1
|
Dey A, Mitra D, Rachineni K, Khatri LR, Paithankar H, Vajpai N, Kumar A. Mapping of Methyl Epitopes of a Peptide-Drug with Its Receptor by 2D STDD-Methyl TROSY NMR Spectroscopy. Chembiochem 2022; 23:e202200489. [PMID: 36227643 DOI: 10.1002/cbic.202200489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Indexed: 01/25/2023]
Abstract
The current trend in the biopharmaceutical market has boosted the development and production of biological drugs with high efficacy and fidelity for receptor binding. While high-resolution structural insights into binding epitopes of the receptor are indispensable for better therapeutic design, it is tedious and costly. In this work, we develop a protocol by integrating two well-known NMR-based solution-state methods. Saturation transfer double-difference with methyl-TROSY (STDD-Methyl TROSY NMR) was used to probe methyl binding epitopes of the ligand in a label-free environment. This study was carried out with Human insulin as a model peptide drug, with the insulin growth factor receptor (IGFR), which is an off-target receptor for insulin. Methyl epitopes identified from STDD-Methyl TROSY NMR spectroscopy were validated through the HADDOCK platform to generate a drug-receptor model. Since this method can be applied at natural abundance, it has the potential to screen a large set of peptide-drug interactions for optimum receptor binding. Thus, we propose STDD-Methyl TROSY NMR spectroscopy as a technique for rapid screening of biologics for the development of optimized biopharmaceutics.
Collapse
Affiliation(s)
- Anomitra Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Debarghya Mitra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Kavitha Rachineni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Lakshya Raj Khatri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Harshad Paithankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Navratna Vajpai
- Biocon Biologics Limited, Biocon Park (SEZ), Bommasandra-Jigani Link Road, Bangalore, 560099, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| |
Collapse
|
2
|
Maity S, Gundampati RK, Suresh Kumar TK. NMR Methods to Characterize Protein-Ligand Interactions. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19849296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Structural information pertaining to the interactions between biological macromolecules and ligands is of potential significance for understanding of molecular mechanisms in key biological processes. Recently, nuclear magnetic resonance (NMR) spectroscopic techniques has come of age and has widened its scope to characterize binding interactions of small molecules with biological macromolecules especially, proteins. NMR spectroscopy-based techniques are versatile due to their ability to examine weak binding interactions and for rapid screening the binding affinities of ligands with proteins at atomic resolution. In this review, we provide a broad overview of some of the important NMR approaches to investigate interactions of small organic molecules with proteins.
Collapse
Affiliation(s)
- Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
3
|
Sugiki T, Furuita K, Fujiwara T, Kojima C. Current NMR Techniques for Structure-Based Drug Discovery. Molecules 2018; 23:molecules23010148. [PMID: 29329228 PMCID: PMC6017608 DOI: 10.3390/molecules23010148] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
A variety of nuclear magnetic resonance (NMR) applications have been developed for structure-based drug discovery (SBDD). NMR provides many advantages over other methods, such as the ability to directly observe chemical compounds and target biomolecules, and to be used for ligand-based and protein-based approaches. NMR can also provide important information about the interactions in a protein-ligand complex, such as structure, dynamics, and affinity, even when the interaction is too weak to be detected by ELISA or fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) or to be crystalized. In this study, we reviewed current NMR techniques. We focused on recent progress in NMR measurement and sample preparation techniques that have expanded the potential of NMR-based SBDD, such as fluorine NMR (19F-NMR) screening, structure modeling of weak complexes, and site-specific isotope labeling of challenging targets.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
4
|
Nuclear Magnetic Resonance Approaches for Characterizing Protein-Protein Interactions. Methods Mol Biol 2017. [PMID: 29058188 DOI: 10.1007/978-1-4939-7362-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The gating of potassium ion (K+) channels is regulated by various kinds of protein-protein interactions (PPIs). Structural investigations of these PPIs provide useful information not only for understanding the gating mechanisms of K+ channels, but also for developing the pharmaceutical compounds targeting K+ channels. Here, we describe a nuclear magnetic resonance spectroscopic method, termed the cross saturation (CS) method, to accurately determine the binding surfaces of protein complexes, and its application to the investigation of the interaction between a G protein-coupled inwardly rectifying K+ channel and a G protein α subunit.
Collapse
|
5
|
|
6
|
Ferrage F, Dutta K, Cowburn D. Identification of Hydrophobic Interfaces in Protein-Ligand Complexes by Selective Saturation Transfer NMR Spectroscopy. Molecules 2015; 20:21992-9. [PMID: 26690112 PMCID: PMC6332028 DOI: 10.3390/molecules201219824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/17/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022] Open
Abstract
The proper characterization of protein-ligand interfaces is essential for structural biology, with implications ranging from the fundamental understanding of biological processes to pharmacology. Nuclear magnetic resonance is a powerful technique for such studies. We propose a novel approach to the direct determination of the likely pose of a peptide ligand onto a protein partner, by using frequency-selective cross-saturation with a low stringency isotopic labeling methods. Our method illustrates a complex of the Src homology 3 domain of C-terminal Src kinase with a peptide from the proline-enriched tyrosine phosphatase.
Collapse
Affiliation(s)
- Fabien Ferrage
- New York Structural Biology Center, New York, NY 10027, USA.
- Department of Chemistry, École Normale Supérieure-PSL Research University, 24 rue Lhomond, 75005 Paris, France.
- LBM, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005 Paris, France.
- UMR 7203 LBM, CNRS, F-75005 Paris, France.
| | - Kaushik Dutta
- New York Structural Biology Center, New York, NY 10027, USA.
| | - David Cowburn
- New York Structural Biology Center, New York, NY 10027, USA.
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Ozawa SI, Kimura T, Nozaki T, Harada H, Shimada I, Osawa M. Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin. Sci Rep 2015; 5:14226. [PMID: 26382304 PMCID: PMC4585561 DOI: 10.1038/srep14226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/20/2015] [Indexed: 01/24/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels play crucial roles in nerve and muscle action potentials. Voltage-sensing domains (VSDs) of Kv channels sense changes in the transmembrane potential, regulating the K+-permeability across the membrane. Gating modifier toxins, which have been used for the functional analyses of Kv channels, inhibit Kv channels by binding to VSD. However, the structural basis for the inhibition remains elusive. Here, fluorescence and NMR analyses of the interaction between VSD derived from KvAP channel and its gating modifier toxin, VSTx1, indicate that VSTx1 recognizes VSD under depolarized condition. We identified the VSD-binding residues of VSTx1 and their proximal residues of VSD by the cross-saturation (CS) and amino acid selective CS experiments, which enabled to build a docking model of the complex. These results provide structural basis for the specific binding and inhibition of Kv channels by gating modifier toxins.
Collapse
Affiliation(s)
- Shin-ichiro Ozawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomomi Kimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Nozaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitomi Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
8
|
Abstract
Structural analyses of protein-protein interactions are required to reveal their functional mechanisms, and accurate protein-protein complex models, based on experimental results, are the starting points for drug development. In addition, structural information about proteins under physiologically relevant conditions is crucially important for understanding biological events. However, for proteins such as those embedded in lipid bilayers and transiently complexed with their effectors under physiological conditions, structural analyses by conventional methods are generally difficult, due to their large molecular weights and inhomogeneity. We have developed the cross-saturation (CS) method, which is an nuclear magnetic resonance measurement technique for the precise identification of the interfaces of protein-protein complexes. In addition, we have developed an extended version of the CS method, termed transferred cross-saturation (TCS), which enables the identification of the residues of protein ligands in close proximity to huge (>150 kDa) and heterogeneous complexes under fast exchange conditions (>0.1 s(-1)). Here, we discuss the outline, basic theory, and practical considerations of the CS and TCS methods. In addition, we will review the recent progress in the construction of models of protein-protein complexes, based on CS and TCS experiments, and applications of TCS to in situ analyses of biologically and medically important proteins in physiologically relevant states.
Collapse
|
9
|
Qin S, Zhou HX. PI 2PE: A Suite of Web Servers for Predictions Ranging From Protein Structure to Binding Kinetics. Biophys Rev 2012; 5:41-46. [PMID: 23526172 DOI: 10.1007/s12551-012-0086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PI2PE (http://pipe.sc.fsu.edu) is a suite of four web servers for predicting a variety of folding- and binding-related properties of proteins. These include the solvent accessibility of amino acids upon protein folding, the amino acids forming the interfaces of protein-protein and protein-nucleic acid complexes, and the binding rate constants of these complexes. Three of the servers debuted in 2007, and have garnered ~2,500 unique users and finished over 30,000 jobs. The functionalities of these servers are now enhanced, and a new sever, for predicting the binding rate constants, is added. Together, these web servers form a pipeline from protein sequence to tertiary structure, then to quaternary structure, and finally to binding kinetics.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
10
|
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. J Struct Biol 2011; 174:434-42. [PMID: 21501688 DOI: 10.1016/j.jsb.2011.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 11/21/2022]
Abstract
Protein-protein interactions are necessary for various cellular processes, and therefore, information related to protein-protein interactions and structural information of complexes is invaluable. To identify protein-protein interfaces using NMR, resonance assignments are generally necessary to analyze the data; however, they are time consuming to collect, especially for large proteins. In this paper, we present a rapid, effective, and unbiased approach for the identification of a protein-protein interface without resonance assignments. This approach requires only a single set of 2D titration experiments of a single protein sample, labeled with a unique combination of an (15)N-labeled amino acid and several amino acids (13)C-labeled on specific atoms. To rapidly obtain high resolution data, we applied a new pulse sequence for time-shared NMR measurements that allowed simultaneous detection of a ω(1)-TROSY-type backbone (1)H-(15)N and aromatic (1)H-(13)C shift correlations together with single quantum methyl (1)H-(13)C shift correlations. We developed a structure-based computational approach, that uses our experimental data to search the protein surfaces in an unbiased manner to identify the residues involved in the protein-protein interface. Finally, we demonstrated that the obtained information of the molecular interface could be directly leveraged to support protein-protein docking studies. Such rapid construction of a complex model provides valuable information and enables more efficient biochemical characterization of a protein-protein complex, for instance, as the first step in structure-guided drug development.
Collapse
|
11
|
Kanamori E, Igarashi S, Osawa M, Fukunishi Y, Shimada I, Nakamura H. Structure determination of a protein assembly by amino acid selective cross-saturation. Proteins 2010; 79:179-90. [PMID: 20954264 DOI: 10.1002/prot.22871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 11/10/2022]
Abstract
Amino acid selective cross-saturation (ASCS) method not only provides information about the interface of a protein assembly by the spin relaxation experiment, but also identifies the amino acid residues in the acceptor protein, which are located close to the selectively labeled amino acid residues in the donor protein. Here, a new method was developed to build a precise structural model of a protein assembly, which satisfies the experimental ASCS values, using simulated annealing computation. This method was applied to the ubiquitin-yeast ubiquitin hydrolase 1 (Ub-YUH1) complex to build a precise complex structure compatible with that determined by X-ray crystallography.
Collapse
Affiliation(s)
- Eiji Kanamori
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-0064, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Tonelli M, Masterson LR, Cornilescu G, Markley JL, Veglia G. One-sample approach to determine the relative orientations of proteins in ternary and binary complexes from residual dipolar coupling measurements. J Am Chem Soc 2009; 131:14138-9. [PMID: 19764746 DOI: 10.1021/ja904766g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a procedure that supports the acquisition of (1)H-(15)N residual dipolar coupling (RDC) values for individual subunits in binary or ternary protein assemblies from a single experimental sample. Our method relies on asymmetric labeling of each subunit with the following scheme: species A uniformly with (15)N, species B uniformly with (15)N and (13)C, and species C uniformly with (15)N but selectively with (13)C' or (13)C(alpha). Because only a single sample is required, the approach obviates the need for preparing multiple samples and eliminates potential errors introduced from differences in sample conditions. Because numerous biological processes rely on protein assemblies or transient interactions, this method should be well suited for a wide range of future applications.
Collapse
Affiliation(s)
- Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | |
Collapse
|