1
|
Wen T, Kermarrec M, Dumont E, Gillet N, Greenberg MM. DNA-Histone Cross-Link Formation via Hole Trapping in Nucleosome Core Particles. J Am Chem Soc 2023; 145:23702-23714. [PMID: 37856159 PMCID: PMC10652223 DOI: 10.1021/jacs.3c08135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin. DNA holes are introduced at defined sites within NCPs that are constructed from the bottom-up. DPCs form at DNA holes in yields comparable to those of alkali-labile DNA lesions that result from water trapping. DPC-forming efficiency and site preference within the NCP are dependent on translational and rotational positioning. Mass spectrometry and the use of mutant histones reveal that lysine residues in histone N-terminal tails and amino termini are responsible for the DPC formation. These studies are corroborated by computational simulation at the microsecond time scale, showing a wide range of interactions that can precede DPC formation. Three consecutive dGs, which are pervasive in the human genome, including G-quadruplex-forming sequences, are sufficient to produce DPCs that could impact gene expression.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Maxime Kermarrec
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Elise Dumont
- Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, CNRS, 06108 Nice, France
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | - Natacha Gillet
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Li PL, Huang CH, Mao L, Li J, Sheng ZG, Zhu BZ. An unprecedented free radical mechanism for the formation of DNA adducts by the carcinogenic N-sulfonated metabolite of aristolochic acids. Free Radic Biol Med 2023; 205:332-345. [PMID: 37179032 DOI: 10.1016/j.freeradbiomed.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The carcinogenicity of aristolochic acids (AAs) has been attributed mainly to the formation of stable DNA-aristolactam (DNA-AL) adducts by its reactive N-sulfonated metabolite N-sulfonatooxyaristolactam (N-OSO3--AL). The most accepted mechanism for such DNA-AL adduct formation is via the postulated but never unequivocally-confirmed aristolactam nitrenium ion. Here we found that both sulfate radical and two ALI-derived radicals (N-centered and C-centered spin isomers) were produced by N-OSO3--ALI, which were detected and unequivocally identified by complementary applications of ESR spin-trapping, HPLC-MS coupled with deuterium-exchange methods. Both the formation of the three radical species and DNA-ALI adducts can be significantly inhibited (up to 90%) by several well-known antioxidants, typical radical scavengers, and spin-trapping agents. Taken together, we propose that N-OSO3--ALI decomposes mainly via a new N-O bond homolysis rather than the previously proposed heterolysis pathway, yielding reactive sulfate and ALI-derived radicals, which are together and in concert responsible for forming DNA-ALI adducts. This study presents strong and direct evidence for the production of free radical intermediates during N-OSO3--ALI decomposition, providing an unprecedented free radical perspective and conceptual breakthrough, which can better explain and understand the molecular mechanism for the formation of DNA-AA adducts, the carcinogenicity of AAs and their potential prevention.
Collapse
Affiliation(s)
- Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
3
|
Oka T, Takahashi A, Koarai K, Kino Y, Sekine T, Shimizu Y, Chiba M, Suzuki T, Osaka K, Sasaki K, Shinoda H. Detection limit of electron spin resonance for Japanese deciduous tooth enamel and density separation method for enamel-dentine separation. JOURNAL OF RADIATION RESEARCH 2022; 63:609-614. [PMID: 35780302 PMCID: PMC9303628 DOI: 10.1093/jrr/rrac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/27/2021] [Indexed: 06/15/2023]
Abstract
Electron spin resonance (ESR) dosimetry is one of the most powerful tools for radiation dose reconstruction. The detection limit of this technique using human teeth is reported to be 56 mGy or 67 mGy; however, the absorbed dose of Fukushima residents after the Fukushima Daiichi Nuclear Power Plant (FNPP) accident was estimated to be lower than this detection limit. Our aim is to assess the absorbed radiation dose of children in Fukushima Prefecture after the accident; therefore, it is important to estimate the detection limit for their teeth. The detection limit for enamel of deciduous teeth of Japanese children separated by the mechanical method is estimated to be 115.0 mGy. The density separation method can effectively separate enamel from third molars of Japanese people. As we have collected thousands of teeth from children in Fukushima, the present technique may be useful to examine their external absorbed dose after the FNPP accident.
Collapse
Affiliation(s)
- Toshitaka Oka
- Corresponding author. Research Group for Nuclear Chemistry, Chemistry, Environment and Radiation Division, Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.
| | - Atsushi Takahashi
- Tohoku University Hospital, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8574, Japan
| | - Kazuma Koarai
- Collaborative Laboratories for Advanced Decommissioning Science, Sector of Fukushima Research and Development, Japan Atomic Energy Agency, 790-1 Ohtsuka, Motooka, Tomioka Town, Futaba County, Fukushima 979-1151, Japan
| | - Yasushi Kino
- Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai City, Miyagi 980-8576, Japan
| | - Tsutomu Sekine
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai City, Miyagi 980-8578, Japan
- Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai City, Miyagi 980-8576, Japan
| | - Yoshinaka Shimizu
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan
| | - Mirei Chiba
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan
| | - Toshihiko Suzuki
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan
| | - Ken Osaka
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan
| | - Keiichi Sasaki
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan
| |
Collapse
|
4
|
Sosorev AY. Modeling of Electron Hole Transport within a Small Ribosomal Subunit. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract—
Synchronized operation of various parts of the ribosome during protein synthesis implies the presence of a coordinating pathway, however, this is still unknown. We have recently suggested that such a pathway can be based on charge transport along the transfer and ribosomal RNA molecules and localization of the charges in functionally important areas of the ribosome. In the current study, using density functional theory calculations, we show that charge carriers (electron holes) can efficiently migrate within the central element of the small ribosomal subunit—the h44 helix. Monte-Carlo modeling revealed that electron holes tend to localize in the functionally important areas of the h44 helix, near the decoding center and intersubunit bridges. On the basis of the results obtained, we suggest that charge transport and localization within the h44 helix could coordinate intersubunit ratcheting with other processes occurring during protein synthesis.
Collapse
|
5
|
Zhukov I, Kiryutin A, Panov M, Fishman N, Morozova O, Lukzen N, Ivanov K, Vieth HM, Sagdeev R, Yurkovskaya A. Exchange interaction in short-lived flavine adenine dinucleotide biradical in aqueous solution revisited by CIDNP (chemically induced dynamic nuclear polarization) and nuclear magnetic relaxation dispersion. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:139-148. [PMID: 37904760 PMCID: PMC10539776 DOI: 10.5194/mr-2-139-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/01/2023]
Abstract
Flavin adenine dinucleotide (FAD) is an important cofactor in many light-sensitive enzymes. The role of the adenine moiety of FAD in light-induced electron transfer was obscured, because it involves an adenine radical, which is short-lived with a weak chromophore. However, an intramolecular electron transfer from adenine to flavin was revealed several years ago by Robert Kaptein by using chemically induced dynamic nuclear polarization (CIDNP). The question of whether one or two types of biradicals of FAD in aqueous solution are formed stays unresolved so far. In the present work, we revisited the CIDNP study of FAD using a robust mechanical sample shuttling setup covering a wide magnetic field range with sample illumination by a light-emitting diode. Also, a cost efficient fast field cycling apparatus with high spectral resolution detection up to 16.4 T for nuclear magnetic relaxation dispersion studies was built based on a 700 MHz NMR spectrometer. Site-specific proton relaxation dispersion data for FAD show a strong restriction of the relative motion of its isoalloxazine and adenine rings with coincident correlation times for adenine, flavin, and their ribityl phosphate linker. This finding is consistent with the assumption that the molecular structure of FAD is rigid and compact. The structure with close proximity of the isoalloxazine and purine moieties is favorable for reversible light-induced intramolecular electron transfer from adenine to triplet excited flavin with formation of a transient spin-correlated triplet biradical F⚫ - -A⚫ + . Spin-selective recombination of the biradical leads to the formation of CIDNP with a common emissive maximum at 4.0 mT detected for adenine and flavin protons. Careful correction of the CIDNP data for relaxation losses during sample shuttling shows that only a single maximum of CIDNP is formed in the magnetic field range from 0.1 mT to 9 T; thus, only one type of FAD biradical is detectable. Modeling of the CIDNP field dependence provides good agreement with the experimental data for a normal distance distribution between the two radical centers around 0.89 nm and an effective electron exchange interaction of - 2.0 mT.
Collapse
Affiliation(s)
- Ivan V. Zhukov
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexey S. Kiryutin
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Mikhail S. Panov
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Natalya N. Fishman
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Olga B. Morozova
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nikita N. Lukzen
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Renad Z. Sagdeev
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Sosorev A, Kharlanov O. Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation. Phys Chem Chem Phys 2021; 23:7037-7047. [PMID: 33448272 DOI: 10.1039/d0cp04970k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translation - protein synthesis at the ribonucleic acid (RNA) based molecular machine, the ribosome, - proceeds in a similar manner in all life forms. However, despite several decades of research, the physics underlying this process remains enigmatic. Specifically, during translation, a ribosome undergoes large-scale conformational changes of its distant parts, and these motions are coordinated by an unknown mechanism. In this study, we suggest that such a mechanism could be related to charge (electron hole) transport along and between the RNA molecules, localization of these charges at certain sites and successive relaxation of the molecular geometry. Thus, we suppose that RNA-based molecular machines, e.g., the ribosome, could be electronically controlled, having "wires", "actuators", "a battery", and other "circuitry". Taking transfer RNA as an example, we justify the reasonability of our suggestion using ab initio and atomistic simulations. Specifically, very large hole transfer integrals between the nucleotides (up to above 100 meV) are observed so that the hole can migrate over nearly the whole tRNA molecule. Hole localization at several guanines located at functionally important sites (G27, G10, G34 and G63) is predicted, which is shown to induce geometry changes in these sites, their neighborhoods and even rather distant moieties. If our hypothesis is right, we anticipate that our findings will qualitatively advance the understanding of the key biological processes and could inspire novel approaches in medicine.
Collapse
Affiliation(s)
- Andrey Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, GSP-7, 117997, Russia.
| | | |
Collapse
|
7
|
Mudgal M, Dang TP, Sobczak AJ, Lumpuy DA, Dutta P, Ward S, Ward K, Alahmadi M, Kumar A, Sevilla MD, Wnuk SF, Adhikary A. Site of Azido Substitution in the Sugar Moiety of Azidopyrimidine Nucleosides Influences the Reactivity of Aminyl Radicals Formed by Dissociative Electron Attachment. J Phys Chem B 2020; 124:11357-11370. [PMID: 33270461 DOI: 10.1021/acs.jpcb.0c08201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, electron-induced site-specific formation of neutral π-type aminyl radicals (RNH·) and their reactions with pyrimidine nucleoside analogs azidolabeled at various positions in the sugar moiety, e.g., at 2'-, 3'-, 4'-, and 5'- sites along with a model compound 3-azido-1-propanol (3AZPrOH), were investigated. Electron paramagnetic resonance (EPR) studies confirmed the site and mechanism of RNH· formation via dissociative electron attachment-mediated loss of N2 and subsequent facile protonation from the solvent employing the 15N-labeled azido group, deuterations at specific sites in the sugar and base, and changing the solvent from H2O to D2O. Reactions of RNH· were investigated employing EPR by warming these samples from 77 K to ca. 170 K. RNH· at a primary carbon site (5'-azido-2',5'-dideoxyuridine, 3AZPrOH) facilely converted to a σ-type iminyl radical (R═N·) via a bimolecular H-atom abstraction forming an α-azidoalkyl radical. RNH· when at a secondary carbon site (e.g., 2'-azido-2'-deoxyuridine) underwent bimolecular electrophilic addition to the C5═C6 double bond of a proximate pyrimidine base. Finally, RNH· at tertiary alkyl carbon (4'-azidocytidine) underwent little reaction. These results show the influence of the stereochemical and electronic environment on RNH· reactivity and allow the selection of those azidonucleosides that would be most effective in augmenting cellular radiation damage.
Collapse
Affiliation(s)
- Mukesh Mudgal
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Thao P Dang
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Adam J Sobczak
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Daniel A Lumpuy
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Priya Dutta
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Samuel Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Katherine Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Moaadh Alahmadi
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| |
Collapse
|
8
|
Zhang X, Jie J, Song D, Su H. Deprotonation of Guanine Radical Cation G •+ Mediated by the Protonated Water Cluster. J Phys Chem A 2020; 124:6076-6083. [PMID: 32585092 DOI: 10.1021/acs.jpca.0c03748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proton transfer is regarded as a fundamental process in chemical reactions of DNA molecules and continues to be an active research theme due to the connection with charge transport and oxidation damage of DNA. For the guanine radical cation (G•+) derived from one-electron oxidation, experiments suggest a facile proton transfer within the G•+:C base pair, and a rapid deprotonation from N1 in free base or single-strand DNA. To address the deprotonation mechanism, we perform a thorough investigation on deprotonation of G•+ in free G base by combining density functional theory (DFT) and laser flash photolysis spectroscopy. Experimentally, kinetics of deprotonation is monitored at temperatures varying from 280 to 298 K, from which the activation energy of 15.1 ± 1.5 kJ/mol is determined for the first time. Theoretically, four solvation models incorporating explicit waters and the polarized continuum model (PCM), i.e., 3H2O-PCM, 4H2O-PCM, 5H2O-PCM, and 7H2O-PCM models are used to calculate deprotonation potential energy profile, and the barriers of 5.5, 13.4, 14.4, and 13.7 kJ/mol are obtained, respectively. It is shown that at least four explicit waters are required for properly simulating the deprotonation reaction, where the participation of protonated water cluster plays key roles in facilitating the proton release from G•+.
Collapse
Affiliation(s)
- Xianwang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100048, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
9
|
Lozinova TA, Lobanov AV, Lander AV, Brzhevskaya ON. Effect of Inorganic Phosphate on the Photoproduction of Hydrogen Peroxide in Frozen Aqueous Solutions of Adenine Derivatives. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420020223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zhou Q, Wang Y, Dai X, Yang C, Jie J, Su H. One-electron oxidation of TAT-motif triplex DNA and the ensuing Hoogsteen hydrogen-bonding dissociation. J Chem Phys 2020; 152:035101. [PMID: 31968979 DOI: 10.1063/1.5135769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One-electron oxidation of adenine (A) leads initially to the formation of adenine radical cation (A•+). Subsequent deprotonation of A•+ can provoke deoxyribonucleic acid (DNA) damage, which further causes senescence, cancer formation, and even cell death. However, compared with considerable reports on A•+ reactions in free deoxyadenosine (dA) and duplex DNA, studies in non-B-form DNA that play critical biological roles are rare at present. It is thus of vital importance to explore non-B-form DNA, among which the triplex is an emerging topic. Herein, we investigate the deprotonation behavior of A•+ in the TAT triplex with continuous A bases by time-resolved laser flash photolysis. The rate constants for the one-oxidation of triplex 8.4 × 108 M-1 s-1 and A•+ deprotonation 1.3 × 107 s-1 are obtained. The kinetic isotope effect of A•+ deprotonation in the TAT triplex is 1.8, which is characteristic of a direct release of the proton into the solvent similar to free base dA. It is thus elucidated that the A•+ proton bound with the third strand is most likely to be released into the solvent because of the weaker Hoogsteen H-bonding interaction and the presence of the highly mobile hydration waters within the third strand. Additionally, it is confirmed through Fourier transform infrared spectroscopy that the deprotonation of A•+ results in the dissociation of the third strand and disruption of the secondary structure of the triplex. These results provide valuable kinetic data and in-depth mechanistic insights for understanding the adenine oxidative DNA damage in the triplex.
Collapse
Affiliation(s)
- Qian Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yinghui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaojuan Dai
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
11
|
Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int J Mol Sci 2019; 20:E3998. [PMID: 31426385 PMCID: PMC6720166 DOI: 10.3390/ijms20163998] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
This review article provides a concise overview of electron involvement in DNA radiation damage. The review begins with the various states of radiation-produced electrons: Secondary electrons (SE), low energy electrons (LEE), electrons at near zero kinetic energy in water (quasi-free electrons, (e-qf)) electrons in the process of solvation in water (presolvated electrons, e-pre), and fully solvated electrons (e-aq). A current summary of the structure of e-aq, and its reactions with DNA-model systems is presented. Theoretical works on reduction potentials of DNA-bases were found to be in agreement with experiments. This review points out the proposed role of LEE-induced frank DNA-strand breaks in ion-beam irradiated DNA. The final section presents radiation-produced electron-mediated site-specific formation of oxidative neutral aminyl radicals from azidonucleosides and the evidence of radiosensitization provided by these aminyl radicals in azidonucleoside-incorporated breast cancer cells.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
12
|
Sun H, Zheng L, Yang K, Greenberg MM. Positional Dependence of DNA Hole Transfer Efficiency in Nucleosome Core Particles. J Am Chem Soc 2019; 141:10154-10158. [PMID: 31244168 DOI: 10.1021/jacs.9b03686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electron deficient "holes" migrate over long distances through the π-system in free DNA. Hole transfer efficiency (HTE) is strongly dependent on sequence and π-stacking. However, there is no consensus regarding the effects of nucleosome core particle (NCP) environment on hole migration. We quantitatively determined HTE in free DNA and NCPs by independently generating holes at specific positions in DNA. The relative HTE varied widely with respect to position within the NCP and proximity to tyrosine, which suppresses hole transfer. These data indicate that hole transfer in chromatin will be affected by the DNA sequence and its position with respect to histone proteins within NCPs.
Collapse
Affiliation(s)
- Huabing Sun
- Department of Chemistry , Johns Hopkins University , 3400 N. Charles Street , Baltimore , Maryland 21218 , United States
| | - Liwei Zheng
- Department of Chemistry , Johns Hopkins University , 3400 N. Charles Street , Baltimore , Maryland 21218 , United States
| | - Kun Yang
- Department of Chemistry , Johns Hopkins University , 3400 N. Charles Street , Baltimore , Maryland 21218 , United States
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , 3400 N. Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
13
|
Choi J, Tojo S, Ahn DS, Fujitsuka M, Miyamoto S, Kobayashi K, Ihee H, Majima T. Proton Transfer Accompanied by the Oxidation of Adenosine. Chemistry 2019; 25:7711-7718. [PMID: 30957282 DOI: 10.1002/chem.201900732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Indexed: 11/07/2022]
Abstract
Despite numerous experimental and theoretical studies, the proton transfer accompanying the oxidation of 2'-deoxyadenosine 5'-monophosphate 2'-deoxyadenosine 5'-monophosphate (5'-dAMP, A) is still under debate. To address this issue, we have investigated the oxidation of A in acidic and neutral solutions by using transient absorption (TA) and time-resolved resonance Raman (TR3 ) spectroscopic methods in combination with pulse radiolysis. The steady-state Raman signal of A was significantly affected by the solution pH, but not by the concentration of adenosine (2-50 mm). More specifically, the A in acidic and neutral solutions exists in its protonated (AH+ (N1+H+ )) and neutral (A) forms, respectively. On the one hand, the TA spectral changes observed at neutral pH revealed that the radical cation (A.+ ) generated by pulse radiolysis is rapidly converted into A. (N6-H) through the loss of an imino proton from N6. In contrast, at acidic pH (<4), AH.2+ (N1+H+ ) generated by pulse radiolysis of AH+ (N1+H+ ) does not undergo the deprotonation process owing to the pKa value of AH.2+ (N1+H+ ), which is higher than the solution pH. Furthermore, the results presented in this study have demonstrated that A, AH+ (N1+H+ ), and their radical species exist as monomers in the concentration range of 2-50 mm. Compared with the Raman bands of AH+ (N1+H+ ), the TR3 bands of AH.2+ (N1+H+ ) are significantly down-shifted, indicating a decrease in the bond order of the pyrimidine and imidazole rings due to the resonance structure of AH.2+ (N1+H+ ). Meanwhile, A. (N6-H) does not show a Raman band corresponding to the pyrimidine+NH2 scissoring vibration due to diprotonation at the N6 position. These results support the final products generated by the oxidation of adenosine in acidic and neutral solutions being AH.2+ (N1+H+ ) and A. (N6-H), respectively.
Collapse
Affiliation(s)
- Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Doo-Sik Ahn
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Shunichi Miyamoto
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
14
|
Raczyńska ED, Makowski M. Effects of Positive and Negative Ionization on Prototropy in Pyrimidine Bases: An Unusual Case of Isocytosine. J Phys Chem A 2018; 122:7863-7879. [PMID: 30192141 DOI: 10.1021/acs.jpca.8b07539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intramolecular proton-transfers (prototropic conversions) have been studied for the guanine building block isocytosine (iC), and effects of positive ionization, called one-electron oxidation (iC - e → iC+•), and negative ionization, called one-electron reduction (iC + e → iC-•), on tautomeric conversions when proceeding from neutral to ionized isocytosine have been discussed. Although radical cations and radical anions are very short-lived species, the ionization effects could be investigated by quantum-chemical methods. Such kind of studies gives some information about the labile protons and the most basic positions in the neutral and radical forms of the tautomeric system. For investigations, the complete isomeric mixture of isocytosine has been considered and calculations performed in two extreme environments, apolar {DFT(B3LYP)/6-311+G(d,p)} and polar {PCM(water)//DFT(B3LYP)/6-311+G(d,p)}. For selected isomers, the G4 theory has also been applied. There are no good relations for energetic parameters of neutral and ionized forms. Ionization energies depend on localization of labile protons. Tautomeric equilibria for neutral and ionized isocytosine, favored sites of protonation and deprotonation, and favored structures of protonated and deprotonated forms strongly depend on environment. Acidity of iC+• is close to that of the iC conjugate acid, and basicity of iC-• is close to that of the iC conjugate base. This increase of acid-base properties of charged radicals explains the proton-transfer in ionized pairs of nucleobases. When compared to other pyrimidine bases such as uracil (U) and cytosine (C), which exhibit analogous tautomeric equilibria between nine prototropic tautomers as isocytosine, the tautomeric preferences for iC, iC+•, iC-•, U, U+•, U-•, C, C+•, and C-• are completely different. The differences suggest that acid-base properties of functional groups, their stabilities, and ionization energies play a principal role in proton-transfers for pyrimidine bases and influence compositions of tautomeric mixtures.
Collapse
Affiliation(s)
- Ewa D Raczyńska
- Department of Chemistry , Warsaw University of Life Sciences (SGGW) , ul. Nowoursynowska 159c , 02-776 Warszawa , Poland
| | - Mariusz Makowski
- Faculty of Chemistry , University of Gdańsk , ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| |
Collapse
|
15
|
Capobianco A, Velardo A, Peluso A. Single-Stranded DNA Oligonucleotides Retain Rise Coordinates Characteristic of Double Helices. J Phys Chem B 2018; 122:7978-7989. [PMID: 30070843 DOI: 10.1021/acs.jpcb.8b04542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures of single-stranded DNA oligonucleotides from dimeric to hexameric sequences have been thoroughly investigated. Computations performed at the density functional level of theory including dispersion forces and solvation show that single-stranded helices adopt conformations very close to crystallographic B-DNA, with rise coordinates amounting up to 3.3 Å. Previous results, suggesting that single strands should be shorter than double helices, largely originated from the incompleteness of the adopted basis set. Although sensible deviations with respect to standard B-DNA are predicted, computations indicate that sequences rich in stacked adenines are the most ordered ones, favoring the B-DNA pattern and inducing regular arrangements also on flanking nucleobases. Several structural properties of double helices rich in adenine are indeed already reflected by the corresponding single strands.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Amalia Velardo
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| |
Collapse
|
16
|
The optical properties of adenine cation in different oligonucleotides: a PCM/TD-DFT study. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2223-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Jie JL, Wang C, Zhao HM, Song D, Su HM. Experimental and Theoretical Study of Deprotonation of DNA Adenine Cation Radical. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1710198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jia-long Jie
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong-mei Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Di Song
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-mei Su
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Zheng L, Greenberg MM. DNA Damage Emanating From a Neutral Purine Radical Reveals the Sequence Dependent Convergence of the Direct and Indirect Effects of γ-Radiolysis. J Am Chem Soc 2017; 139:17751-17754. [PMID: 29190086 DOI: 10.1021/jacs.7b10942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nucleobase radicals are the major intermediates generated by the direct (e.g., dA•+) and indirect (e.g., dA•) effects of γ-radiolysis. dA• was independently generated in DNA for the first time. The dA•+/dA• equilibrium, and consequently the reactivity in DNA, is significantly shifted toward the radical cation by a flanking dA. Tandem lesions emanating from dA• are the major products when the reactive intermediate is flanked by a 5'-dGT. In contrast, when dA• is flanked by dA, the increased dA•+ pKa results in DNA damage arising from hole transfer. This is the first demonstration that sequence effects lead to the intersection of the direct and indirect effects of ionizing radiation.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
Das A. Studies on complex π-π and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Barkam S, Ortiz J, Saraf S, Eliason N, Mccormack R, Das S, Gupta A, Neal C, Petrovici A, Hanson C, Sevilla MD, Adhikary A, Seal S. Modulating the Catalytic Activity of Cerium Oxide Nanoparticles with the Anion of the Precursor Salt. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:20039-20050. [PMID: 28936278 PMCID: PMC5602578 DOI: 10.1021/acs.jpcc.7b05725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, we tested our hypothesis that surface chemistry and antioxidant properties of cerium nanoparticles (CNPs) are affected by presence of counterions. We first employed various precursor cerium (III) (Ce(III)) salts with different counterions (acetate, nitrate, chloride, sulfate) to synthesize CNPs following the same wet chemical methodology. Electron spin resonance (ESR) studies provided evidence for the formation of radicals from counterions (e.g., NO3•2- from reduction of NO3- in CNPs synthesized from Ce(III) nitrate). Physicochemical properties of these CNPs, e.g., dispersion stability, hydrodynamic size, signature surface chemistry, SOD-mimetic activity, and oxidation potentials were found to be significantly affected by the anions of the precursor salts. CNPs synthesized from Ce(III) nitrate and Ce(III) chloride exhibited higher extent of SOD-mimetic activities. Therefore, these CNPs were studied extensively employing in-situ UV-Visible spectroelectrochemistry and changing the counterion concentrations affected the oxidation potentials of these CNPs. Thus, the physicochemical and antioxidant properties of CNPs can be modulated by anions of the precursor. Furthermore, our ESR studies present evidence of the formation of guanine cation radical (G•+) in 5'-dGMP via UV-photoionization at 77 K in the presence of CNPs synthesized from Ce(III) nitrate and chloride and CNPs act as the scavenger of radiation-produced electrons.
Collapse
Affiliation(s)
- Swetha Barkam
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Julian Ortiz
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Shashank Saraf
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Nicholas Eliason
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Rameech Mccormack
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Soumen Das
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
- NanoScience Technology Center (NSTC), Materials Science Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Ankur Gupta
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Craig Neal
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
| | - Alex Petrovici
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, MI – 48309, USA
| | - Cameron Hanson
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, MI – 48309, USA
| | - Michael D. Sevilla
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, MI – 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, MI – 48309, USA
- Corresponding authors: Prof. Amitava Adhikary, , Telephone: 248-370-2094, Fax: 248-370-2321; Prof. Sudipta Seal, , Telephone: 407-823-5277 or 407-882-1458, Fax: 407-882-1156 or 407-823-0208
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
- NanoScience Technology Center (NSTC), Materials Science Engineering (MSE), University of Central Florida, 4000, Central Florida Boulevard, Orlando, Fl – 32816, USA
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL – 32827, USA
- Corresponding authors: Prof. Amitava Adhikary, , Telephone: 248-370-2094, Fax: 248-370-2321; Prof. Sudipta Seal, , Telephone: 407-823-5277 or 407-882-1458, Fax: 407-882-1156 or 407-823-0208
| |
Collapse
|
21
|
Mudgal M, Rishi S, Lumpuy DA, Curran KA, Verley KL, Sobczak AJ, Dang TP, Sulimoff N, Kumar A, Sevilla MD, Wnuk SF, Adhikary A. Prehydrated One-Electron Attachment to Azido-Modified Pentofuranoses: Aminyl Radical Formation, Rapid H-Atom Transfer, and Subsequent Ring Opening. J Phys Chem B 2017; 121:4968-4980. [PMID: 28425714 DOI: 10.1021/acs.jpcb.7b01838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methyl 2-azido-2-deoxy-α-d-lyxofuranoside (1a) and methyl 2-azido-2-deoxy-β-d-ribofuranoside (2) were prepared from d-xylose or d-arabinose, respectively. Employing ESR and DFT/B3LYP/6-31G* calculations, we investigated (i) aminyl radical (RNH·) formation and (ii) reaction pathways of RNH·. Prehydrated electron attachment to 1a and 2 at 77 K produced transient azide anion radical (RN3·-) which reacts via rapid N2 loss at 77 K, forming nitrene anion radical (RN·-). Rapid protonation of RN·- at 77 K formed RNH· and -OH. 15N-labeled-1a confirmed this mechanism. Investigations employing in-house synthesized site-specifically deuterated derivatives of 1a (e.g., CH3 (1b), C4 (1c), and C5 (1d)) established that (a) a facile intramolecular H atom transfer from C5 to RNH· generated C5· and RNH2. C5· formation had a small deuterium kinetic isotope effect suggesting that this reaction does not occur via direct H atom abstraction. (b) Subsequently, C5· underwent a facile unimolecular conversion to ring-opened C4·. Identification of ring-opened C4· intermediate confirms the mechanism of C5'· mediated unaltered base release associated with DNA-strand break. However, for 2, ESR studies established thermally activated intermolecular H atom abstraction by RNH· from the methyl group at C1. Thus, sugar ring configuration strongly influences the site and pathway of RNH· mediated reactions in pentofuranoses.
Collapse
Affiliation(s)
- Mukesh Mudgal
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Sunny Rishi
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Daniel A Lumpuy
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Keaton A Curran
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Kathryn Lynn Verley
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Adam J Sobczak
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Thao P Dang
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Natasha Sulimoff
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Anil Kumar
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
22
|
Zheng L, Griesser M, Pratt DA, Greenberg MM. Aminyl Radical Generation via Tandem Norrish Type I Photocleavage, β-Fragmentation: Independent Generation and Reactivity of the 2'-Deoxyadenosin- N6-yl Radical. J Org Chem 2017; 82:3571-3580. [PMID: 28318253 DOI: 10.1021/acs.joc.7b00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Formal hydrogen atom abstraction from the nitrogen-hydrogen bonds in purine nucleosides produces reactive intermediates that are important in nucleic acid oxidation. Herein we describe an approach for the independent generation of the purine radical resulting from hydrogen atom abstraction from the N6-amine of 2'-deoxyadenosine (dA•). The method involves sequential Norrish Type I photocleavage of a ketone (7b) and β-fragmentation of the initially formed alkyl radical (8b) to form dA• and acetone. The formation of dA• was followed by laser flash photolysis, which yields a transient with λmax ≈ 340 nm and a broader weaker absorption centered at ∼560 nm. This transient grows in at ≥2 × 105 s-1; however, computations and reactivity data suggest that β-fragmentation occurs much faster, implying the consumption of dA• as it is formed. Continuous photolysis of 7b in the presence of ferrous ion or thiophenol produces good yields of dA, whereas less reactive thiols afford lower yields presumably due to a polarity mismatch. This tandem photochemical, β-fragmentation method promises to be useful for site-specific production of dA• in nucleic acid oligomers and/or polymers and also for the production of aminyl radicals, in general.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Markus Griesser
- Department of Chemistry & Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Banyasz A, Ketola TM, Muñoz-Losa A, Rishi S, Adhikary A, Sevilla MD, Martinez-Fernandez L, Improta R, Markovitsi D. UV-Induced Adenine Radicals Induced in DNA A-Tracts: Spectral and Dynamical Characterization. J Phys Chem Lett 2016; 7:3949-3953. [PMID: 27636653 PMCID: PMC5053904 DOI: 10.1021/acs.jpclett.6b01831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Adenyl radicals generated in DNA single and double strands, (dA)20 and (dA)20·(dT)20, by one- and two-photon ionization by 266 nm laser pulses decay at 600 nm with half-times of 1.0 ± 0.1 and 4 ± 1 ms, respectively. Though ionization initially forms the cation radical, the radicals detected for (dA)20 are quantitatively identified as N6-deprotonated adenyl radicals by their absorption spectrum, which is computed quantum mechanically employing TD-DFT. Theoretical calculations show that deprotonation of the cation radical induces only weak spectral changes, in line with the spectra of the adenyl radical cation and the deprotonated radical trapped in low temperature glasses.
Collapse
Affiliation(s)
- Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Tiia-Maaria Ketola
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Aurora Muñoz-Losa
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Sunny Rishi
- Department of Chemistry, Oakland University, Rochester, MI 48303
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48303
| | - Michael D. Sevilla
- Department of Chemistry, Oakland University, Rochester, MI 48303
- Corresponding Authors. , ,
| | - Lara Martinez-Fernandez
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
- Corresponding Authors. , ,
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Corresponding Authors. , ,
| |
Collapse
|
24
|
Sharma VK, Trnkova L. Copper Nanoparticle Modified Pencil Graphite Electrode for Electroanalysis of Adenine. ELECTROANAL 2016. [DOI: 10.1002/elan.201600237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vimal Kumar Sharma
- Department of Chemistry; Faculty of Science; Masaryk University; Kamenice 5 CZ-625 00 Brno Czech Republic
| | - Libuse Trnkova
- Department of Chemistry; Faculty of Science; Masaryk University; Kamenice 5 CZ-625 00 Brno Czech Republic
| |
Collapse
|
25
|
Close DM, Wardman P. Calculations of the Energetics of Oxidation of Aqueous Nucleosides and the Effects of Prototropic Equilibria. J Phys Chem A 2016; 120:4043-8. [PMID: 27219530 DOI: 10.1021/acs.jpca.6b02653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently the calculated standard reduction potentials of the radical-cations of N-methyl substituted DNA bases have been reported that agree fairly well with the experimental results. However, there are issues reflecting the fact that the experimental results usually relate to the couple E(o)(Nuc(•),H(+)/NucH(+)), whereas the calculated results are for the E(o)(Nuc(•+)/Nuc) couple. To calculate the midpoint reduction potential at pH 7 (Em7), it is important to have accurate acid dissociation constants (pKs) for both ground-state bases and their radicals, and the effects of uncertainty in some of these values (e.g., that of the adenosine radical) must be considered. Calculations of the pKs of the radicals of the nucleic acid bases (as nucleosides) have been performed to explore the effects the various pKs have on calculating the values of Em7 and to see what improvements can be made with the accuracy of the calculations.
Collapse
Affiliation(s)
- David M Close
- Department of Physics, East Tennessee State University , Johnson City, Tennessee 37614, United States
| | - Peter Wardman
- Gray Cancer Institute, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford , Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
26
|
Capobianco A, Caruso T, Peluso A. Hole delocalization over adenine tracts in single stranded DNA oligonucleotides. Phys Chem Chem Phys 2016; 17:4750-6. [PMID: 25589467 DOI: 10.1039/c4cp04282d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adiabatic ionization energies of single stranded DNA oligonucleotides containing adenine tracts of different sizes have been computed at the DFT level and compared with the oxidation potentials determined by differential pulse voltammetry. Geometry optimizations have been performed at the full quantum mechanical level, including the sugar phosphate backbone and solvent effects. The observed progressive lowering of the ionization energy upon increasing the number of consecutive adenines is well predicted, the computed ionization potential shifts being in very good agreement with the experimental outcomes, both by using pure and hybrid functionals. The spin density of the oligonucleotide radical cations is distributed almost over the whole adenine tract, forming delocalized polarons.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia, Università di Salerno, I-84084 Fisciano, SA, Italy.
| | | | | |
Collapse
|
27
|
Adhikary A, Kumar A, Bishop CT, Wiegand TJ, Hindi RM, Adhikary A, Sevilla MD. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs. J Phys Chem B 2015; 119:11496-505. [PMID: 26237072 DOI: 10.1021/acs.jpcb.5b05162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Anil Kumar
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Casandra T Bishop
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Tyler J Wiegand
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Ragda M Hindi
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Ananya Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
28
|
Ray S, Das A. Studies on the π–π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Adhikary A, Kumar A, Rayala R, Hindi RM, Adhikary A, Wnuk SF, Sevilla MD. One-electron oxidation of gemcitabine and analogs: mechanism of formation of C3' and C2' sugar radicals. J Am Chem Soc 2014; 136:15646-53. [PMID: 25296262 PMCID: PMC4227712 DOI: 10.1021/ja5083156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gemcitabine is a modified cytidine analog having two fluorine atoms at the 2'-position of the ribose ring. It has been proposed that gemcitabine inhibits RNR activity by producing a C3'• intermediate via direct H3'-atom abstraction followed by loss of HF to yield a C2'• with 3'-keto moiety. Direct detection of C3'• and C2'• during RNR inactivation by gemcitabine still remains elusive. To test the influence of 2'- substitution on radical site formation, electron spin resonance (ESR) studies are carried out on one-electron oxidized gemcitabine and other 2'-modified analogs, i.e., 2'-deoxy-2'-fluoro-2'-C-methylcytidine (MeFdC) and 2'-fluoro-2'-deoxycytidine (2'-FdC). ESR line components from two anisotropic β-2'-F-atom hyperfine couplings identify the C3'• formation in one-electron oxidized gemcitabine, but no further reaction to C2'• is found. One-electron oxidized 2'-FdC is unreactive toward C3'• or C2'• formation. In one-electron oxidized MeFdC, ESR studies show C2'• production presumably from a very unstable C3'• precursor. The experimentally observed hyperfine couplings for C2'• and C3'• match well with the theoretically predicted ones. C3'• to C2'• conversion in one-electron oxidized gemcitabine and MeFdC has theoretically been modeled by first considering the C3'• and H3O(+) formation via H3'-proton deprotonation and the subsequent C2'• formation via HF loss induced by this proximate H3O(+). Theoretical calculations show that in gemcitabine, C3'• to C2'• conversion in the presence of a proximate H3O(+) has a barrier in agreement with the experimentally observed lack of C3'• to C2'• conversion. In contrast, in MeFdC, the loss of HF from C3'• in the presence of a proximate H3O(+) is barrierless resulting in C2'• formation which agrees with the experimentally observed rapid C2'• formation.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Thapa B, Schlegel HB. Calculations of pKa's and redox potentials of nucleobases with explicit waters and polarizable continuum solvation. J Phys Chem A 2014; 119:5134-44. [PMID: 25291241 DOI: 10.1021/jp5088866] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The SMD implicit solvation model augmented with one and four explicit water molecules was used to calculate pKa's and redox potentials of N-methyl-substituted nucleic acid bases guanine, adenine, cytosine, thymine, and uracil. Calculations were carried out with the B3LYP/6-31+G(d,p) level of theory. The same numbers of water molecules were hydrogen bonded to the neutral, protonated, and deprotonated nucleobases in their unoxidized and oxidized forms. The improvement in pKa1 involving neutrals and cations was modest. By contrast, the improvement in pKa2 involving neutrals and anions was quite significant, reducing the mean absolute error from 4.6 pKa units with no waters, to 2.6 with one water and 1.7 with four waters. For the oxidation of nucleobases, adding explicit waters did little to improve E(X(•),H(+)/XH), possibly because both species in the redox couple are neutral molecules at pH 7.
Collapse
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
31
|
Saprygina NN, Morozova OB, Abramova TV, Grampp G, Yurkovskaya AV. Oxidation of purine nucleotides by Triplet 3,3',4,4'-benzophenone tetracarboxylic acid in aqueous solution: pH-dependence. J Phys Chem A 2014; 118:4966-74. [PMID: 24926567 PMCID: PMC4106273 DOI: 10.1021/jp5044464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The
photo-oxidation of purine nucleotides adenosine-5′-monophosphate
(AMP) and guanosine-5′-monophosphate (GMP) by 3,3′,4,4′-benzophenone
tetracarboxylic acid (TCBP) has been investigated in aqueous solutions
using nanosecond laser flash photolysis (LFP) and time-resolved chemically
induced dynamic nuclear polarization (CIDNP). The pH dependences of
quenching rate constants and of geminate polarization are measured
within a wide range of pH values. As a result, the chemical reactivity
of reacting species in different protonation states is determined.
In acidic solution (pH < 4.9), the quenching rate constant is close
to the diffusion-controlled limit: kq =
1.3 × 109 M–1 s–1 (GMP), and kq = 1.2 × 109 M–1 s–1 (AMP), whereas in neutral
and basic solutions it is significantly lower: kq = 2.6 × 108 M–1 s–1 (GMP, 4.9 < pH < 9.4), kq = 3.5
× 107 M–1 s–1 (GMP,
pH > 9.4), kq = 1.0 × 108 M–1 s–1 (AMP, pH > 6.5).
Surprisingly,
the strong influence of the protonation state of the phosphoric group
on the oxidation of adenosine-5′-monophosphate is revealed:
the deprotonation of the AMP phosphoric group (6.5) decreases the
quenching rate constant from 5.0 × 108 M–1 s–1 (4.9 < pH < 6.5) to 1.0 × 108 M–1 s–1 (pH > 6.5).
Collapse
Affiliation(s)
- Natalya N Saprygina
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
32
|
Capobianco A, Caruso T, Celentano M, La Rocca MV, Peluso A. Proton transfer in oxidized adenosine self-aggregates. J Chem Phys 2013; 139:145101. [DOI: 10.1063/1.4823495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Kumar A, Sevilla MD. π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study. J Phys Chem B 2013; 117:11623-32. [PMID: 24000793 DOI: 10.1021/jp407897n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a result of their inherent planarity, DNA base radicals generated by one-electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals, there are a number of nucleobase analogues such as one-electron-oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogues. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one-electron-oxidized bases of thymine, T(N3-H)(•), and uracil, U(N3-H)(•), are very close in energy; i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one-electron-oxidized radicals of cytosine, C(•+), C(N4-H)(•), adenine, A(•+), A(N6-H)(•), and guanine, G(•+), G(N2-H)(•), G(N1-H)(•), the π-radicals are ca. 16-41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)(•) with three discrete water molecules in the gas phase is found to form a three-electron σ bond between the N3 atom of uracil and the O atom of a water molecule, but on inclusion of full solvation and discrete hydration, the π-radical remains most stable.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | | |
Collapse
|
34
|
Adhikary A, Kumar A, Palmer BJ, Todd AD, Sevilla MD. Formation of S-Cl phosphorothioate adduct radicals in dsDNA S-oligomers: hole transfer to guanine vs disulfide anion radical formation. J Am Chem Soc 2013; 135:12827-38. [PMID: 23885974 DOI: 10.1021/ja406121x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In phosphorothioate-containing dsDNA oligomers (S-oligomers), one of the two nonbridging oxygen atoms in the phosphate moiety of the sugar-phosphate backbone is replaced by sulfur. In this work, electron spin resonance (ESR) studies of one-electron oxidation of several S-oligomers by Cl2(•-) at low temperatures are performed. Electrophilic addition of Cl2(•-) to phosphorothioate with elimination of Cl(-) leads to the formation of a two-center three-electron σ(2)σ*(1)-bonded adduct radical (-P-S-̇Cl). In AT S-oligomers with multiple phosphorothioates, i.e., d[ATATAsTsAsT]2, -P-S-̇Cl reacts with a neighboring phosphorothioate to form the σ(2)σ*(1)-bonded disulfide anion radical ([-P-S-̇S-P-](-)). With AT S-oligomers with a single phosphorothioate, i.e., d[ATTTAsAAT]2, reduced levels of conversion of -P-S-̇Cl to [-P-S-̇S-P-](-) are found. For guanine-containing S-oligomers containing one phosphorothioate, -P-S-̇Cl results in one-electron oxidation of guanine base but not of A, C, or T, thereby leading to selective hole transfer to G. The redox potential of -P-S-̇Cl is thus higher than that of G but is lower than those of A, C, and T. Spectral assignments to -P-S-̇Cl and [-P-S-̇S-P-](-) are based on reaction of Cl2(•-) with the model compound diisopropyl phosphorothioate. The results found for d[TGCGsCsGCGCA]2 suggest that [-P-S-̇S-P-](-) undergoes electron transfer to the one-electron-oxidized G, healing the base but producing a cyclic disulfide-bonded backbone with a substantial bond strength (50 kcal/mol). Formation of -P-S-̇Cl and its conversion to [-P-S-̇S-P-](-) are found to be unaffected by O2, and this is supported by the theoretically calculated electron affinities and reduction potentials of [-P-S-S-P-] and O2.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | | |
Collapse
|
35
|
Breindel AJ, Stuart RE, Bock WJ, Stelter DN, Kravec SM, Conwell EM. Hole Wave Functions and Transport with Deazaadenines Replacing Adenines in DNA. J Phys Chem B 2013; 117:3086-90. [DOI: 10.1021/jp310636k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander J. Breindel
- Department
of Physics and ‡Department of Chemistry, University of Rochester, Rochester,
New York 14627, United States
| | - Rachel E. Stuart
- Department
of Physics and ‡Department of Chemistry, University of Rochester, Rochester,
New York 14627, United States
| | - William J. Bock
- Department
of Physics and ‡Department of Chemistry, University of Rochester, Rochester,
New York 14627, United States
| | - David N. Stelter
- Department
of Physics and ‡Department of Chemistry, University of Rochester, Rochester,
New York 14627, United States
| | - Shane M. Kravec
- Department
of Physics and ‡Department of Chemistry, University of Rochester, Rochester,
New York 14627, United States
| | - Esther M. Conwell
- Department
of Physics and ‡Department of Chemistry, University of Rochester, Rochester,
New York 14627, United States
| |
Collapse
|
36
|
Affiliation(s)
- David M. Close
- Department
of Physics, Box
70652, East Tennessee State University,
Johnson City, Tennessee 37614, United States
| |
Collapse
|
37
|
Xiang Z. Hydrogen abstraction/nucleophilic addition: A novel reaction pathway between aromatic olefin radical cation and TEMPO. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.06.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Black PJ, Bernhard WA. Excess electron trapping in duplex DNA: long range transfer via stacked adenines. J Phys Chem B 2012; 116:13211-8. [PMID: 23067129 DOI: 10.1021/jp307851g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An understanding of charge transfer (CT) in DNA lies at the root of assessing the risks and benefits of exposure to ionizing radiation. Energy deposition by high-energy photons and fast-charged particles creates holes and excess electrons (EEs) in DNA, and the subsequent reactions determine the complexity of DNA damage and ultimately the risk of disease. Further interest in CT comes from the possibility that hole transfer, excess electron transfer (EET), or both in DNA might be used to develop nanoscale circuits. To study EET in DNA, EPR spectroscopy was used to determine the distribution of EE trapping by oligodeoxynucleotides irradiated and observed at 4 K. Our results indicate that stretches of consecutive adenine bases on the same strand serve as an ideal conduit for intrastrand EET in duplex DNA at 4 K. Specifically, we show that A is an efficient trap for EE at 4 K if, and only if, the A strand of the duplex does not contain one of the other three bases. If there is a T, C, or G on the A strand, then trapping occurs at T or C instead of A. This holds true for stretches up to 32 A's. Whereas T competes effectively against A for the EE, it does not compete effectively against C. Long stretches of T pass the majority of EE to C. Our results show that AT stretches channel EE to cytosine, an end point with significance to both radiation damage and the photochemical repair of pyrimidine dimers.
Collapse
Affiliation(s)
- Paul J Black
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA.
| | | |
Collapse
|
39
|
Keith JA, Carter EA. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals. J Chem Theory Comput 2012; 8:3187-206. [PMID: 26605730 DOI: 10.1021/ct300295g] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.
Collapse
Affiliation(s)
- John A Keith
- Department of Mechanical and Aerospace Engineering, ‡Program in Applied and Computational Mathematics, and the Andlinger Center for Energy and the Environment, Princeton University , Princeton, New Jersey 08544-5263, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, ‡Program in Applied and Computational Mathematics, and the Andlinger Center for Energy and the Environment, Princeton University , Princeton, New Jersey 08544-5263, United States
| |
Collapse
|
40
|
Adhikary A, Becker D, Palmer BJ, Heizer AN, Sevilla MD. Direct formation of the C5'-radical in the sugar-phosphate backbone of DNA by high-energy radiation. J Phys Chem B 2012; 116:5900-6. [PMID: 22553971 DOI: 10.1021/jp3023919] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neutral sugar radicals formed in DNA sugar-phosphate backbone are well-established as precursors of biologically important damage such as DNA strand scission and cross-linking. In this work, we present electron spin resonance (ESR) evidence showing that the sugar radical at C5' (C5'(•)) is one of the most abundant (ca. 30%) sugar radicals formed by γ- and Ar ion-beam irradiated hydrated DNA samples. Taking dimethyl phosphate as a model of sugar-phosphate backbone, ESR and theoretical (DFT) studies of γ-irradiated dimethyl phosphate were carried out. CH(3)OP(O(2)(-))OCH(2)(•) is formed via deprotonation from the methyl group of directly ionized dimethyl phosphate at 77 K. The formation of CH(3)OP(O(2)(-))OCH(2)(•) is independent of dimethyl phosphate concentration (neat or in aqueous solution) or pH. ESR spectra of C5'(•) found in DNA and of CH(3)OP(O(2)(-))OCH(2)(•) do not show an observable β-phosphorus hyperfine coupling (HFC). Furthermore, C5'(•) found in DNA does not show a significant C4'-H β-proton HFC. Applying the DFT/B3LYP/6-31G(d) method, a study of conformational dependence of the phosphorus HFC in CH(3)OP(O(2)(-))OCH(2)(•) shows that in its minimum energy conformation, CH(3)OP(O(2)(-))OCH(2)(•), has a negligible β-phosphorus HFC. On the basis of these results, the formation of radiation-induced C5'(•) is proposed to occur via a very rapid deprotonation from the directly ionized sugar-phosphate backbone, and the rate of this deprotonation must be faster than that of energetically downhill transfer of the unpaired spin (hole) from ionized sugar-phosphate backbone to the DNA bases. Moreover, C5'(•) in irradiated DNA is found to be in a conformation that does not exhibit β-proton or β-phosphorus HFCs.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | | |
Collapse
|
41
|
Cao Q, Creely CM, Davies ES, Dyer J, Easun TL, Grills DC, McGovern DA, McMaster J, Pitchford J, Smith JA, Sun XZ, Kelly JM, George MW. Excited state dependent electron transfer of a rhenium-dipyridophenazine complex intercalated between the base pairs of DNA: a time-resolved UV-visible and IR absorption investigation into the photophysics of fac-[Re(CO)3(F2dppz)(py)]+ bound to either [poly(dA-dT)]2 or [poly(dG-dC)]2. Photochem Photobiol Sci 2011; 10:1355-64. [PMID: 21698328 DOI: 10.1039/c1pp05050h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transient species formed following excitation of fac-[Re(CO)(3)(F(2)dppz)(py)](+) (F(2)dppz = 11,12-difluorodipyrido[3,2-a:2',3'-c]phenazine) bound to double-stranded polynucleotides [poly(dA-dT)](2) or [poly(dG-dC)](2) have been studied by transient visible and infra-red spectroscopy in both the picosecond and nanosecond time domains. The latter technique has been used to monitor both the metal complex and the DNA by monitoring the regions 1900-2100 and 1500-1750 cm(-1) respectively. These data provide direct evidence for electron transfer from guanine to the excited state of the metal complex, which proceeds both on a sub-picosecond time scale and with a lifetime of 35 ps, possibly due to the involvement of two excited states. No electron transfer is found for the [poly(dA-dT)](2) complex, although characteristic changes are seen in the DNA-region TRIR consistent with changes in the binding of the bases in the intercalation site upon excitation of the dppz-complex.
Collapse
Affiliation(s)
- Qian Cao
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kumar A, Sevilla MD. Density functional theory studies of the extent of hole delocalization in one-electron oxidized adenine and guanine base stacks. J Phys Chem B 2011; 115:4990-5000. [PMID: 21417208 PMCID: PMC3084348 DOI: 10.1021/jp200537t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the extent of hole delocalization in one-electron oxidized adenine (A) and guanine (G) stacks and shows that new IR vibrational bands are predicted that are characteristic of hole delocalization within A-stacks. The geometries of A-stacks (A(i); i = 2-8) and G-stacks (GG and GGG) in their neutral and one-electron oxidized states were optimized with the bases in a B-DNA conformation using the M06-2X/6-31G* method. The highest occupied molecular orbital (HOMO) is localized on a single adenine in A-stacks and on a single guanine in GG and GGG stacks located at the 5'-site of the stack. On one-electron oxidation (removal of an electron from the HOMO of the neutral A- and G-stacks) a "hole" is created. Mulliken charge analysis shows that these "holes" are delocalized over two to three adenine bases in the A-stack. The calculated spin density distribution of A(i)(•+) (i = 2-8) also showed delocalization of the hole predominantly on two adenine bases, with some delocalization on a neighboring base. For GG and GGG radical cations, the hole was found to be localized on a single G in the stack. The calculated HFCCs of GG and GGG are in good agreement with the experiment. Further, from the vibrational frequency analysis, it was found that IR spectra of neutral and the corresponding one-electron oxidized adenine stacks are quite different. The IR spectra of A(2)(•+) has intense IR peaks between 900 and 1500 cm(-1) that are not present in the neutral A(2) stack. The presence of A(2)(•+) in the adenine stack has a characteristic intense peak at ~1100 cm(-1). Thus, IR and Raman spectroscopy has potential for monitoring the extent of hole delocalization in A stacks.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
43
|
Khanduri D, Adhikary A, Sevilla MD. Highly oxidizing excited states of one-electron-oxidized guanine in DNA: wavelength and pH dependence. J Am Chem Soc 2011; 133:4527-37. [PMID: 21381665 PMCID: PMC3063320 DOI: 10.1021/ja110499a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excited states of one-electron-oxidized guanine in DNA are known to induce hole transfer to the sugar moiety and on deprotonation result in neutral sugar radicals that are precursors of DNA strand breaks. This work carried out in a homogeneous aqueous glass (7.5 M LiCl) at low temperatures (77-175 K) shows the extent of photoconversion of one-electron-oxidized guanine and the associated yields of individual sugar radicals are crucially controlled by the photon energy, protonation state, and strandedness of the oligomer. In addition to sugar radical formation, highly oxidizing excited states of one-electron-oxidized guanine are produced with 405 nm light at pH 5 and below that are able to oxidize chloride ion in the surrounding solution to form Cl(2)(•-) via an excited-state hole transfer process. Among the various DNA model systems studied in this work, the maximum amount of Cl(2)(•-) is produced with ds (double-stranded) DNA, where the one-electron-oxidized guanine exists in its cation radical form (G(•+):C). Thus, via excited-state hole transfer, the dsDNA is apparently able to protect itself from cation radical excited states by transfer of damage to the surrounding environment.
Collapse
Affiliation(s)
- Deepti Khanduri
- Department of Chemistry Oakland University Rochester, MI 48309
| | | | | |
Collapse
|
44
|
Genereux JC, Wuerth SM, Barton JK. Single-step charge transport through DNA over long distances. J Am Chem Soc 2011; 133:3863-8. [PMID: 21348520 DOI: 10.1021/ja107033v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum yields for charge transport across adenine tracts of increasing length have been measured by monitoring hole transport in synthetic oligonucleotides between photoexcited 2-aminopurine, a fluorescent analogue of adenine, and N(2)-cyclopropyl guanine. Using fluorescence quenching, a measure of hole injection, and hole trapping by the cyclopropyl guanine derivative, we separate the individual contributions of single- and multistep channels to DNA charge transport and find that with 7 or 8 intervening adenines the charge transport is a coherent, single-step process. Moreover, a transition occurs from multistep to single-step charge transport with increasing donor/acceptor separation, opposite to that generally observed in molecular wires. These results establish that coherent transport through DNA occurs preferentially across 10 base pairs, favored by delocalization over a full turn of the helix.
Collapse
Affiliation(s)
- Joseph C Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | | |
Collapse
|
45
|
Shkrob IA, Marin TM, Adhikary A, Sevilla MD. Photooxidation of nucleic acids on metal oxides: physico-chemical and astrobiological perspectives. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011; 115:3393-3403. [PMID: 21399705 PMCID: PMC3049938 DOI: 10.1021/jp110682c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photocatalytic oxidation of nucleic acid components on aqueous metal oxides (TiO(2), α-FeOOH, and α-Fe(2)O(3)) has been studied. The oxidation of purine nucleotides results in the formation of the purine radical cations and sugar-phosphate radicals, whereas the oxidation of pyrimidine nucleotides other than thymine results in the oxidation of only the sugar-phosphate. The oxidation of the thymine (and to a far less extent for the 5-methylcytosine) derivatives results in deprotonation from the methyl group of the base. Some single stranded (ss) oligoribonucleotides and wild-type ss RNA were oxidized at purine sites. In contrast, double stranded (ds) oligoribonucleotides and DNA were not oxidized. These results account for observations suggesting that cellular ds DNA is not damaged by exposure to photoirradiated TiO(2) nanoparticles inserted into the cell, whereas ss RNA is extensively damaged. The astrobiological import of our observations is that the rapid degradation of monomer nucleotides make them poor targets as biosignatures, whereas duplex DNA is a better target as it is resilient to oxidative diagenesis. Another import of our studies is that ds DNA (as opposed to ss RNA) appears to be optimized to withstand oxidative stress both due to the advantageous polymer morphology and the subtle details of its radical chemistry. This peculiarity may account for the preference for DNA over RNA as a "molecule of life" provided that metal oxides served as the template for synthesis of polynucleotides, as suggested by Orgel and others.
Collapse
Affiliation(s)
- Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439
| | - Timothy M. Marin
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439
- Chemistry Department, Benedictine University, 5700 College Road, Lisle, IL 60532
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309
| | | |
Collapse
|
46
|
Adhikary A, Khanduri D, Pottiboyina V, Rice CT, Sevilla MD. Formation of aminyl radicals on electron attachment to AZT: abstraction from the sugar phosphate backbone versus one-electron oxidation of guanine. J Phys Chem B 2010; 114:9289-99. [PMID: 20575557 DOI: 10.1021/jp103403p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Employing electron spin resonance (ESR) spectroscopy, we have characterized the radicals formed in 3'-azido-3'-deoxythymidine (3'-AZT) and in its 5'-analog 5'-azido-5'-deoxythymidine (5'-AZT) after electron attachment in gamma-irradiated aqueous (H(2)O or D(2)O) glassy (7.5 M LiCl) systems. ESR spectral studies and theoretical calculations show that the predominant site of electron capture in 3'-AZT and in 5'-AZT is at the azide group and not at the thymine moiety. The azide group in AZT is therefore more electron affinic than the most electron affinic DNA base, thymine. Electron attachment to 3'-AZT and 5'-AZT results in an unstable azide anion radical intermediate (RN(3)*(-)) that is too short-lived to be observed in our work even at 77 K. At 77 K, we observe the neutral aminyl radical (RNH*) after loss of N(2) from RN(3)*(-) followed by protonation of nitrene anion radical (RN*(-)) to give RNH*. The expected RN*(-) intermediate is not observed as protonation from water is complete at 77 K even under highly basic conditions. Formation of RND* in D(2)O solutions confirms water as the source of the NH proton in the RNH*. Our assignments to these radicals are aided by DFT calculations for hyperfine coupling constants that closely match the experimental values. On annealing to higher temperatures (ca. 160-170 K), RNH* undergoes bimolecular hydrogen abstraction reactions from the thymine methyl group and the sugar moiety resulting in the formation of the thymine allyl radical (UCH(2)*) and two sugar radicals, C3'* and C5'*. RNH* also results in one-electron oxidation of the guanine base in 3'-AZG. This work provides a potential mechanism for the reported radiosensitization effects of AZT.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | | |
Collapse
|
47
|
Kumar A, Sevilla MD. Proton-coupled electron transfer in DNA on formation of radiation-produced ion radicals. Chem Rev 2010; 110:7002-23. [PMID: 20443634 PMCID: PMC2947616 DOI: 10.1021/cr100023g] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | | |
Collapse
|
48
|
El-Ghayoury A, Mézière C, Simonov S, Zorina L, Cobián M, Canadell E, Rovira C, Náfrádi B, Sipos B, Forró L, Batail P. A Neutral Zwitterionic Molecular Solid. Chemistry 2010; 16:14051-9. [DOI: 10.1002/chem.201001875] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Kobayashi K. Evidence of formation of adenine dimer cation radical in DNA: the importance of adenine base stacking. J Phys Chem B 2010; 114:5600-4. [PMID: 20369809 DOI: 10.1021/jp100589w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deprotonation of the adenine (A) base in both mononucleotide and oligonucleotide (ODN) was measured by nanosecond pulse radiolysis. The cation radical (A(+*)) of deoxyadenosine (dA), produced by oxidation with SO(4)(-*), rapidly deprotonated to form the neutral A radical (A(- H)(*)) with a rate constant of 2.0 x 10(7) s(-1) and a pK(a) value of 4.2, as determined by transient spectroscopy. A similar process was observed in experiments performed on a variety of double-stranded ODNs containing adenine x thymine (A x T) base pairs. The transient spectrum of A(+)(*) in an ODN composed of alternating A x T pairs was essentially identical to that of free dA and differed from the spectra of ODNs containing AA and AAA. In contrast, the spectra of A(- H)(*) were not affected by the sequence. These results suggest that the positive charge on A(+)(*) in ODNs is delocalized as the dimer is stabilized by pi-orbital stacking between adjacent A's. The rate constants for deprotonation of A(+)(*) in ODNs containing AA and AAA (0.9-1.1 x 10(7) s(-1)) were a factor of 2 smaller than the rate constants for deprotonation of A(+)(*) in ODNs containing alternating A x T and dA (2.0 x 10(7) s(-1)). This suggests that the formation of a charge resonance stabilized dimer AA(+)(*) in DNA produced a significant barrier to deprotonation.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki Osaka 567-0047, Japan.
| |
Collapse
|
50
|
Parker AW, Lin CY, George MW, Towrie M, Kuimova MK. Infrared characterization of the guanine radical cation: finger printing DNA damage. J Phys Chem B 2010; 114:3660-7. [PMID: 20175506 DOI: 10.1021/jp9106958] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidation of DNA represents a major pathway of genetic mutation. We have applied infrared spectroscopy in 77 K glass with supporting density functional theory (DFT) calculations (EDF1/6-31+G*) to provide an IR signature of the guanine radical cation G(+*), formed as a result of 193 nm photoionization of DNA. Deprotonation of this species to produce the neutral radical G(-H)(*) does not occur in 77 K glass. DFT calculations indicate that the formation of G(+*) within the double helix does not significantly perturb the geometry of the G/C pair, even though there is a significant movement of the N(1) proton away from G toward C. However, this is in stark contrast to drastic changes that are expected if full deprotonation of G/C occurs, producing the G(-H)(*)/C pair. These results are discussed in light of solution-phase time-resolved IR spectroscopic studies and demonstrate the power of IR to follow dynamics of DNA damage in natural environments.
Collapse
Affiliation(s)
- Anthony W Parker
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK.
| | | | | | | | | |
Collapse
|