1
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Three-Component Tandem Cyclization for One-Pot Synthesis of Indole-Benzofuran Bis-Heterocycles. J Org Chem 2024; 89:17168-17175. [PMID: 39576131 DOI: 10.1021/acs.joc.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A one-pot, three-component synthesis of indole-benzofuran bis-heterocycles from terminal alkynes, salicylaldehydes, and indoles has been developed via copper-catalyzed tandem annulation. This catalytic system utilizes readily available starting materials, enabling predictable synthesis of indole-benzofuran bis-heterocycles with broad substrate versatility, excellent regiocontrol, and gram-scale amenability. The reaction proceeds via a sequential pathway involving A3 coupling, 1,4-conjugate addition, and 5-exo-dig cyclization.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Taskesenligil Y, Saracoglu N. Dehydrogenative Photocyclization of 3-Styryl Indoles to Fused Indole Systems. J Org Chem 2024; 89:17447-17452. [PMID: 39509589 PMCID: PMC11629392 DOI: 10.1021/acs.joc.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
The synthesis of 5-aryl- or 5,6-diaryl-11H-benzo[a]carbazoles has been achieved from 3-styryl indoles through catalyst-free photoinitiated dehydrogenative cyclization transformation, providing a range of structurally diverse products in excellent yields under mild conditions. The protocol is also applicable to furan and thiophene samples. This Mallory-type reaction takes place in an argon atmosphere without external oxidants. Finally, detailed mechanistic studies were performed, and kinetic isotope effect experiments indicate that dehydrogenative annulation reaction involves photoinduced 6π-electrocyclic ring-closing and hydrogen evolution cascade processes.
Collapse
Affiliation(s)
- Yunus Taskesenligil
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, 25240 Erzurum, Türkiye
| | - Nurullah Saracoglu
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, 25240 Erzurum, Türkiye
- Biotechnology
Institute, Ankara University, 06135 Ankara, Türkiye
| |
Collapse
|
3
|
Romero IE, Postigo A, Bonesi SM. Preparation of Carbazoles Involving 6π-Electrocyclization, Photoredox-, Electrochemical-, and Thermal Cyclization Reactions: Mechanistic Insights. Chemistry 2024; 30:e202303229. [PMID: 38032158 DOI: 10.1002/chem.202303229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Carbazole is a heterocyclic motif that can be found in a diverse array of natural and unnatural products displaying a wide range of biological and physiological properties. Furthermore, this heterocycle is part of electronic materials like photoconducting polymers and organic optoelectronic materials owing to its excellent photophysical characteristics. Consequently, the development of synthetic strategies for carbazole scaffolds holds potential significance in biological and material fields. In this regard, a variety of preparation methods has been developed to exploit their efficient and distinct formation of new C-C and C-heteroatom bonds under mild conditions and enabling broad substrate diversity and functional group tolerance. Therefore, this review focuses on the synthesis of a set of carbazole derivatives describing a variety of methodologies that involve direct irradiation, photosensitization, photoredox, electrochemical and thermal cyclization reactions.
Collapse
Affiliation(s)
- Ivan E Romero
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- Universidad de Buenos Aires, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 954, Buenos Aires, CP 1113, Argentina
| | - Al Postigo
- Universidad de Buenos Aires, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 954, Buenos Aires, CP 1113, Argentina
| | - Sergio M Bonesi
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
4
|
Arora R, Mirabi B, Durant AG, Bozal-Ginesta C, Marchese AD, Aspuru-Guzik A, Lautens M. Palladium-Catalyzed Synthesis of Linked Bis-Heterocycles─Synthesis and Investigation of Photophysical Properties. J Am Chem Soc 2023. [PMID: 38039391 DOI: 10.1021/jacs.3c07234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
A palladium-catalyzed domino C-N coupling/Cacchi reaction is reported. Design of photoluminescent bis-heterocycles, aided by density functional theory calculations, was performed with synthetic yields up to 98%. The photophysical properties of the products accessed via this strategy were part of a comprehensive study that led to broad emission spectra and quantum yields of up to 0.59. Mechanistic experiments confirmed bromoalkynes as competent intermediates, and a density functional theory investigation suggests a pathway involving initial oxidative addition into the cis C-Br bond of the gem-dihaloolefin.
Collapse
Affiliation(s)
- Ramon Arora
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew G Durant
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Carlota Bozal-Ginesta
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Austin D Marchese
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alán Aspuru-Guzik
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Ding Y, Wu J, Huang H. Carbonylative Formal Cycloaddition between Alkylarenes and Aldimines Enabled by Palladium-Catalyzed Double C-H Bond Activation. J Am Chem Soc 2023; 145:4982-4988. [PMID: 36821463 DOI: 10.1021/jacs.3c00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Double C-H bond activation can enable an expeditious reaction pathway to cyclic compounds, offering an efficient tool to synthesize valuable molecules. However, cyclization reaction enabled by double C-H bond activation at one carbon atom is nearly unknown. Herein, we report a carbonylative formal cycloaddition of alkylarenes with imines via double benzylic C-H bond activation at one carbon atom, allowing a straightforward synthesis of β-lactams from readily accessible alkylarenes and imines, which paves the way for developing an annulation reaction through double C-H bond activation at one carbon atom.
Collapse
Affiliation(s)
- Yongzheng Ding
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianing Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
6
|
Sarmah M, Das DJ, Dutta D, Baishya R, Gogoi P. A Versatile Pd-Catalyzed Alkyne Annulation Process for Benzo[ a]carbazoles and their Anticancer Analogues. ACS OMEGA 2022; 7:47680-47700. [PMID: 36591211 PMCID: PMC9798400 DOI: 10.1021/acsomega.2c04755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/10/2022] [Indexed: 05/04/2023]
Abstract
A Pd-catalyzed, simple, and divergent approach for the direct synthesis of benzo[a]carbazoles from internal alkynes and N-tosyl-iodoindoles has been demonstrated. This methodology highlights the influences of reaction media and temperature for the synthesis of either N-protected or N-deprotected benzo[a]carbazoles. This cascade strategy provides a series of electronically different benzo[a]carbazoles with good yields. The synthesized benzo[a]carbazoles were evaluated for in vitro anticancer activity against human lung cancer A549 cells and human breast cancer MDA-MB-231 cells. Notably, two of the representative analogues displayed potent anticancer activity against both cancer cell lines.
Collapse
Affiliation(s)
- Manashi Sarmah
- Applied
Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Deep Jyoti Das
- Natural
Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dhiraj Dutta
- Applied
Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rinku Baishya
- Natural
Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pranjal Gogoi
- Applied
Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Khanal HD, Perumal M, Lee YR. Annulation strategies for diverse heterocycles via the reductive transformation of 2-nitrostyrenes. Org Biomol Chem 2022; 20:7675-7693. [PMID: 35971908 DOI: 10.1039/d2ob01149b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of the stable nitro group is a fundamental and widely used transformation for the construction of complex and functionalized heterocyclic architectures. The unfolding of the reactivity of the nitro group in the 2-nitrostyrene moiety not only triggers the formation of carbon-nitrogen bonds, but also offers the opportunity for annulation and heteroannulation, thereby providing a cascade process for the synthesis of highly conjugated natural and unnatural molecules. In this review, we comprehensively discuss the use of 2-nitrostyrene motifs in the synthesis of various N-heterocycles. We offer readers an overview of the synthetic achievements achieved to date, highlighting their important features, reactivities, and mechanisms.
Collapse
Affiliation(s)
- Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muthuraja Perumal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
8
|
Romero IE, Lantaño B, Postigo A, Bonesi SM. Photoinduced [6π]-Electrocyclic Reaction of Mono-, Di-, and Trisubstituted Triphenylamines in Acetonitrile. A Steady-State Investigation. J Org Chem 2022; 87:13439-13454. [PMID: 35675160 DOI: 10.1021/acs.joc.2c00756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct irradiation of mono-, di-, and trisubstituted triphenylamine derivatives in acetonitrile as solvent with light of 254 nm has been systematically investigated, revealing that the exo/endo carbazole derivatives were formed as the main photoproducts from modest to good yields for triphenylamines substituted with electron-donor and neutral substituents. The kinetic profiles of the photoreaction were also recorded, and the consumption rate constants (k) were measured. These kinetic parameters show dependence on the nature of the substituents, and linear Hammett correlations were carried out to showcase the substituent effect. On the other hand, the spectroscopic behavior of the electron-rich substituted triphenylamines has been analyzed, suggesting that the fluorescence emission spectra display a mirror image of the lower energy absorption bands, while for those amines bearing electron-acceptor groups the formation of charge-transfer complexes and their fluorescence emissions constitute the main deactivation pathway of the photoreaction.
Collapse
Affiliation(s)
- Ivan E Romero
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, CONICET─Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Beatriz Lantaño
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Sergio M Bonesi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, CONICET─Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
9
|
Tang L, Jiang S, Huang X, Song Z, Wang JB, Ma M, Chen B, Ma Y. Cascade of C(sp 2)-H Addition to Carbonyl and C(sp 2)-CN/C(sp 2)-H Coupling Enabled by Brønsted Acid: Construction of Benzo[ a]carbazole Frameworks. Org Lett 2022; 24:3232-3237. [PMID: 35475641 DOI: 10.1021/acs.orglett.2c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report an unprecedented cascade reaction of C(sp2)-H addition to carbonyl and the C(sp2)-CN/C(sp2)-H coupling of 2-(2-oxo-2-arylethyl)benzonitriles with indoles enabled by commercially available TsOH·H2O. The protocol represents the first metal-free C(sp2)-CN/C(sp2)-H coupling, affording a new route for the synthesis of various benzo[a]carbazole derivatives with a broad substrate scope, high yields, and simple conditions.
Collapse
Affiliation(s)
- Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Shuangshuang Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Xinmiao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Zhiyong Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| |
Collapse
|
10
|
Liu J, Wang X, Wang Z, Yang Y, Tang Q, Liu H, Huang H. Unlocking a self-catalytic cycle in a copper-catalyzed aerobic oxidative coupling/cyclization reaction. iScience 2022; 25:103906. [PMID: 35243259 PMCID: PMC8881718 DOI: 10.1016/j.isci.2022.103906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/22/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
|
11
|
Fu J, Li B, Wang X, Liang Q, Peng X, Yang L, Wan T, Wang X, Lin B, Cheng M, Liu Y. Au(I)‐Catalyzed 6‐
endo
‐
dig
Cyclizations of Aromatic 1,
5‐Enynes
to 2‐(Naphthalen‐2‐yl)anilines Leading to Divergent Syntheses of Benzo[
α
]carbazole, Benzo[
c
,
h
]cinnoline and Dibenzo[
i
]phenanthridine Derivatives. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jiayue Fu
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Bingbing Li
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Xiugui Wang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Qida Liang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Xiaoshi Peng
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Lu Yang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Tao Wan
- Liaoning Kangboshi Pharmaceutical Co. LTD Anshan Liaoning 114100 China
| | - Xinxiu Wang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Bin Lin
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Maosheng Cheng
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Yongxiang Liu
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| |
Collapse
|
12
|
Chemo‐ and Regioselective Synthesis of Functionalized 1
H
‐imidazo[1,5‐
a
]indol‐3(2
H
)‐ones via a Redox‐Neutral Rhodium(III)‐Catalyzed [4+1] Annulation between Indoles and Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Hao T, Huang L, Wei Y, Shi M. Copper-Catalyzed Synthesis of Indolyl Benzo[ b]carbazoles and Their Photoluminescence Property. Org Lett 2021; 23:5133-5137. [PMID: 34143628 DOI: 10.1021/acs.orglett.1c01659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A copper-catalyzed cascade cyclization of dihydroisobenzofurans with indoles for the rapid construction of indoly benzo[b]carbazoles has been reported, providing the desired products in moderate to good yields under mild conditions along with a broad substrate scope and good functional group tolerance. The photoluminescence property of these indoly benzo[b]carbazoles has also been investigated.
Collapse
Affiliation(s)
- Tonggang Hao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Long Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
14
|
Changmai S, Sultana S, Sarma B, Gogoi S. Pd(II)-Catalyzed alkyne annulation through allylic isomerization: synthesis of spiro-cyclopentadiene pyrazolones. Chem Commun (Camb) 2021; 57:6027-6030. [PMID: 34032222 DOI: 10.1039/d1cc02155a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pd(ii)-catalyzed activation of Csp2-H bond and double alkyne annulation which proceeds via allylic isomerization is reported for the first time. This reaction of antipyrines with alkynes provides an efficient synthetic route for the biologically important spiro-cyclopentadiene pyrazolones. In the presence of Lawesson's reagent, this Pd(ii)-catalyzed annulation reaction affords another spiro-cyclopentadiene pyrazolone which displays very good fluorescence properties.
Collapse
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR-Ghaziabad-201002, India.
| | - Sabera Sultana
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR-Ghaziabad-201002, India.
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur-784028, India
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR-Ghaziabad-201002, India.
| |
Collapse
|
15
|
Kundu S, Banerjee A, Pal SC, Ghosh M, Maji MS. Cascade annulative π-extension for the rapid construction of carbazole based polyaromatic hydrocarbons. Chem Commun (Camb) 2021; 57:5762-5765. [PMID: 34008629 DOI: 10.1039/d1cc00668a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A Brønsted acid catalyzed cascade benzannulation strategy for the one-pot synthesis of densely populated poly-aryl benzo[a]carbazole architectures is disclosed from easily affordable fundamental commodities. The efficacy of this technique was further validated via the concise synthesis of structurally unique carbazole based poly-aromatic hydrocarbons. Furthermore, the photo-physical properties of the synthesized compounds are thoroughly investigated.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|
16
|
Neto JSS, Zeni G. Recent Developments in the Cyclization of Alkynes and Nitrogen Compounds for the Synthesis of Indole Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
17
|
Wang D, Sun J, Liu RZ, Wang Y, Yan CG. Diastereoselective Synthesis of Tetrahydrospiro[carbazole-1,3′-indolines] via an InBr3-Catalyzed Domino Diels–Alder Reaction. J Org Chem 2021; 86:5616-5629. [DOI: 10.1021/acs.joc.1c00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ru-Zhang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
18
|
A practical and efficient method for late-stage deuteration of terminal alkynes with silver salt as catalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Chen W, Yu Y, Liu S, Wu Y, Ying Z, Luo F, Chen E. Facile and Mild Access to Fluorescent Ladder-Type Indolo[3,2-a]carbazoles via Cascade Annulation. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA set of fluorescent ladder-type indolo[3,2-a]carbazoles were rationally developed via cascade annulation of indoles and nitroolefins under mild reaction conditions. Diverse functional groups were tolerated. Moreover, structure–photophysical properties relationships (SPPR) of indolo[3,2-a]carbazoles were observed to be simply tuned by changing the electronic nature of the peripheral substituents.
Collapse
|
20
|
Tsuchimoto T, Johshita T, Sambai K, Saegusa N, Hayashi T, Tani T, Osano M. In(ONf) 3-catalyzed 7-membered carbon-ring-forming annulation of heteroarylindoles with α,β-unsaturated carbonyl compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00050k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed the two recipes, on the indium-catalyzed reductive and oxidative 7-membered carbon-ring-forming annulations of heteroarylindoles with a,β-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Teruhisa Tsuchimoto
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Takahiro Johshita
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Kazuhiro Sambai
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Naoki Saegusa
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Takumi Hayashi
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Tomohiro Tani
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Mana Osano
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| |
Collapse
|
21
|
Banerjee A, Kundu S, Bhattacharyya A, Sahu S, Maji MS. Benzannulation strategies for the synthesis of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines. Org Chem Front 2021. [DOI: 10.1039/d1qo00092f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents a critical and authoritative analysis of several exciting benzannulation approaches developed in the past decade for the construction of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines.
Collapse
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Kundu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Arya Bhattacharyya
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Sahu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Modhu Sudan Maji
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
22
|
Cao D, Yu J, Zeng H, Li CJ. Dearomatization-Rearomatization Strategy for Synthesizing Carbazoles with 2,2'-Biphenols and Ammonia by Dual C(Ar)-OH Bond Cleavages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13200-13205. [PMID: 32223264 DOI: 10.1021/acs.jafc.0c00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbazole is an essential building block in various pharmaceuticals, agrochemicals, natural products, and materials. For future sustainability, it is highly desirable to synthesize carbazole derivatives directly from renewable resources or cheap raw materials. Phenolic compounds are a class of degradation products of lignin. On the other hand, ammonia is a very cheap industrial inorganic chemical. Herein, an efficient dearomatization-rearomatization strategy has been developed to directly cross-couple 2,2'-biphenols with ammonia by dual C(Ar)-OH bond cleavages. This strategy provides a greener pathway to synthesize valuable carbazole derivatives from phenols.
Collapse
Affiliation(s)
- Dawei Cao
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Yu
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
23
|
Lu H, Zhao TT, Bai JH, Ye D, Xu PF, Wei H. Divergent Coupling of Benzocyclobutenones with Indoles via C-H and C-C Activations. Angew Chem Int Ed Engl 2020; 59:23537-23543. [PMID: 32896964 DOI: 10.1002/anie.202010244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 11/07/2022]
Abstract
Highly selective divergent coupling reactions of benzocyclobutenones and indoles, in which the chemoselectivity is controlled by catalysts, are reported herein. The substrates undergo C2(indole)-C8(benzocyclobutenone) coupling to produce benzylated indoles and benzo[b]carbazoles in the Ni- and Ru-catalyzed reactions. A completely different selectivity pattern C2(indole)-C2(benzocyclobutenone) coupling to form arylated indoles is observed in the Rh-catalyzed reaction. Preliminary mechanistic studies suggest C-H and C-C activations in the reaction pathway. Synthetic utility of this protocol is demonstrated by the selective synthesis of three different types of carbazoles from the representative products.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Hua Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Dan Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
24
|
Lu H, Zhao T, Bai J, Ye D, Xu P, Wei H. Divergent Coupling of Benzocyclobutenones with Indoles via C−H and C−C Activations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Tian‐Tian Zhao
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jin‐Hua Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Dan Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Peng‐Fei Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
25
|
Tani T, Sohma Y, Tsuchimoto T. Zinc/Indium Bimetallic Lewis Acid Relay Catalysis for Dehydrogenative Silylation/Hydrosilylation Reaction of Terminal Alkynes with Bis(hydrosilane)s. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tomohiro Tani
- Department of Applied Chemistry, School of Science and Technology Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Yudai Sohma
- Department of Applied Chemistry, School of Science and Technology Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry, School of Science and Technology Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
26
|
Yao B, Wang Q, Zhu J. Synthesis of Benzo[
a
]carbazoles through Visible Light‐Induced Cycloaromatization. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Yao
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH5304 CH-1015 Lausanne Switzerland
- MOE Key Laboratory of Cluster ScienceBeijing Key Laboratory of Photoelectronic-Electrophotonic Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 102488 P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH5304 CH-1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH5304 CH-1015 Lausanne Switzerland
| |
Collapse
|
27
|
Zhang P, Li B, Niu L, Wang L, Zhang G, Jia X, Zhang G, Liu S, Ma L, Gao W, Qin D, Chen J. Scalable Electrochemical Transition‐Metal‐Free Dehydrogenative Cross‐Coupling Amination Enabled Alkaloid Clausines Synthesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000228] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pan Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Ling Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Xiaofei Jia
- Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Guoying Zhang
- Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Dawei Qin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
28
|
Zhang L, Cao T, Jiang H, Zhu S. Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
- State Key Laboratory of Elemento-Organic ChemistryNankai University 300071 Tianjing China
- Singfar Laboratories 510670 Guangzhou China
| |
Collapse
|
29
|
Zhang L, Cao T, Jiang H, Zhu S. Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angew Chem Int Ed Engl 2020; 59:4670-4677. [PMID: 31961991 DOI: 10.1002/anie.201915212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/18/2020] [Indexed: 12/26/2022]
Abstract
An unprecedented deconstructive reorganization strategy for the de novo synthesis of hydroxylated benzofurans from kojic acid- or maltol-derived alkynes is reported. In this reaction, both the benzene and furan rings were simultaneously constructed, whereas the pyrone moiety of the kojic acid or maltol was deconstructed and then reorganized into the benzene ring as a six-carbon component. Through this strategy, at least one free hydroxyl group was introduced into the benzene ring in a substitution-pattern tunable fashion without protection-deprotection and redox adjustment. With this method, a large number of hydroxylated benzofuran derivatives with different substitution-patterns have been prepared efficiently. This methodology has also been shown as the key step in a collective total synthesis of hydroxylated benzofuran-containing natural products (11 examples).
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjing, China.,Singfar Laboratories, 510670, Guangzhou, China
| |
Collapse
|
30
|
Phukon J, Gogoi S. Palladium(ii)-catalyzed vinylic geminal double C-H activation and alkyne annulation reaction: synthesis of pentafulvenes. Chem Commun (Camb) 2020; 56:1133-1136. [PMID: 31894770 DOI: 10.1039/c9cc09564k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first transition-metal-catalyzed vinylic geminal double C(sp2)-H activation and di-substituted alkyne annulation reaction is reported. This palladium(ii)-catalyzed, amide directed reaction of vinylic compounds with di-substituted alkynes offers an efficient synthetic path to pentafulvenes, which are very important compounds because of their bioactivity and interesting optical properties. A FeCl3-mediated transformation of pentafulvenes to fluorescent cyclopenta[b]quinolines is also developed.
Collapse
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, AcSIR, Jorhat-785006, India.
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, AcSIR, Jorhat-785006, India.
| |
Collapse
|
31
|
Hirao S, Yamashiro T, Kohira K, Mishima N, Abe T. 2,3-Dimethoxyindolines: a latent electrophile for SNAr reactions triggered by indium catalysts. Chem Commun (Camb) 2020; 56:5139-5142. [DOI: 10.1039/d0cc01210f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An unprecedented utilization of 2,3-dimethoxyindolines (DiMeOINs) as a latent electrophile in regioselective In-catalyzed aromatic substitutions has been reported.
Collapse
Affiliation(s)
- Seiya Hirao
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Toshiki Yamashiro
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Kyouka Kohira
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Naoki Mishima
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Takumi Abe
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| |
Collapse
|
32
|
Saeed A, Shehzadi SA, Bolte M, Franca CA, Erben MF. Interplay between Conformation and Crystal Packing in Aryl Propargyl Ethers: Structural and Spectroscopic Properties of 2‐(prop‐2‐yn‐1‐yloxy)acene Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aamer Saeed
- Department of ChemistryQuaid-I-Azam University Islamabad 45320 Pakistan
| | - Syeda Aaliya Shehzadi
- Department of ChemistryQuaid-I-Azam University Islamabad 45320 Pakistan
- Sulaiman Bin Abdullah Aba Al-Khail-Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS)International Islamic University- 44000 Islamabad Pakistan
| | - Michael Bolte
- Institut für Anorganische ChemieJ.W.-Goethe-Universität Max-von-Laue-Str.7 D-60438 Frankfurt/Main Germany
| | - Carlos A. Franca
- CEQUINOR (UNLP, CONICET-CCT La Plata)Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Bv. 120 1465 La Plata (1900) República Argentina
| | - Mauricio F. Erben
- CEQUINOR (UNLP, CONICET-CCT La Plata)Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Bv. 120 1465 La Plata (1900) República Argentina
| |
Collapse
|
33
|
Shen J, Li N, Yu Y, Ma C. Visible-Light-Induced Oxidation/[3 + 2] Cycloaddition/Oxidative Aromatization to Construct Benzo[a]carbazoles from 1,2,3,4-Tetrahydronaphthalene and Arylhydrazine Hydrochlorides. Org Lett 2019; 21:7179-7183. [DOI: 10.1021/acs.orglett.9b02939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxuan Shen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nannan Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanjiang Yu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunhua Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
34
|
Guo S, Liu Y, Zhao L, Zhang X, Fan X. Rhodium-Catalyzed Selective Oxidative (Spiro)annulation of 2-Arylindoles by Using Benzoquinone as a C2 or C1 Synthon. Org Lett 2019; 21:6437-6441. [PMID: 31386384 DOI: 10.1021/acs.orglett.9b02336] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rhodium-catalyzed substrate-tunable oxidative annulation and spiroannulation reactions of 2-arylindoles with benzoquinone leading to 9H-dibenzo[a,c]carbazol-3-ols and new spirocyclic products are reported. Intriguingly, with 2-aryl-substituted indoles, benzoquinone could act as a C2 synthon to afford dibenzo[a,c]carbazoles. On the contrary, when 2-aryl-3-substituted indoles were used, benzoquinone switched to act as a C1 synthon to furnish spirocyclic compounds. In addition, further transformations of the obtained products demonstrate the synthetic utility of the present protocol.
Collapse
Affiliation(s)
- Shenghai Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Yangfan Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Lu Zhao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
35
|
Liu A, Han Q, Zhang X, Li B, Huang Q. Transition-Metal-Controlled Synthesis of 11H-Benzo[a]carbazoles and 6-Alkylidene-6H-isoindo[2,1-a]indoles via Sequential Intermolecular/Intramolecular Cross-Dehydrogenative Coupling from 2-Phenylindoles. Org Lett 2019; 21:6839-6843. [DOI: 10.1021/acs.orglett.9b02476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anyi Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Qingshuai Han
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
36
|
Li M, Wu F, Gu Y. Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63370-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Huang W, Chen S, Yang J, El‐Harairy A, Wang X, Li M, Gu Y. Modular Synthesis of Bicyclic and Tricyclic (Aza‐) Arenes from Nucleophilic (Aza‐)Arenes with Electrophilic Side Arms via [4+2] Annulation Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenbo Huang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Shaomin Chen
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Jian Yang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Ahmed El‐Harairy
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Xin Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Minghao Li
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Yanlong Gu
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, LanzhouInstitute of Chemical Physics Lanzhou 730000 People's Republic of China
| |
Collapse
|
38
|
Wang MR, Deng L, Liu GC, Wen L, Wang JG, Huang KB, Tang HT, Pan YM. Porous Organic Polymer-Derived Nanopalladium Catalysts for Chemoselective Synthesis of Antitumor Benzofuro[2,3- b]pyrazine from 2-Bromophenol and Isonitriles. Org Lett 2019; 21:4929-4932. [PMID: 31082239 DOI: 10.1021/acs.orglett.9b01230] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient strategy for the synthesis of benzofuro[2,3- b]pyrazines was developed. These tricyclic scaffolds were formed through a multistep cascade sequence, which includes double insertion of isonitriles and chemoselective bicyclization. In this reaction, a nanopalladium was used as a recyclable catalyst. Product 3w exhibited excellent anticancer activity toward T-24 (IC50 = 12.5 ± 0.9 μM) and HeLa (IC50 = 14.7 ± 1.6 μM) cells. We also explored the action mechanism of 3w on T-24 cells.
Collapse
Affiliation(s)
- Mao-Rui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Guo-Chen Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ling Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Jin-Ge Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
39
|
Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng GJ. Metal-Free Double Csp2–H Bond Functionalization: Strategy for Synthesizing Benzo[a]carbazoles from 2-Arylindoles and Acetophenones/Alkynes. Org Lett 2019; 21:3687-3691. [DOI: 10.1021/acs.orglett.9b01138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Penghui Ni
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jing Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Wenqi Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
40
|
Aggarwal T, Sushmita S, Verma AK. Recent advances in the synthesis of carbazoles from indoles. Org Biomol Chem 2019; 17:8330-8342. [DOI: 10.1039/c9ob01381d] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis of carbazoles using indoles as precursors through CH activation/annulation.
Collapse
Affiliation(s)
- Trapti Aggarwal
- Synthetic Organic Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Sushmita Sushmita
- Synthetic Organic Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Akhilesh K. Verma
- Synthetic Organic Chemistry Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
41
|
Jeon J, Cheon CH. Synthesis of benzo[a]carbazoles via cyanide-catalyzed imino-Stetter reaction/Friedel–Crafts reaction sequence. Org Chem Front 2019. [DOI: 10.1039/c8qo01209a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new sequential protocol for the synthesis of benzo[a]carbazoles was developed via the cyanide-catalyzed imino-Stetter reaction followed by Friedel–Crafts reaction.
Collapse
Affiliation(s)
- Jiye Jeon
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
42
|
Guo Y, Wang Z, Zhu Y, Zhang Q, Wei D, Liu X, Fu Z. Access to polyfunctionalized carbazoles through π-extension of 2-methyl-3-oxoacetate indoles. Org Chem Front 2019. [DOI: 10.1039/c9qo01093a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally diverse set of polyfunctionalized carbazoles was efficiently synthesized in acceptable to excellent yields.
Collapse
Affiliation(s)
- Yingying Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhoulu Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ying Zhu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiaochu Zhang
- College of Chemistry
- Zhangzhou University
- Zhengzhou
- P. R. China
| | - Donghui Wei
- College of Chemistry
- Zhangzhou University
- Zhengzhou
- P. R. China
| | - Xiang Liu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
43
|
Xiang Y, Wang C, Ding Q, Peng Y. Diazo Compounds: Versatile Synthons for the Synthesis of Nitrogen Heterocycles via
Transition Metal-Catalyzed Cascade C-H Activation/Carbene Insertion/Annulation Reactions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800960] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yunyu Xiang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Cong Wang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Qiuping Ding
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| |
Collapse
|
44
|
Liu D, Gao Y, Huang J, Fu Z, Huang W. Carbene-Catalyzed Construction of Carbazoles from Enals and 2-Methyl-3-oxoacetate Indoles. J Org Chem 2018; 83:14210-14217. [PMID: 30351940 DOI: 10.1021/acs.joc.8b02532] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct and rapid construction of carbazoles has been successfully developed via carbene-catalyzed oxidative formal [4 + 2] annulation of enals with 2-methyl-3-oxoacetate indoles. This metal-free reaction features a broad substrate scope, features good functional-group tolerance, proceeds under mild conditions, and can be easily scaled up.
Collapse
Affiliation(s)
- Dehai Liu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Yaru Gao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Jie Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China.,Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China
| |
Collapse
|
45
|
Saha S, Banerjee A, Maji MS. Brønsted Acid Catalyzed One-Pot Benzannulation of 2-Alkenylindoles under Aerial Oxidation: A Route to Carbazoles and Indolo[2,3-a]carbazole Alkaloids. Org Lett 2018; 20:6920-6924. [PMID: 30358409 DOI: 10.1021/acs.orglett.8b03063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuvendu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
46
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
47
|
Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl[b]quinolines and Subsequent Transformation to Cryptolepine Derivatives. Molecules 2018; 23:molecules23040838. [PMID: 29621195 PMCID: PMC6017974 DOI: 10.3390/molecules23040838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 12/30/2022] Open
Abstract
We disclose herein the first synthetic method that is capable of offering heteroaryl[b]quinolines (HA[b]Qs) with structural diversity, which include tricyclic and tetracyclic structures with (benzo)thienyl, (benzo)furanyl, and indolyl rings. The target HA[b]Q is addressed by the annulation of o-acylanilines and MeO–heteroarenes with the aid of an indium Lewis acid that effectively works to make two different types of the N–C and C–C bonds in one batch. A series of indolo[3,2-b]quinolines prepared here can be subsequently transformed to structurally unprecedented cryptolepine derivatives. Mechanistic studies showed that the N–C bond formation is followed by the C–C bond formation. The indium-catalyzed annulation reaction thus starts with the nucleophilic attack of the NH2 group of o-acylanilines to the MeO-connected carbon atom of the heteroaryl ring in an SNAr fashion, and thereby the N–C bond is formed. The resulting intermediate then cyclizes to make the C–C bond through the nucleophilic attack of the heteroaryl-ring-based carbon atom to the carbonyl carbon atom, providing the HA[b]Q after aromatizing dehydration.
Collapse
|
48
|
Yu F, Li D, Wei Y, Kang RM, Guo QX. Catalyst-free and atom-economic synthesis of substituted 1-acetyl and 1-hydroxyl carbazoles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Yonekura K, Yoshimura Y, Akehi M, Tsuchimoto T. A Heteroarylamine Library: Indium-Catalyzed Nucleophilic Aromatic Substitution of Alkoxyheteroarenes with Amines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyohei Yonekura
- Department of Applied Chemistry; School of Science and Technology; Meiji University; 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Yasuhiro Yoshimura
- Department of Applied Chemistry; School of Science and Technology; Meiji University; 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Mizuri Akehi
- Department of Applied Chemistry; School of Science and Technology; Meiji University; 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry; School of Science and Technology; Meiji University; 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
50
|
Zhang L, Li C, Lu X, Yang Y. A Facile Synthesis of Indolo[2,3-b]carbazoles from the Reaction of Di(2-indolyl)methane and Aromatic Aldehydes Catalyzed by Oxalic Acid. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|