
Affiliation(s)
- Sarah Maier
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Tanja Heitzler
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Katharina Asmus
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Elke Brötz
- Organic Chemsitry II, Universität Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen (Germany).,Present address: Helmholtz Institut für Pharmazeutische Forschung Saarland, Postfach 151150, 66041 Saarbrücken (Germany)
| | - Uwe Hardter
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Katharina Hesselbach
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Thomas Paululat
- Organic Chemsitry II, Universität Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen (Germany)
| | - Andreas Bechthold
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany).
| |
Collapse
|
20
|
Ogasawara Y, Yackley BJ, Greenberg JA, Rogelj S, Melançon CE. Expanding our understanding of sequence-function relationships of type II polyketide biosynthetic gene clusters: bioinformatics-guided identification of Frankiamicin A from Frankia sp. EAN1pec. PLoS One 2015; 10:e0121505. [PMID: 25837682 PMCID: PMC4383371 DOI: 10.1371/journal.pone.0121505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/31/2015] [Indexed: 01/04/2023] Open
Abstract
A large and rapidly increasing number of unstudied “orphan” natural product biosynthetic gene clusters are being uncovered in sequenced microbial genomes. An important goal of modern natural products research is to be able to accurately predict natural product structures and biosynthetic pathways from these gene cluster sequences. This requires both development of bioinformatic methods for global analysis of these gene clusters and experimental characterization of select products produced by gene clusters with divergent sequence characteristics. Here, we conduct global bioinformatic analysis of all available type II polyketide gene cluster sequences and identify a conserved set of gene clusters with unique ketosynthase α/β sequence characteristics in the genomes of Frankia species, a group of Actinobacteria with underexploited natural product biosynthetic potential. Through LC-MS profiling of extracts from several Frankia species grown under various conditions, we identified Frankia sp. EAN1pec as producing a compound with spectral characteristics consistent with the type II polyketide produced by this gene cluster. We isolated the compound, a pentangular polyketide which we named frankiamicin A, and elucidated its structure by NMR and labeled precursor feeding. We also propose biosynthetic and regulatory pathways for frankiamicin A based on comparative genomic analysis and literature precedent, and conduct bioactivity assays of the compound. Our findings provide new information linking this set of Frankia gene clusters with the compound they produce, and our approach has implications for accurate functional prediction of the many other type II polyketide clusters present in bacterial genomes.
Collapse
Affiliation(s)
- Yasushi Ogasawara
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Benjamin J. Yackley
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jacob A. Greenberg
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Snezna Rogelj
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico, United States of America
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, United States of America
| | - Charles E. Melançon
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kim MC, Hwang E, Kim T, Ham J, Kim SY, Kwon HC. Nocatriones A and B, photoprotective tetracenediones from a marine-derived Nocardiopsis sp. JOURNAL OF NATURAL PRODUCTS 2014; 77:2326-2330. [PMID: 25317775 DOI: 10.1021/np5006086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two new tetracenedione derivatives, nocatriones A (1) and B (2), were discovered from the culture broth of a marine actinomycete, Nocardiopsis sp. KMF-002, which was isolated from the tissue of an unidentified dark purple marine sponge. The structures of 1 and 2, which are tetracenediones containing α-pyrone substituents, were determined to be 3,8,10,11-tetrahydroxy-2-(4-hydroxy-2-oxo-2H-pyran-6-yl)-1-methyltetracene-5,12-dione (1) and 3,8,10,12-tetrahydroxy-2-(4-hydroxy-2-oxo-2H-pyran-6-yl)-1-methyltetracene-6,11-dione (2). Ultraviolet B (UVB)-irradiated cells treated with 10 μM nocatrione A (1) significantly decreased the level of MMP-1, a protein that degrades collagen and other extracelluar matrix components that comprise dermal tissue, when compared to untreated cells. These results support that nocatriones A (1) and B (2) may show antiphotoaging activity in UVB-irradiated models.
Collapse
Affiliation(s)
- Min Cheol Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Gangwon-do 210-340, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Napan K, Zhang S, Morgan W, Anderson T, Takemoto JY, Zhan J. Synergistic actions of tailoring enzymes in pradimicin biosynthesis. Chembiochem 2014; 15:2289-96. [PMID: 25155298 PMCID: PMC4214279 DOI: 10.1002/cbic.201402306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 11/07/2022]
Abstract
Three key tailoring enzymes in pradimicin biosynthesis: PdmJ, PdmW, and PdmN, were investigated. PdmW was characterized as the C-6 hydroxylase by structural characterization of the corresponding product, 6-hydroxy-G-2A. The efficiencies of the C-5 and C-6 hydroxylations, catalyzed respectively by PdmJ and PdmW, were low when they were expressed individually with the early biosynthetic enzymes that form G-2A. When these two cytochrome P450 enzymes were co-expressed, a dihydroxylated product, 5,6-dihydroxy-G-2A, was efficiently produced, indicating that these two enzymes work synergistically in pradimicin biosynthesis. Heterologously expressed PdmN in Streptomyces coelicolor CH999 converted G-2A to JX137a by ligating a unit of D-alanine to the carboxyl group. PdmN has relaxed substrate specificity toward both amino acid donors and acceptors. Through combinatorial biosynthesis, a series of new pradimicin analogues were produced.
Collapse
Affiliation(s)
- Kandy Napan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Whitney Morgan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Thomas Anderson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| | - Jon Y. Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| |
Collapse
|
23
|
Pidot S, Ishida K, Cyrulies M, Hertweck C. Discovery of Clostrubin, an Exceptional Polyphenolic Polyketide Antibiotic from a Strictly Anaerobic Bacterium. Angew Chem Int Ed Engl 2014; 53:7856-9. [DOI: 10.1002/anie.201402632] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 01/09/2023]
|
24
|
Pidot S, Ishida K, Cyrulies M, Hertweck C. Discovery of Clostrubin, an Exceptional Polyphenolic Polyketide Antibiotic from a Strictly Anaerobic Bacterium. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Boddy CN. Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. ACTA ACUST UNITED AC 2014; 41:443-50. [DOI: 10.1007/s10295-013-1368-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022]
Abstract
Abstract
Microbial natural products have played a key role in the development of clinical agents in nearly all therapeutic areas. Recent advances in genome sequencing have revealed that there is an incredible wealth of new polyketide and non-ribosomal peptide natural product diversity to be mined from genetic data. The diversity and complexity of polyketide and non-ribosomal peptide biosynthesis has required the development of unique bioinformatics tools to identify, annotate, and predict the structures of these natural products from their biosynthetic gene clusters. This review highlights and evaluates web-based bioinformatics tools currently available to the natural product community for genome mining to discover new polyketides and non-ribosomal peptides.
Collapse
Affiliation(s)
- Christopher N Boddy
- grid.28046.38 0000000121822255 Departments of Chemistry and Biology, Center for Advanced Research in Environmental Genomics University of Ottawa K1N 6N5 Ottawa ON Canada
| |
Collapse
|
26
|
Ma HM, Zhou Q, Tang YM, Zhang Z, Chen YS, He HY, Pan HX, Tang MC, Gao JF, Zhao SY, Igarashi Y, Tang GL. Unconventional origin and hybrid system for construction of pyrrolopyrrole moiety in kosinostatin biosynthesis. ACTA ACUST UNITED AC 2014; 20:796-805. [PMID: 23790490 DOI: 10.1016/j.chembiol.2013.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/14/2022]
Abstract
Kosinostatin (KST), an antitumor antibiotic, features a pyrrolopyrrole moiety spirally jointed to a five-membered ring of an anthraquinone framework glycosylated with a γ-branched octose. By a combination of in silico analysis, genetic characterization, biochemical assay, and precursor feeding experiments, a biosynthetic pathway for KST was proposed, which revealed (1) the pyrrolopyrrole moiety originates from nicotinic acid and ribose, (2) the bicyclic amidine is constructed by a process similar to the tryptophan biosynthetic pathway, and (3) a discrete adenylation enzyme and a peptidyl carrier protein (PCP) are responsible for producing a PCP-tethered building block parallel to type II polyketide synthase (PKS) rather than for the PKS priming step by providing the starter unit. These findings provide an opportunity to further explore the inexplicable enzymatic logic that governs the formation of pyrrolopyrrole moiety and the spirocyclic skeleton.
Collapse
Affiliation(s)
- Hong-Min Ma
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sugimoto Y, Ding L, Ishida K, Hertweck C. Rational Design of Modular Polyketide Synthases: Morphing the Aureothin Pathway into a Luteoreticulin Assembly Line. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Sugimoto Y, Ding L, Ishida K, Hertweck C. Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line. Angew Chem Int Ed Engl 2014; 53:1560-4. [PMID: 24402879 DOI: 10.1002/anie.201308176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/30/2013] [Indexed: 11/06/2022]
Abstract
The unusual nitro-substituted polyketides aureothin, neoaureothin (spectinabilin), and luteoreticulin, which are produced by diverse Streptomyces species, point to a joint evolution. Through rational genetic recombination and domain exchanges we have successfully reprogrammed the modular (type I) aur polyketide synthase (PKS) into a synthase that generates luteoreticulin. This is the first rational transformation of a modular PKS to produce a complex polyketide that was initially isolated from a different bacterium. A unique aspect of this synthetic biology approach is that we exclusively used genes from a single biosynthesis gene cluster to design the artificial pathway, an avenue that likely emulates natural evolutionary processes. Furthermore, an unexpected, context-dependent switch in the regiospecificity of a pyrone methyl transferase was observed. We also describe an unprecedented scenario where an AT domain iteratively loads an extender unit onto the cognate ACP and the downstream ACP. This aberrant function is a novel case of non-colinear behavior of PKS domains.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena (Germany)
| | | | | | | |
Collapse
|
29
|
Kim J, Yi GS. PKMiner: a database for exploring type II polyketide synthases. BMC Microbiol 2012; 12:169. [PMID: 22871112 PMCID: PMC3462128 DOI: 10.1186/1471-2180-12-169] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022] Open
Abstract
Background Bacterial aromatic polyketides are a pharmacologically important group of natural products synthesized by type II polyketide synthases (type II PKSs) in actinobacteria. Isolation of novel aromatic polyketides from microbial sources is currently impeded because of the lack of knowledge about prolific taxa for polyketide synthesis and the difficulties in finding and optimizing target microorganisms. Comprehensive analysis of type II PKSs and the prediction of possible polyketide chemotypes in various actinobacterial genomes will thus enable the discovery or synthesis of novel polyketides in the most plausible microorganisms. Description We performed a comprehensive computational analysis of type II PKSs and their gene clusters in actinobacterial genomes. By identifying type II PKS subclasses from the sequence analysis of 280 known type II PKSs, we developed highly accurate domain classifiers for these subclasses and derived prediction rules for aromatic polyketide chemotypes generated by different combinations of type II PKS domains. Using 319 available actinobacterial genomes, we predicted 231 type II PKSs from 40 PKS gene clusters in 25 actinobacterial genomes, and polyketide chemotypes corresponding to 22 novel PKS gene clusters in 16 genomes. These results showed that the microorganisms capable of producing aromatic polyketides are specifically distributed within a certain suborder of Actinomycetales such as Catenulisporineae, Frankineae, Micrococcineae, Micromonosporineae, Pseudonocardineae, Streptomycineae, and Streptosporangineae. Conclusions We could identify the novel candidates of type II PKS gene clusters and their polyketide chemotypes in actinobacterial genomes by comprehensive analysis of type II PKSs and prediction of aromatic polyketides. The genome analysis results indicated that the specific suborders in actinomycetes could be used as prolific taxa for polyketide synthesis. The chemotype-prediction rules with the suggested type II PKS modules derived using this resource can be used further for microbial engineering to produce various aromatic polyketides. All these resources, together with the results of the analysis, are organized into an easy-to-use database PKMiner, which is accessible at the following URL: http://pks.kaist.ac.kr/pkminer. We believe that this web-based tool would be useful for research in the discovery of novel bacterial aromatic polyketides.
Collapse
Affiliation(s)
- Jinki Kim
- Department of Information and Communications Engineering, KAIST, Daejeon, 305-701, South Korea
| | | |
Collapse
|
30
|
Ames BD, Lee MY, Moody C, Zhang W, Tang Y, Tsai SC. Structural and biochemical characterization of ZhuI aromatase/cyclase from the R1128 polyketide pathway. Biochemistry 2011; 50:8392-406. [PMID: 21870821 DOI: 10.1021/bi200593m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic polyketides comprise an important class of natural products that possess a wide range of biological activities. The cyclization of the polyketide chain is a critical control point in the biosynthesis of aromatic polyketides. The aromatase/cyclases (ARO/CYCs) are an important component of the type II polyketide synthase (PKS) and help fold the polyketide for regiospecific cyclizations of the first ring and/or aromatization, promoting two commonly observed first-ring cyclization patterns for the bacterial type II PKSs: C7-C12 and C9-C14. We had previously reported the crystal structure and enzymological analyses of the TcmN ARO/CYC, which promotes C9-C14 first-ring cyclization. However, how C7-C12 first-ring cyclization is controlled remains unresolved. In this work, we present the 2.4 Å crystal structure of ZhuI, a C7-C12-specific first-ring ARO/CYC from the type II PKS pathway responsible for the production of the R1128 polyketides. Though ZhuI possesses a helix-grip fold shared by TcmN ARO/CYC, there are substantial differences in overall structure and pocket residue composition that may be important for directing C7-C12 (rather than C9-C14) cyclization. Docking studies and site-directed mutagenesis coupled to an in vitro activity assay demonstrate that ZhuI pocket residues R66, H109, and D146 are important for enzyme function. The ZhuI crystal structure helps visualize the structure and putative dehydratase function of the didomain ARO/CYCs from KR-containing type II PKSs. The sequence-structure-function analysis described for ZhuI elucidates the molecular mechanisms that control C7-C12 first-ring polyketide cyclization and builds a foundation for future endeavors into directing cyclization patterns for engineered biosynthesis of aromatic polyketides.
Collapse
Affiliation(s)
- Brian D Ames
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | | | | | | | | | | |
Collapse
|
31
|
Mast Y, Weber T, Gölz M, Ort-Winklbauer R, Gondran A, Wohlleben W, Schinko E. Characterization of the 'pristinamycin supercluster' of Streptomyces pristinaespiralis. Microb Biotechnol 2010; 4:192-206. [PMID: 21342465 PMCID: PMC3818860 DOI: 10.1111/j.1751-7915.2010.00213.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pristinamycin, produced by Streptomyces pristinaespiralis Pr11, is a streptogramin antibiotic consisting of two chemically unrelated compounds, pristinamycin I and pristinamycin II. The semi‐synthetic derivatives of these compounds are used in human medicine as therapeutic agents against methicillin‐resistant Staphylococcus aureus strains. Only the partial sequence of the pristinamycin biosynthetic gene cluster has been previously reported. To complete the sequence, overlapping cosmids were isolated from a S. pristinaespiralis Pr11 gene library and sequenced. The boundaries of the cluster were deduced, limiting the cluster size to approximately 210 kb. In the central region of the cluster, previously unknown pristinamycin biosynthetic genes were identified. Combining the current and previously identified sequence information, we propose that all essential pristinamycin biosynthetic genes are included in the 210 kb region. A pristinamycin biosynthetic pathway was established. Furthermore, the pristinamycin gene cluster was found to be interspersed by a cryptic secondary metabolite cluster, which probably codes for a glycosylated aromatic polyketide. Gene inactivation experiments revealed that this cluster has no influence on pristinamycin production. Overall, this work provides new insights into pristinamycin biosynthesis and the unique genetic organization of the pristinamycin gene region, which is the largest antibiotic ‘supercluster’ known so far.
Collapse
Affiliation(s)
- Yvonne Mast
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Fakultät für Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Oxytetracycline (OTC) is a broad-spectrum antibiotic that acts by inhibiting protein synthesis in bacteria. It is an important member of the bacterial aromatic polyketide family, which is a structurally diverse class of natural products. OTC is synthesized by a type II polyketide synthase that generates the poly-beta-ketone backbone through successive decarboxylative condensation of malonyl-CoA extender units, followed by modifications by cyclases, oxygenases, transferases, and additional tailoring enzymes. Genetic and biochemical studies have illuminated most of the steps involved in the biosynthesis of OTC, which is detailed here as a representative case study in type II polyketide biosynthesis.
Collapse
Affiliation(s)
- Lauren B. Pickens
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| |
Collapse
|
33
|
Lopez P, Hornung A, Welzel K, Unsin C, Wohlleben W, Weber T, Pelzer S. Isolation of the lysolipin gene cluster of Streptomyces tendae Tü 4042. Gene 2010; 461:5-14. [PMID: 20399259 DOI: 10.1016/j.gene.2010.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 11/24/2022]
Abstract
Streptomyces tendae Tü 4042 produces the aromatic polyketide antibiotic lysolipin. Lysolipin has strong antibacterial activity against a variety of multidrug-resistant pathogens. The complete lysolipin biosynthetic gene cluster was isolated and fully sequenced. Within a 42-kb genomic region, 42 genes were identified that code for a type II polyketide synthase (llpF, E, and D), cyclases (llpCI-CIII), methyltransferases (llpMI-MVI), a halogenase (llpH), an amidotransferase (llpA), a ferredoxin (llpK), a transporter (llpN) and regulatory proteins (llpRI-RV). In addition, 15 genes encoding enzymes involved in redox modifications of the polyketide precursor molecule (llpOI-OVIII, ZI-ZIV, U, L, and S) were present in the lysolipin biosynthetic gene cluster. With this high number of oxidoreductases, lysolipin is among the most highly modified aromatic polyketides known to date. The heterologous expression of the cluster in Streptomyces albus led to lysolipin production with a yield comparable to that of wild-type, indicating that all biosynthetic genes were successfully cloned.
Collapse
Affiliation(s)
- Patricio Lopez
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhou H, Li Y, Tang Y. Cyclization of aromatic polyketides from bacteria and fungi. Nat Prod Rep 2010; 27:839-68. [PMID: 20358042 DOI: 10.1039/b911518h] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hui Zhou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
35
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Multiple reactivities of dithranol towards 1-alkynyl Fischer carbene complexes (CO)5MC(OEt)CCPh (M=Cr, W) – Efficient chemical synthesis of aromatic polyketides. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Silvennoinen L, Sandalova T, Schneider G. The polyketide cyclase RemF from Streptomyces resistomycificus
contains an unusual octahedral zinc binding site. FEBS Lett 2009; 583:2917-21. [DOI: 10.1016/j.febslet.2009.07.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/28/2022]
|
38
|
|
39
|
|
40
|
Abstract
This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence-structure-function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein-protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides.
Collapse
|