1
|
Jeon H, Kim JH, Kim S. Recent asymmetric synthesis of natural products bearing an α-tertiary amine moiety via temporary chirality induction strategies. Nat Prod Rep 2024; 41:228-250. [PMID: 37846620 DOI: 10.1039/d3np00032j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Covering: 2013 to 2023The α-tertiary amine moiety is a common structural motif in natural alkaloids and is frequently associated with intriguing biological activities and inherent synthetic challenges. A major hurdle in the total synthesis of these alkaloids is the asymmetric construction of the α-tertiary amine moiety. Temporary chirality inductions have been effective strategies employed to address this issue, particularly in natural product synthesis. The temporary chirality induction strategies in α-tertiary amine synthesis can be broadly classified into three categories based on the types of temporary chirality involved: Seebach's self-regeneration of stereocenters (SRS), C-to-N-to-C chirality transfer, and memory of chirality (MOC). This review highlights the recent advancements in temporary chirality induction strategies for the total synthesis of α-tertiary amine-containing natural products between 2013 and 2023.
Collapse
Affiliation(s)
- Hongjun Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jae Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:675-702. [PMID: 37615708 DOI: 10.1007/s00210-023-02674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India.
| | - Apurba Sinhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
3
|
Kumar S, Arora A, Sapra S, Kumar R, Singh BK, Singh SK. Recent advances in the synthesis and utility of thiazoline and its derivatives. RSC Adv 2024; 14:902-953. [PMID: 38174252 PMCID: PMC10759189 DOI: 10.1039/d3ra06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Thiazolines and their derivatives hold significant importance in the field of medicinal chemistry due to their promising potential as pharmaceutical agents. These molecular entities serve as critical scaffolds within numerous natural products, including curacin A, thiangazole, and mirabazole, and play a vital role in a wide array of physiological reactions. Their pharmacological versatility encompasses anti-HIV, neurological, anti-cancer, and antibiotic activities. Over the course of recent decades, researchers have extensively explored and developed analogs of these compounds, uncovering compelling therapeutic properties such as antioxidant, anti-tumor, anti-microbial, and anti-inflammatory effects. Consequently, thiazoline-based compounds have emerged as noteworthy targets for synthetic endeavors. In this review, we provide a comprehensive summary of recent advancements in the synthesis of thiazolines and thiazoline-based derivatives, along with an exploration of their diverse potential applications across various scientific domains.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Shivani Sapra
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Rajesh Kumar
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur 842002 India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi Delhi-110007 India
| |
Collapse
|
4
|
Paquette AR, Boddy CN. Macrocyclization strategies for the total synthesis of cyclic depsipeptides. Org Biomol Chem 2023; 21:8043-8053. [PMID: 37750186 DOI: 10.1039/d3ob01229h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cyclic depsipeptides are an important class of peptide natural products that are defined by the presence of ester and amide bonds within the macrocycle. The structural diversity of depsipeptides has required the development of a broad range of synthetic strategies to access these biologically active compounds. Solid phase peptide synthesis (SPPS) strategies have been an invaluable tool in their synthesis. The key aspect of their synthesis is the macrocyclization strategy. Three main strategies are used, solution phase macrolactamization of acyclic ester containing peptide, on-resin macrolactamization of a sidechain-anchored peptide, and the solution phase macrolactonization of a linear peptide. Additionally, biocatalysts have been used to produce these compounds in a regio- and chemo-selective manner. Each compound offers unique challenges, requiring careful synthetic design to avoid undesirable side reactivity or unwanted epimerization during the esterification and macrocyclizing steps. This focused review analyzes these three strategies for cyclic depsipeptide natural product total synthesis with selected examples from the literature between 2001-2023.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
5
|
Abdallah DI, de Araujo ED, Patel NH, Hasan LS, Moriggl R, Krämer OH, Gunning PT. Medicinal chemistry advances in targeting class I histone deacetylases. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:757-779. [PMID: 37711592 PMCID: PMC10497394 DOI: 10.37349/etat.2023.00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 09/16/2023] Open
Abstract
Histone deacetylases (HDACs) are a class of zinc (Zn)-dependent metalloenzymes that are responsible for epigenetic modifications. HDACs are largely associated with histone proteins that regulate gene expression at the DNA level. This tight regulation is controlled by acetylation [via histone acetyl transferases (HATs)] and deacetylation (via HDACs) of histone and non-histone proteins that alter the coiling state of DNA, thus impacting gene expression as a downstream effect. For the last two decades, HDACs have been studied extensively and indicated in a range of diseases where HDAC dysregulation has been strongly correlated with disease emergence and progression-most prominently, cancer, neurodegenerative diseases, HIV, and inflammatory diseases. The involvement of HDACs as regulators in these biochemical pathways established them as an attractive therapeutic target. This review summarizes the drug development efforts exerted to create HDAC inhibitors (HDACis), specifically class I HDACs, with a focus on the medicinal chemistry, structural design, and pharmacology aspects of these inhibitors.
Collapse
Affiliation(s)
- Diaaeldin I. Abdallah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 2E8, Canada
| | - Elvin D. de Araujo
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Naman H. Patel
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Lina S. Hasan
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 2E8, Canada
| |
Collapse
|
6
|
Zhang Q, Yang J, Hu N, Liu J, Yu H, Pan H, Chen D, Ruan C. Small-molecule amines: a big role in the regulation of bone homeostasis. Bone Res 2023; 11:40. [PMID: 37482549 PMCID: PMC10363555 DOI: 10.1038/s41413-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/25/2023] Open
Abstract
Numerous small-molecule amines (SMAs) play critical roles in maintaining bone homeostasis and promoting bone regeneration regardless of whether they are applied as drugs or biomaterials. On the one hand, SMAs promote bone formation or inhibit bone resorption through the regulation of key molecular signaling pathways in osteoblasts/osteoclasts; on the other hand, owing to their alkaline properties as well as their antioxidant and anti-inflammatory features, most SMAs create a favorable microenvironment for bone homeostasis. However, due to a lack of information on their structure/bioactivity and underlying mechanisms of action, certain SMAs cannot be developed into drugs or biomaterials for bone disease treatment. In this review, we thoroughly summarize the current understanding of SMA effects on bone homeostasis, including descriptions of their classifications, biochemical features, recent research advances in bone biology and related regulatory mechanisms in bone regeneration. In addition, we discuss the challenges and prospects of SMA translational research.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Yang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Juan Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Yu
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, 518102, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Ahmed S, Alam W, Alsharif KF, Aschner M, Alzahrani FM, Saso L, Khan H. Therapeutic potential of marine peptides in malignant melanoma. ENVIRONMENTAL RESEARCH 2023; 227:115771. [PMID: 36967001 DOI: 10.1016/j.envres.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 05/08/2023]
Abstract
Malignant melanoma is the most dangerous type of skin cancer. It is becoming more common globally and is increasingly resistant to treatment options. Despite extensive research into its pathophysiology, there are still no proven cures for metastatic melanoma. Unfortunately, current treatments are frequently ineffective and costly, and have several adverse effects. Natural substances have been extensively researched for their anti-MM capabilities. Chemoprevention and adjuvant therapy with natural products is an emerging strategy to prevent, cure or treat melanoma. Numerous prospective drugs are found in aquatic species, providing a plentiful supply of lead cytotoxic chemicals for cancer treatment. Anticancer peptides are less harmful to healthy cells and cure cancer through several different methods, such as altered cell viability, apoptosis, angiogenesis/metastasis suppression, microtubule balance disturbances and targeting lipid composition of the cancer cell membrane. This review addresses marine peptides as effective and safe treatments for MM and details their molecular mechanisms of action.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Fuad M Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza University, 00185, Rome, Italy.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
8
|
Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules 2022; 27:molecules27154814. [PMID: 35956762 PMCID: PMC9369884 DOI: 10.3390/molecules27154814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The marine environment is highly diverse, each living creature fighting to establish and proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers representing a wonderful source of biologically active molecules aimed to communicate, defend from predators, or compete. Studies on these molecules’ origins and activities have been systematic, although much is still to be discovered. Their broad chemical diversity results from integrating peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transformations resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplastic, and antiproliferative activity with potential pharmacological uses. Some are currently under clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with a well-known range of side effects, making anticancer drug research from new sources, such as marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite family, their chemical structures, and the mechanisms of action underlying their biological and pharmacological activities.
Collapse
|
9
|
Novel histone deacetylase inhibitor CT-101 induces γ-globin gene expression in sickle erythroid progenitors with targeted epigenetic effects. Blood Cells Mol Dis 2022; 93:102626. [PMID: 34856533 PMCID: PMC9733664 DOI: 10.1016/j.bcmd.2021.102626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Induction of fetal hemoglobin (HbF) expression ameliorates the clinical severity and prolong survival in persons with sickle cell disease (SCD). Hydroxyurea (HU) is the only FDA-approved HbF inducer however, additional therapeutics that produce an additive effect in SCD are needed. To this end, development of potent Class I histone deacetylase inhibitors (HDACi) for HbF induction represents a rational molecularly targeted approach. In studies here, we evaluated CT-101, a novel Class I-restricted HDACi, a Largazole derivative, for pharmacodynamics, cytotoxicity, and targeted epigenetic effects. In SCD-derived erythroid progenitors, CT-101 induced HbF expression with additive activity in combination with HU. CT-101 preferentially activated γ-globin gene transcription, increased acetylated histone H3 levels, and conferred an open chromatin conformation in the γ-globin promoter. These data indicate CT-101 represents a strong potential candidate as a molecularly targeted inducer of HbF.
Collapse
|
10
|
Bhamboo P, Bera S, Mondal D. TiCl
4
‐Promoted Asymmetric Aldol Reaction of Oxazolidinones and its Sulphur‐Congeners for Natural Product Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prateek Bhamboo
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
11
|
Kurisawa N, Otomo K, Iwasaki A, Jeelani G, Nozaki T, Suenaga K. Isolation and Total Synthesis of Kinenzoline, an Antitrypanosomal Linear Depsipeptide Isolated from a Marine Salileptolyngbya sp. Cyanobacterium. J Org Chem 2021; 86:12528-12536. [PMID: 34463094 DOI: 10.1021/acs.joc.1c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinenzoline (1), a new linear depsipeptide, was isolated from a marine Salileptolyngbya sp. cyanobacterium. Its structure was elucidated by spectroscopic analyses and degradation reactions. In addition, we achieved a total synthesis of 1 and confirmed its structure. Kinenzoline (1) showed highly selective antiproliferative activity against the causative organism of sleeping sickness, Trypanosoma brucei rhodesiense (IC50 4.5 μM), compared to normal human cells (WI-38, IC50 > 100 μM). Kinenzoline (1) is a promising lead compound for the development of new antitrypanosomal drugs.
Collapse
Affiliation(s)
- Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Keisuke Otomo
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
12
|
Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. Mar Drugs 2021; 19:md19090488. [PMID: 34564150 PMCID: PMC8472172 DOI: 10.3390/md19090488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.
Collapse
Affiliation(s)
- Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China;
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence: (S.J.); (G.Z.)
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.J.); (G.Z.)
| |
Collapse
|
13
|
Karagiannis D, Rampias T. HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity. Cancers (Basel) 2021; 13:3575. [PMID: 34298787 PMCID: PMC8307174 DOI: 10.3390/cancers13143575] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Intra-tumoral heterogeneity presents a major obstacle to cancer therapeutics, including conventional chemotherapy, immunotherapy, and targeted therapies. Stochastic events such as mutations, chromosomal aberrations, and epigenetic dysregulation, as well as micro-environmental selection pressures related to nutrient and oxygen availability, immune infiltration, and immunoediting processes can drive immense phenotypic variability in tumor cells. Here, we discuss how histone deacetylase inhibitors, a prominent class of epigenetic drugs, can be leveraged to counter tumor heterogeneity. We examine their effects on cellular processes that contribute to heterogeneity and provide insights on their mechanisms of action that could assist in the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
15
|
Cruz DL, Pipalia N, Mao S, Gadi D, Liu G, Grigalunas M, O'Neill M, Quinn TR, Kipper A, Ekebergh A, Dimmling A, Gartner C, Melancon BJ, Wagner FF, Holson E, Helquist P, Wiest O, Maxfield FR. Inhibition of Histone Deacetylases 1, 2, and 3 Enhances Clearance of Cholesterol Accumulation in Niemann-Pick C1 Fibroblasts. ACS Pharmacol Transl Sci 2021; 4:1136-1148. [PMID: 34151204 PMCID: PMC8204796 DOI: 10.1021/acsptsci.1c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/29/2022]
Abstract
![]()
Niemann-Pick disease type C1 (NPC1) is a rare genetic cholesterol storage disorder
caused by mutations in the NPC1 gene. Mutations in this transmembrane
late endosome protein lead to loss of normal cholesterol efflux from late endosomes and
lysosomes. It has been shown that broad spectrum histone deacetylase inhibitors
(HDACi's) such as Vorinostat correct the cholesterol accumulation phenotype in the
majority of NPC1 mutants tested in cultured cells. In order to determine the optimal
specificity for HDACi correction of the mutant NPC1s, we screened 76 HDACi's of varying
specificity. We tested the ability of these HDACi's to correct the excess accumulation
of cholesterol in patient fibroblast cells that homozygously express
NPC1I1061T, the most common mutation. We
determined that inhibition of HDACs 1, 2, and 3 is important for correcting the defect,
and combined inhibition of all three is needed to achieve the greatest effect,
suggesting a need for multiple effects of the HDACi treatments. Identifying the specific
HDACs involved in the process of regulating cholesterol trafficking in NPC1 will help to
focus the search for more specific druggable targets.
Collapse
Affiliation(s)
- Dana L Cruz
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Nina Pipalia
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Shu Mao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Deepti Gadi
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Gang Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Michael Grigalunas
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew O'Neill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Taylor R Quinn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andi Kipper
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andreas Ekebergh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alexander Dimmling
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carlos Gartner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bruce J Melancon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Florence F Wagner
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Edward Holson
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,KDAc Therapeutics, Cambridge, Massachusetts 02142, United States
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, P.R. China
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
16
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
17
|
Moreno-Yruela C, Bæk M, Vrsanova AE, Schulte C, Maric HM, Olsen CA. Hydroxamic acid-modified peptide microarrays for profiling isozyme-selective interactions and inhibition of histone deacetylases. Nat Commun 2021; 12:62. [PMID: 33397936 PMCID: PMC7782793 DOI: 10.1038/s41467-020-20250-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Histones control gene expression by regulating chromatin structure and function. The posttranslational modifications (PTMs) on the side chains of histones form the epigenetic landscape, which is tightly controlled by epigenetic modulator enzymes and further recognized by so-called reader domains. Histone microarrays have been widely applied to investigate histone-reader interactions, but not the transient interactions of Zn2+-dependent histone deacetylase (HDAC) eraser enzymes. Here, we synthesize hydroxamic acid-modified histone peptides and use them in femtomolar microarrays for the direct capture and detection of the four class I HDAC isozymes. Follow-up functional assays in solution provide insights into their suitability to discover HDAC substrates and inhibitors with nanomolar potency and activity in cellular assays. We conclude that similar hydroxamic acid-modified histone peptide microarrays and libraries could find broad application to identify class I HDAC isozyme-specific substrates and facilitate the development of isozyme-selective HDAC inhibitors and probes.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Adela-Eugenie Vrsanova
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.,Institute of Applied Biosciences & Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, D-76131, Karlsruhe, Germany.,Division of Proteomics of Stem Cells and Cancer, DKFZ German Cancer Research Center, Im Neuenhemier Feld 581, D-69120, Heidelberg, Germany
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D-97080, Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D-97080, Würzburg, Germany.
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
18
|
Al-Awadhi FH, Salvador-Reyes LA, Elsadek LA, Ratnayake R, Chen QY, Luesch H. Largazole is a Brain-Penetrant Class I HDAC Inhibitor with Extended Applicability to Glioblastoma and CNS Diseases. ACS Chem Neurosci 2020; 11:1937-1943. [PMID: 32559056 PMCID: PMC7390227 DOI: 10.1021/acschemneuro.0c00093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Largazole is a potent class I selective histone deacetylase inhibitor prodrug with anticancer activity against solid tumors in preclinical models. Largazole possesses in vitro activity against glioblastoma multiforme (GBM) cells and sufficiently crosses the blood-brain barrier based on measurement of the active species, largazole thiol, to achieve therapeutically relevant concentrations in the mouse brain. The effective dose resulted in pronounced functional responses on the transcript level based on RNA sequencing and quantitative polymerase chain reaction after reverse transcription (RT-qPCR), revealing desirable expression changes of genes related to neuroprotection, including Bdnf and Pax6 upregulation, extending the applicability of largazole to the treatment of brain cancer and neurodegenerative disorders. The largazole-induced modulation of Pax6 unifies both activities, since Pax6 expression suppresses GBM proliferation and invasion and inversely correlates with GBM tumor grade, while it is also implicated in neurogenesis, neuronal plasticity, and cognitive ability. Our results suggest that largazole could be repurposed for diseases of the brain.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Lilibeth A. Salvador-Reyes
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, 1100 Philippines
| | - Lobna A. Elsadek
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
19
|
Zhang B, Ruan ZW, Luo D, Zhu Y, Ding T, Sui Q, Lei X. Unexpected Enhancement of HDACs Inhibition by MeS Substitution at C-2 Position of Fluoro Largazole. Mar Drugs 2020; 18:md18070344. [PMID: 32629787 PMCID: PMC7401273 DOI: 10.3390/md18070344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022] Open
Abstract
Given our previous finding that fluorination at the C18 position of largazole showed reasonably good tolerance towards inhibitory activity and selectivity of histone deacetylases (HDACs), further modification on the valine residue in the fluoro-largazole's macrocyclic moiety with S-Me l-Cysteine or Glycine residue was performed. While the Glycine-modified fluoro analog showed poor activity, the S-Me l-Cysteine-modified analog emerged to be a very potent HDAC inhibitor. Unlike all previously reported C2-modified compounds in the largazole family (including our recent fluoro-largazole analogs) where replacement of the Val residue has failed to provide any potency improvement, the S-Me l-Cysteine-modified analog displayed significantly enhanced (five-nine-fold) inhibition of all the tested HDACs while maintaining the selectivity of HDAC1 over HDAC6, as compared to largazole thiol. A molecular modeling study provided rational explanation and structural evidence for the enhanced inhibitory activity. This new finding will aid the design of novel potent HDAC inhibitors.
Collapse
Affiliation(s)
- Bingbing Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Zhu-Wei Ruan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Dongdong Luo
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Yueyue Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Tingbo Ding
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Qiang Sui
- China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Pudong Zone, Shanghai 201203, China;
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Correspondence: ; Tel.: +86-021-51980128
| |
Collapse
|
20
|
Zang X, Peraro L, Davison RT, Blum TR, Vallabhaneni D, Fennell CE, Cramer SL, Shah HK, Wholly DM, Fink EA, Sivak JT, Ingalls KM, Herr CT, Lawson VE, Burnett MR, Slade DJ, Cole KE, Carle SA, Miller JS. Synthesis and Biological Evaluation of a Depsipeptidic Histone Deacetylase Inhibitor via a Generalizable Approach Using an Optimized Latent Thioester Solid-Phase Linker. J Org Chem 2020; 85:8253-8260. [DOI: 10.1021/acs.joc.0c00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaoyu Zang
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Leila Peraro
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Ryan T. Davison
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Travis R. Blum
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Deepak Vallabhaneni
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Caitlyn E. Fennell
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Stephanie L. Cramer
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Heli K. Shah
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Deirdre M. Wholly
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Elissa A. Fink
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Jacob T. Sivak
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Kathryn M. Ingalls
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Chelsea T. Herr
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Vernon E. Lawson
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Matthew R. Burnett
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - David J. Slade
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Kathryn E. Cole
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Sigrid A. Carle
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Justin S. Miller
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| |
Collapse
|
21
|
Discovery of class I histone deacetylase inhibitors based on romidpesin with promising selectivity for cancer cells. Future Med Chem 2020; 12:311-323. [DOI: 10.4155/fmc-2019-0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Class I histone deacetylases (HDACs) are considered to be promising anticancer targets, but selective inhibition of class I HDAC isoforms remains a challenge. Methods & results: Previously, we obtained a selective class I HDAC inhibitor 9 based on a macrocyclic HDAC inhibitor Romidpesin. As our continuous efforts, a library of novel cyclicdepsipeptides based on 9 was established using a convergent synthesis strategy. The most active compounds 10, 16 and 19 selectively inhibit class I HDACs and exhibit promising nanomolar antiproliferative activities against several cancer cell lines with excellent selectivity toward cancer cells over normal cells. Besides, compound 10 demonstrates excellent antitumor effects in human prostate carcinoma PC3 xenograft models with no observed toxicity. Conclusion: These cyclicdepsipeptides show great therapeutic potential as novel anticancer agents for clinical translation.
Collapse
|
22
|
Mervinetsky E, Alshanski I, Tadi KK, Dianat A, Buchwald J, Gutierrez R, Cuniberti G, Hurevich M, Yitzchaik S. A zinc selective oxytocin based biosensor. J Mater Chem B 2019; 8:155-160. [PMID: 31782469 DOI: 10.1039/c9tb01932d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxytocin is a peptide hormone with high affinity to both Zn2+ and Cu2+ ions compared to other metal ions. This affinity makes oxytocin an attractive recognition layer for monitoring the levels of these essential ions in biofluids. Native oxytocin cannot differentiate between Cu2+ and Zn2+ ions and hence it is not useful for sensing Zn2+ in the presence of Cu2+. We elucidated the effect of the terminal amine group of oxytocin on the affinity toward Cu2+ using theoretical calculations. We designed a new Zn2+ selective oxytocin-based biosensor that utilizes the terminal amine for surface anchoring, also preventing the response to Cu2+. The biosensor shows exceptional selectivity and very high sensitivity to Zn2+ in impedimetric biosensing. This study shows for the first time an oxytocin derived sensor that can be used directly for sensing Zn2+ in the presence of Cu2+.
Collapse
Affiliation(s)
- Evgeniy Mervinetsky
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Israel Alshanski
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Kiran Kumar Tadi
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany.
| | - Jörg Buchwald
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany.
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany. and Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden, Germany and Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany
| | - Mattan Hurevich
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Shlomo Yitzchaik
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
23
|
Zhang B, Liu J, Gao D, Yu X, Wang J, Lei X. A fluorine scan on the Zn2+-binding thiolate side chain of HDAC inhibitor largazole: Synthesis, biological evaluation, and molecular modeling. Eur J Med Chem 2019; 182:111672. [DOI: 10.1016/j.ejmech.2019.111672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
24
|
Alshanski I, Blaszkiewicz J, Mervinetsky E, Rademann J, Yitzchaik S, Hurevich M. Sulfation Patterns of Saccharides and Heavy Metal Ion Binding. Chemistry 2019; 25:12083-12090. [DOI: 10.1002/chem.201901538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Joanna Blaszkiewicz
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Evgeniy Mervinetsky
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Jörg Rademann
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Mattan Hurevich
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| |
Collapse
|
25
|
Sanchez GJ, Richmond PA, Bunker EN, Karman SS, Azofeifa J, Garnett AT, Xu Q, Wheeler GE, Toomey CM, Zhang Q, Dowell RD, Liu X. Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers. Nucleic Acids Res 2019; 46:1756-1776. [PMID: 29240919 PMCID: PMC5829637 DOI: 10.1093/nar/gkx1225] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are known to alter gene expression by both up- and down-regulation of protein-coding genes in normal and cancer cells. However, the exact regulatory mechanisms of action remain uncharacterized. Here we investigated genome wide dose-dependent epigenetic and transcriptome changes in response to HDACI largazole in a transformed and a non-transformed cell line. Exposure to low nanomolar largazole concentrations (<GI50) predominantly resulted in upregulation of gene transcripts whereas higher largazole doses (≥GI50) triggered a general decrease in mRNA accumulation. Largazole induces elevation of histone H3 acetylation at Lys-9 and Lys-27 along many gene bodies but does not correlate with up- or down-regulation of the associated transcripts. A higher dose of largazole results in more RNA polymerase II pausing at the promoters of actively transcribed genes and cell death. The most prevalent changes associated with transcriptional regulation occur at distal enhancer elements. Largazole promotes H3K27 acetylation at a subset of poised enhancers and unexpectedly, we also found active enhancers that become decommissioned in a dose and cell type-dependent manner. In particular, largazole decreases RNA polymerase II accumulation at super-enhancers (SEs) and preferentially suppresses SE-driven transcripts that are associated with oncogenic activities in transformed cells.
Collapse
Affiliation(s)
- Gilson J Sanchez
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Phillip A Richmond
- BioFrontiers Institute and IQ Biology Program, University of Colorado-Boulder, Boulder, CO 80303, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Eric N Bunker
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Samuel S Karman
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Joseph Azofeifa
- BioFrontiers Institute and IQ Biology Program, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Aaron T Garnett
- Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Quanbin Xu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Graycen E Wheeler
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Cathryn M Toomey
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Qinghong Zhang
- Department of Dermatology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Robin D Dowell
- BioFrontiers Institute and IQ Biology Program, University of Colorado-Boulder, Boulder, CO 80303, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| |
Collapse
|
26
|
Zhang B, Shan G, Zheng Y, Yu X, Ruan ZW, Li Y, Lei X. Synthesis and Preliminary Biological Evaluation of Two Fluoroolefin Analogs of Largazole Inspired by the Structural Similarity of the Side Chain Unit in Psammaplin A. Mar Drugs 2019; 17:md17060333. [PMID: 31163697 PMCID: PMC6628159 DOI: 10.3390/md17060333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Largazole, isolated from a marine Cyanobacterium of the genus Symploca, is a potent and selective Class I HDAC (histone deacetylation enzymes) inhibitor. This natural 16-membered macrocyclic depsipeptide features an interesting side chain unit, namely 3-hydroxy-7-mercaptohept-4-enoic acid, which occurs in many other natural sulfur-containing HDAC inhibitors. Notably, one similar fragment, where the amide moiety replaces the trans alkene moiety, appears in Psammaplin A, another marine natural product with potent HDAC inhibitory activities. Inspired by such a structural similarity, we hypothesized the fluoroolefin moiety would mimic both the alkene moiety in Largazole and the amide moiety in Psammaplin A, and thus designed and synthesized two novel fluoro olefin analogs of Largazole. The preliminary biological assays showed that the fluoro analogs possessed comparable Class I HDAC inhibitory effects, indicating that this kind of modification on the side chain of Largazole was tolerable.
Collapse
Affiliation(s)
- Bingbing Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Guangsheng Shan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yinying Zheng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xiaolin Yu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhu-Wei Ruan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yang Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
27
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
28
|
Itoh H, Inoue M. Comprehensive Structure–Activity Relationship Studies of Macrocyclic Natural Products Enabled by Their Total Syntheses. Chem Rev 2019; 119:10002-10031. [DOI: 10.1021/acs.chemrev.9b00063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
This review describes a selection of macrocyclic natural products and structurally modified analogs containing peptidic and non-peptidic elements as structural features that potentially modulate cellular permeability. Examples range from exclusively peptidic structures like cyclosporin A or phepropeptins to compounds with mostly non-peptidic character, such as telomestatin or largazole. Furthermore, semisynthetic approaches and synthesis platforms to generate general and focused libraries of compounds at the interface of cyclic peptides and non-peptidic macrocycles are discussed.
Collapse
|
31
|
Sun S, Oliveira BL, Jiménez‐Osés G, Bernardes GJL. Radical-Mediated Thiol-Ene Strategy: Photoactivation of Thiol-Containing Drugs in Cancer Cells. Angew Chem Int Ed Engl 2018; 57:15832-15835. [PMID: 30300959 PMCID: PMC6391964 DOI: 10.1002/anie.201811338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Photoactivated drugs provide an opportunity to improve efficacy alongside reducing side-effects in the treatment of severe diseases such as cancer. Described herein is a photoactivation decaging method of isobutylene-caged thiols through a UV-initiated thiol-ene reaction. The method was demonstrated with an isobutylene-caged cysteine, cyclic disulfide-peptide, and thiol-containing drug, all of which were rapidly and efficiently released under mild UV irradiation in the presence of thiol sources and a photoinitiator. Importantly, it is shown that the activity of histone deacetylase inhibitor largazole can be switched off when stapled, but selectively switched on within cancer cells when irradiated with non-phototoxic light.
Collapse
Affiliation(s)
- Shuang Sun
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Bruno L. Oliveira
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Gonzalo Jiménez‐Osés
- Departamento de Química.Centro de Investigación en Síntesis Química.Universidad de La Rioja26006LogroñoSpain
| | - Gonçalo J. L. Bernardes
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| |
Collapse
|
32
|
Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes (Basel) 2018; 9:genes9110557. [PMID: 30453533 PMCID: PMC6267108 DOI: 10.3390/genes9110557] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
To date, small molecules and macromolecules, including antibodies, have been the most pursued substances in drug screening and development efforts. Despite numerous favorable features as a drug, these molecules still have limitations and are not complementary in many regards. Recently, peptide-based chemical structures that lie between these two categories in terms of both structural and functional properties have gained increasing attention as potential alternatives. In particular, peptides in a circular form provide a promising scaffold for the development of a novel drug class owing to their adjustable and expandable ability to bind a wide range of target molecules. In this review, we discuss recent progress in methodologies for peptide cyclization and screening and use of bioactive cyclic peptides in various applications.
Collapse
|
33
|
Sun S, Oliveira BL, Jiménez-Osés G, Bernardes GJL. Radical-Mediated Thiol-Ene Strategy: Photoactivation of Thiol-Containing Drugs in Cancer Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shuang Sun
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
| | - Bruno L. Oliveira
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
| | - Gonzalo Jiménez-Osés
- Departamento de Química.; Centro de Investigación en Síntesis Química.; Universidad de La Rioja; 26006 Logroño Spain
| | - Gonçalo J. L. Bernardes
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
34
|
Amin SA, Adhikari N, Jha T. Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Yu X, Zhang B, Shan G, Wu Y, Yang FL, Lei X. Synthesis of the molecular hybrid inspired by Largazole and Psammaplin A. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Chen QY, Chaturvedi PR, Luesch H. Process Development and Scale-up Total Synthesis of Largazole, a Potent Class I Histone Deacetylase Inhibitor. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00352] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi-Yin Chen
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| | - Pravin R. Chaturvedi
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| | - Hendrik Luesch
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| |
Collapse
|
37
|
Herr DJ, Baarine M, Aune SE, Li X, Ball LE, Lemasters JJ, Beeson CC, Chou JC, Menick DR. HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. J Mol Cell Cardiol 2017; 114:309-319. [PMID: 29224834 DOI: 10.1016/j.yjmcc.2017.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/15/2023]
Abstract
RATIONALE Recent evidence indicates that histone deacetylase enzymes (HDACs) contribute to ischemia reperfusion (I/R) injury, and pan-HDAC inhibitors have been shown to be cardioprotective when administered either before an ischemic insult or during reperfusion. We have shown previously that selective inhibition of class I HDACs provides superior cardioprotection when compared to pan-HDAC inhibition in a pretreatment model, but selective class I HDAC inhibition has not been tested during reperfusion, and specific targets of class I HDACs in I/R injury have not been identified. OBJECTIVE We hypothesized that selective inhibition of class I HDACs with the drug MS-275 (entinostat) during reperfusion would improve recovery from I/R injury in the first hour of reperfusion. METHODS AND RESULTS Hearts from male Sprague-Dawley rats were subjected to ex vivo I/R injury±MS-275 class I HDAC inhibition during reperfusion alone. MS-275 significantly attenuated I/R injury, as indicated by improved LV function and tissue viability at the end of reperfusion. Unexpectedly, we observed that HDAC1 is present in the mitochondria of cardiac myocytes, but not fibroblasts or endothelial cells. We then designed mitochondria-restricted and mitochondria-excluded HDAC inhibitors, and tested both in our ex vivo I/R model. The selective inhibition of mitochondrial HDAC1 attenuated I/R injury to the same extent as MS-275, whereas the mitochondrial-excluded inhibitor did not. Further assays demonstrated that these effects are attributable to a decrease in SDHA activity and subsequent metabolic ROS production in reperfusion. CONCLUSIONS We demonstrate for the first time that HDAC1 is present within the mitochondria of cardiac myocytes, and mitochondrial HDAC1 contributes significantly to I/R injury within the first hour of reperfusion.
Collapse
Affiliation(s)
- Daniel J Herr
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Mauhamad Baarine
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Sverre E Aune
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - John J Lemasters
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - James C Chou
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425, United States.
| |
Collapse
|
38
|
Randino R, Gazzerro P, Mazitschek R, Rodriquez M. Synthesis and biological evaluation of Santacruzamate-A based analogues. Bioorg Med Chem 2017; 25:6486-6491. [DOI: 10.1016/j.bmc.2017.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 01/17/2023]
|
39
|
Kitir B, Maolanon AR, Ohm RG, Colaço AR, Fristrup P, Madsen AS, Olsen CA. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities. Biochemistry 2017; 56:5134-5146. [DOI: 10.1021/acs.biochem.7b00725] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Betül Kitir
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Alex R. Maolanon
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ragnhild G. Ohm
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ana R. Colaço
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Peter Fristrup
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Andreas S. Madsen
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
40
|
Combinations of isoform-targeted histone deacetylase inhibitors and bryostatin analogues display remarkable potency to activate latent HIV without global T-cell activation. Sci Rep 2017; 7:7456. [PMID: 28785069 PMCID: PMC5547048 DOI: 10.1038/s41598-017-07814-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/05/2017] [Indexed: 12/26/2022] Open
Abstract
Current antiretroviral therapy (ART) for HIV/AIDS slows disease progression by reducing viral loads and increasing CD4 counts. Yet ART is not curative due to the persistence of CD4+ T-cell proviral reservoirs that chronically resupply active virus. Elimination of these reservoirs through the administration of synergistic combinations of latency reversing agents (LRAs), such as histone deacetylase (HDAC) inhibitors and protein kinase C (PKC) modulators, provides a promising strategy to reduce if not eradicate the viral reservoir. Here, we demonstrate that largazole and its analogues are isoform-targeted histone deacetylase inhibitors and potent LRAs. Significantly, these isoform-targeted HDAC inhibitors synergize with PKC modulators, namely bryostatin-1 analogues (bryologs). Implementation of this unprecedented LRA combination induces HIV-1 reactivation to unparalleled levels and avoids global T-cell activation within resting CD4+ T-cells.
Collapse
|
41
|
Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally Absorbed Cyclic Peptides. Chem Rev 2017; 117:8094-8128. [PMID: 28541045 DOI: 10.1021/acs.chemrev.6b00838] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability. Here we describe 125 cyclic peptides containing four to thirty-seven amino acids that are orally absorbed by mammals. Cyclization minimizes degradation in the gut, blood, and tissues by removing cleavable N- and C-termini and by shielding components from metabolic enzymes. Cyclization also folds peptides into bioactive conformations that determine exposure of polar atoms to solvation by water and lipids and therefore can influence oral bioavailability. Key chemical properties thought to influence oral absorption and bioavailability are analyzed, including molecular weight, octanol-water partitioning, hydrogen bond donors/acceptors, rotatable bonds, and polar surface area. The cyclic peptides violated to different degrees all of the limits traditionally considered to be important for oral bioavailability of drug-like small molecules, although fewer hydrogen bond donors and reduced flexibility generally favored oral absorption.
Collapse
Affiliation(s)
- Daniel S Nielsen
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Nicholas E Shepherd
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Martin J Stoermer
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
42
|
Kim B, Ratnayake R, Lee H, Shi G, Zeller SL, Li C, Luesch H, Hong J. Synthesis and biological evaluation of largazole zinc-binding group analogs. Bioorg Med Chem 2017; 25:3077-3086. [PMID: 28416100 DOI: 10.1016/j.bmc.2017.03.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 11/24/2022]
Abstract
Histone acetylation is an extensively investigated post-translational modification that plays an important role as an epigenetic regulator. It is controlled by histone acetyl transferases (HATs) and histone deacetylases (HDACs). The overexpression of HDACs and consequent hypoacetylation of histones have been observed in a variety of different diseases, leading to a recent focus of HDACs as attractive drug targets. The natural product largazole is one of the most potent natural HDAC inhibitors discovered so far and a number of largazole analogs have been prepared to define structural requirements for its HDAC inhibitory activity. However, previous structure-activity relationship studies have heavily investigated the macrocycle region of largazole, while there have been only limited efforts to probe the effect of various zinc-binding groups (ZBGs) on HDAC inhibition. Herein, we prepared a series of largazole analogs with various ZBGs and evaluated their HDAC inhibition and cytotoxicity. While none of the analogs tested were as potent or selective as largazole, the Zn2+-binding affinity of each ZBG correlated with HDAC inhibition and cytotoxicity. We expect that our findings will aid in building a deeper understanding of the role of ZBGs in HDAC inhibition as well as provide an important basis for the future development of new largazole analogs with non-thiol ZBGs as novel therapeutics for cancer.
Collapse
Affiliation(s)
- Bumki Kim
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Hyunji Lee
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Guqin Shi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Sabrina L Zeller
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States.
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, United States; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
43
|
Zhao L, Dunne CE, Clausen DJ, Roberts JM, Paulk J, Liu H, Wiest OG, Bradner JE, Williams RM. Synthesis and Biochemical Evaluation of Biotinylated Conjugates of Largazole Analogues: Selective Class I Histone Deacetylase Inhibitors. Isr J Chem 2017; 57:319-330. [PMID: 30760938 PMCID: PMC6370329 DOI: 10.1002/ijch.201600130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of biotinylated conjugates of synthetic analogues of the potent and selective histone deacetylase (HDAC) inhibitor largazole is reported. The thiazole moiety of the parent compound's cap group was derivatized to allow the chemical conjugation to biotin. The derivatized largazole analogues were assayed across a panel of HDACs 1-9 and retained potent and selective inhibitory activity towards the class I HDAC isoforms. The biotinylated conjugate was further shown to pull down HDACs 1, 2, and 3.
Collapse
Affiliation(s)
- Le Zhao
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
| | - Christine E. Dunne
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
| | - Dane J. Clausen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
| | - Justin M. Roberts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 (USA)
| | - Joshiawa Paulk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 (USA)
| | - Haining Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670 (USA)
| | - Olaf G. Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670 (USA)
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 (USA)
| | - Robert M. Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
- University of Colorado Cancer Center, Aurora, Colorado 80045 (USA)
| |
Collapse
|
44
|
Structural insights of SmKDAC8 inhibitors: Targeting Schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy. Bioorg Med Chem 2017; 25:2105-2132. [DOI: 10.1016/j.bmc.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
|
45
|
Larik FA, Saeed A, Muqadar U, El-Seedi H, Faisal M, Channar PA, Mehfooz H. The role of Lawesson's reagent in the total synthesis of macrocyclic natural products. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2016.1259236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fayaz Ali Larik
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Urooj Muqadar
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hesham El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Muhammad Faisal
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Haroon Mehfooz
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
46
|
Xu H, Roberts LR, Chou S, Pierce B, Narayanan A, Jones LH. Quantitative measurement of intracellular HDAC1/2 drug occupancy using a trans-cyclooctene largazole thiol probe. MEDCHEMCOMM 2017; 8:767-770. [PMID: 30108795 DOI: 10.1039/c6md00633g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/23/2016] [Indexed: 11/21/2022]
Abstract
Histone deacetylases (HDACs) regulate diverse cellular processes, and are promising targets for a number of diseases. Here we describe the design and utilization of a largazole-based chemical probe to quantitatively measure the intracellular occupancy of HDAC1 and HDAC2 by dacinostat. Surprisingly, the probe was unable to enrich HDAC3 despite its nanomolar potency in a biochemical assay, further proving the necessity of cell-based target occupancy assays to understand compound potency in physiologically-relevant settings. This occupancy assay has the potential to aid the development of novel HDAC1/2 inhibitors in drug discovery.
Collapse
Affiliation(s)
- Hua Xu
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| | - Lee R Roberts
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| | - Song Chou
- Pfizer Inc. Rare Diseases Research Unit , 610 Main Street , Cambridge , MA 02135 , USA
| | - Betsy Pierce
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , CT 06340 , USA
| | - Arjun Narayanan
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| | - Lyn H Jones
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| |
Collapse
|
47
|
Reddy DR, Ballante F, Zhou NJ, Marshall GR. Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors. Eur J Med Chem 2016; 127:531-553. [PMID: 28109947 DOI: 10.1016/j.ejmech.2016.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022]
Abstract
A comprehensive investigation was performed to identify new benzodiazepine (BZD) derivatives as potent and selective human lysine deacetylase inhibitors (hKDACis). A total of 108 BZD compounds were designed, synthesized and from that 104 compounds were biologically evaluated against human lysine deacetylases (hKDACs) 1, 3 and 8 (class I) and 6 (class IIb). The most active compounds showed mid-nanomolar potencies against hKDACs 1, 3 and 6 and micromolar activity against hKDAC8, while a promising compound (6q) showed selectivity towards hKDAC3 among the different enzyme isoforms. An hKDAC6 homology model, refined by molecular dynamics simulation was generated, and molecular docking studies performed to rationalize the dominant ligand-residue interactions as well as to define structure-activity-relationships. Experimental results confirmed the usefulness of the benzodiazepine moiety as capping group when pursuing hKDAC isoform-selectivity inhibition, suggesting its continued use when designing new hKDACis.
Collapse
Affiliation(s)
- D Rajasekhar Reddy
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nancy J Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
48
|
Maolanon AR, Kristensen HME, Leman LJ, Ghadiri MR, Olsen CA. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 2016; 18:5-49. [DOI: 10.1002/cbic.201600519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alex R. Maolanon
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Helle M. E. Kristensen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luke J. Leman
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - M. Reza Ghadiri
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Christian A. Olsen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
49
|
Almaliti J, Al-Hamashi AA, Negmeldin AT, Hanigan CL, Perera L, Pflum MKH, Casero RA, Tillekeratne LMV. Largazole Analogues Embodying Radical Changes in the Depsipeptide Ring: Development of a More Selective and Highly Potent Analogue. J Med Chem 2016; 59:10642-10660. [PMID: 27809521 DOI: 10.1021/acs.jmedchem.6b01271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of analogues of the marine-derived histone deacetylase inhibitor largazole incorporating major structural changes in the depsipeptide ring were synthesized. Replacing the thiazole-thiazoline fragment of largazole with a bipyridine group gave analogue 7 with potent cell growth inhibitory activity and an activity profile similar to that of largazole, suggesting that conformational change accompanying switching hybridization from sp3 to sp2 at C-7 is well tolerated. Analogue 7 was more class I selective compared to largazole, with at least 464-fold selectivity for class I HDAC proteins over class II HDAC6 compared to a 22-fold selectivity observed with largazole. To our knowledge 7 represents the first example of a potent and highly cytotoxic largazole analogue not containing a thiazoline ring. The elimination of a chiral center derived from the unnatural amino acid R-α-methylcysteine makes the molecule more amenable to chemical synthesis, and coupled with its increased class I selectivity, 7 could serve as a new lead compound for developing selective largazole analogues.
Collapse
Affiliation(s)
- Jehad Almaliti
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , 2801, W. Bancroft Street, Toledo, Ohio 43606, United States.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan , Amman, 11942, Jordan
| | - Ayad A Al-Hamashi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Ahmed T Negmeldin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Christin L Hanigan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine , Bunting/Blaustein Cancer Research Building 1, Room 551, 1650 Orleans Street, Baltimore, Maryland 21231, United States
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine , Bunting/Blaustein Cancer Research Building 1, Room 551, 1650 Orleans Street, Baltimore, Maryland 21231, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo , 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
50
|
Kotapati HK, Lawrence DR, Thames SO, Masterson DS. Enzyme mediated concise synthesis of NH-Fmoc-S-Trityl-Cα-Methyl Cysteine. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|