1
|
Noguchi S, Kiyama R, Yoshida M, Marsudi MA, Kashimura N, Tadanaga K, Gong JP, Nonoyama T. Real-Space Visualization of Charged Polymer Network of Hydrogel by Double Network Strategy and Mineral Staining. NANO LETTERS 2024; 24:9088-9095. [PMID: 38979827 DOI: 10.1021/acs.nanolett.4c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Hydrogels consist of three-dimensional (3D) and complicated polymer networks that determine their physical properties. Among the methods for structural analyses of hydrogels, the real-space imaging of a polymer network of hydrogels on a nanometer scale is one of the optimal methods; however, it is highly challenging. In this study, we propose a direct observation method for cationic polymer networks using transmission electron microscopy (TEM). By combining the double network strategy and the mineral staining technique, we overcame the challenges of polymer aggregation and the low electron density of the polymer. An objective cationic network was incorporated into a neutral skeleton network to suppress shrinkage during subsequent staining. Titania mineralization along the cationic polymer strands provided sufficient electron density for the objective polymer network for TEM observation. This observation method enables the visualization of local structures in real space and plays a complementary role to scattering methods for soft matter structure analysis.
Collapse
Affiliation(s)
- Shinji Noguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan
| | - Ryuji Kiyama
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
- Laboratoire de Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Masahiro Yoshida
- Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Maradhana Agung Marsudi
- Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Naohiro Kashimura
- Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Kiyoharu Tadanaga
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Leo CM, Jang J, Corey EJ, Neary WJ, Bowman JI, Kennemur JG. Comparison of Polypentenamer and Polynorbornene Bottlebrushes in Dilute Solution. ACS POLYMERS AU 2024; 4:235-246. [PMID: 38882033 PMCID: PMC11177302 DOI: 10.1021/acspolymersau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 06/18/2024]
Abstract
Bottlebrush (BB) polymers were synthesized via grafting-from-atom transfer radical polymerization (ATRP) of styrene on polypentenamer and polynorbornene macroinitiators with matched grafting density (n g = 4) and backbone degrees of polymerization (122 ≥ N bb ≥ 61) to produce a comparative study on their respective dilute solution properties as a function of increasing side chain degree of polymerization (116 ≥ N sc ≥ 5). The grafting-from technique produced near quantitative grafting efficiency and narrow dispersity N sc as evidenced by spectroscopic analysis and ring closing metathesis depolymerization of the polypentenamer BBs. The versatility of this synthetic approach permitted a comprehensive survey of power law expressions that arise from monitoring intrinsic viscosity, hydrodynamic radius, and radius of gyration as a function of increasing the molar mass of the BBs by increasing N sc. These values were compared to a series of linear (nongrafted, N sc = 0) macroinitiators in addition to linear grafts. This unique study allowed elucidation of the onset of bottlebrush behavior for two different types of bottlebrush backbones with identical grafting density but inherently different flexibility. In addition, grafting-from ATRP of methyl acrylate on a polypentenamer macroinitiator allowed the observation of the effects of graft chemistry in comparison to polystyrene. Differences in the observed scaling relationships in dilute solution as a function of each of these synthetic variants are discussed.
Collapse
Affiliation(s)
- Courtney M Leo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Jaehoon Jang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Ethan J Corey
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - William J Neary
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jared I Bowman
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Justin G Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| |
Collapse
|
3
|
Doi Y, Kitamura J, Uneyama T, Masubuchi Y, Takano A, Takahashi Y, Matsushita Y. Viscoelastic properties of comb-shaped ring polystyrenes. Polym J 2022. [DOI: 10.1038/s41428-022-00686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Kono T, Adachi K, Tsukahara Y. Hydrophobic core-hydrophilic shell graft block copolymers for unimolecular observation by AFM. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Zhou J, Yang J, Ishaq MW, Li L. Study of Linear and Cyclic Graft Polystyrenes with Identical Backbone Contour in Dilute Solutions: Preparation, Characterization, and Conformational Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jianing Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinxian Yang
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Waqas Ishaq
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Sueyoshi S, Taniguchi T, Tanaka S, Asakawa H, Nishimura T, Maeda K. Understanding the Polymerization of Diphenylacetylenes with Tantalum(V) Chloride and Cocatalysts: Production of Cyclic Poly(diphenylacetylene)s by Low-Valent Tantalum Species Generated in Situ. J Am Chem Soc 2021; 143:16136-16146. [PMID: 34499837 DOI: 10.1021/jacs.1c06811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A systematic investigation of the polymerization of representative diphenylacetylenes with TaCl5 and cocatalysts suggested that low-valent Ta species, which are formed by in situ reduction of TaCl5 by the cocatalysts, are involved in the polymerization and that the polymerization reaction proceeds by an insertion ring expansion mechanism via the formation of tantalacyclopentadiene intermediates, rather than the previously considered metathesis mechanism. This polymerization mechanism indicates the production of unprecedented cis-stereoregular cyclic poly(diphenylacetylene)s. Indeed, the possibilities of a cyclic structure and high cis-stereoregularity of the resulting polymers were reasonably supported by the results of their detailed atomic force microscopy (AFM) and NMR analyses, respectively.
Collapse
Affiliation(s)
- Shingyo Sueyoshi
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Saki Tanaka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hitoshi Asakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
7
|
Kang J, Zhu J, Lin J, Han C, Liu K, Wang X. Ring Size-Dependent Solution Behavior of Macrocycles: Dipole–Dipole Attraction Counteracted by Excluded Volume Repulsion. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Junli Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chenglong Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
8
|
Kurogi T, Mindiola DJ. Methylidyne Transfer as a Plausible Deactivation Pathway for Ynene Metathesis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Kurogi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Daniel J. Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Ivanov IV, Meleshko TK, Kashina AV, Yakimansky AV. Amphiphilic multicomponent molecular brushes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multicomponent molecular brushes containing amphiphilic polymer moieties are promising objects of research of macromolecular chemistry. The development of stimulus-responsive systems sensitive to changes in environmental parameters, based on the molecular brushes, opens up new possibilities for their applications in medicine, biochemistry and microelectronics. The review presents the current understanding of the structures of main types of amphiphilic multicomponent brushes, depending on the chemical nature and type of coupling of the backbone and side chains. The approaches to the controlled synthesis of multicomponent molecular brushes of different architecture are analyzed. Self-assembly processes of multicomponent molecular brushes in selective solvents are considered.
The bibliography includes 259 references.
Collapse
|
10
|
Grafting‐from Afforded Cyclic Graft Copolymers from Cyclic Anionic Macroinitiator via Lithiation of Tolyl Groups. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Narumi A, Yamada M, Unno Y, Kumaki J, Binder WH, Enomoto K, Kikuchi M, Kawaguchi S. Evaluation of Ring Expansion-Controlled Radical Polymerization System by AFM Observation. ACS Macro Lett 2019; 8:634-638. [PMID: 35619537 DOI: 10.1021/acsmacrolett.9b00308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We here present a direct link between the reaction mechanisms for the ring-expansion "vinyl" polymerization system and atomic force microscopy (AFM) observations. The brush-modification clearly discriminates the desired cyclic species with the contour lengths (Lc) of 28-132 nm and molar masses (MAFM) of 60.2-283 kg mol-1 from the other linear ones. The 293 polymer blushes observed in a 1.0 μm × 1.0 μm AFM image are individually characterized, eventually providing clear answers about the mechanisms of this rare polymerization system, which include ring-expansion vinyl polymerizations to generate cyclic polymers, fusions of the generated cycles to form multimers, and their scission to form linear or ring-opened species. The relationship between the molecular chain lengths and the cyclic versus linear morphologies is highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Wolfgang H. Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany
| | | | | | | |
Collapse
|
12
|
Chen J, Li H, Zhang H, Liao X, Han H, Zhang L, Sun R, Xie M. Blocking-cyclization technique for precise synthesis of cyclic polymers with regulated topology. Nat Commun 2018; 9:5310. [PMID: 30552323 PMCID: PMC6294010 DOI: 10.1038/s41467-018-07754-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Ring-closure and ring-expansion techniques are the two routes for extensive synthesis of cyclic polymers. Here, we report an alternative blocking-cyclization technique referred to as the third route to prepare cyclic polymers with regulated ring size and ring number by ring-opening metathesis polymerization of di- and monofunctional monomers in a one-pot process, where the polymer intermediates bearing two single-stranded blocks are efficiently cyclized by the cyclizing unit of propagated ladderphane to generate corresponding mono-, bis-, and tricyclic polymers, and the well-defined ladderphane structure plays a crucial role in forming the cyclic topology. Monocyclic polymer is further modified via Alder-ene reaction and the cyclic molecular topology is clearly demonstrated. The diversity features of cyclic polymers are comprehensively revealed. This strategy has broken through the limitations of previous two cyclizing routes, and indeed opens a facile and popular way to various cyclic polymers by commercial Grubbs catalyst and conventional metathesis polymerization.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Narumi A, Kobayashi T, Yamada M, Binder WH, Matsuda K, Shaykoon MSA, Enomoto K, Kikuchi M, Kawaguchi S. Ring-Expansion/Contraction Radical Crossover Reactions of Cyclic Alkoxyamines: A Mechanism for Ring Expansion-Controlled Radical Polymerization. Polymers (Basel) 2018; 10:E638. [PMID: 30966672 PMCID: PMC6404036 DOI: 10.3390/polym10060638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023] Open
Abstract
Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical "vinyl" polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105⁻125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds). A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %). In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion "vinyl" polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.
Collapse
Affiliation(s)
- Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| | - Tetsuya Kobayashi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| | - Masatsugu Yamada
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | - Keigo Matsuda
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| | - Montaser Shaykoon Ahmed Shaykoon
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| | - Kazushi Enomoto
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| | - Moriya Kikuchi
- Department of Polymeric and Organic Materials Engineering, Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| | - Seigou Kawaguchi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
| |
Collapse
|
14
|
Linear and cyclic amylose derivatives having brush like side groups in solution: Amylose tris(n-octadecylcarbamate)s. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Zhang S, Tezuka Y, Zhang Z, Li N, Zhang W, Zhu X. Recent advances in the construction of cyclic grafted polymers and their potential applications. Polym Chem 2018. [DOI: 10.1039/c7py01544e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three main strategies used for the construction of cyclic grafted polymers, “grafting through”, “grafting onto”, and “grafting from”, are summarized.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Na Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
16
|
Ryoki A, Yokobatake H, Hasegawa H, Takenaka A, Ida D, Kitamura S, Terao K. Topology-Dependent Chain Stiffness and Local Helical Structure of Cyclic Amylose Tris(3,5-dimethylphenylcarbamate) in Solution. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Akiyuki Ryoki
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiromi Yokobatake
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hirokazu Hasegawa
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Materials
Characterization Laboratories, Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga 520-8567, Japan
| | - Aya Takenaka
- Materials
Characterization Laboratories, Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga 520-8567, Japan
| | - Daichi Ida
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Shinichi Kitamura
- Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho,
Nakaku, Sakai 599-8531, Japan
| | - Ken Terao
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
17
|
Alkayal N, Zhang Z, Bilalis P, Gnanou Y, Hadjichristidis N. Polyethylene-Based Tadpole Copolymers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nazeeha Alkayal
- Physical Sciences and Engineering Division; KAUST Catalysis Center; Polymer Synthesis Laboratory; King Abdullah University of Science and Technology (KAUST); Thuwal 23955 Saudi Arabia
| | - Zhen Zhang
- Physical Sciences and Engineering Division; KAUST Catalysis Center; Polymer Synthesis Laboratory; King Abdullah University of Science and Technology (KAUST); Thuwal 23955 Saudi Arabia
| | - Panayiotis Bilalis
- Physical Sciences and Engineering Division; KAUST Catalysis Center; Polymer Synthesis Laboratory; King Abdullah University of Science and Technology (KAUST); Thuwal 23955 Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division; King Abdullah University of Science and Technology (KAUST); Thuwal 23955 Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division; KAUST Catalysis Center; Polymer Synthesis Laboratory; King Abdullah University of Science and Technology (KAUST); Thuwal 23955 Saudi Arabia
| |
Collapse
|
18
|
Kulikov OV, Siriwardane DA, McCandless GT, Mahmood SF, Novak BM. Self-assembly studies on triazolepolycarbodiimide- g -polystyrene copolymers. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Doi Y, Iwasa Y, Watanabe K, Nakamura M, Takano A, Takahashi Y, Matsushita Y. Synthesis and Characterization of Comb-Shaped Ring Polystyrenes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuya Doi
- Department of Applied
Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yutaro Iwasa
- Department of Applied
Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuki Watanabe
- Scientific Instruments
Division, Shoko Scientific Co., Ltd., 1-3-3 Azaminominami, Aoba-ku, Yokohama, Kanagawa 225-0012, Japan
| | - Masahide Nakamura
- Scientific Instruments
Division, Shoko Scientific Co., Ltd., 1-3-3 Azaminominami, Aoba-ku, Yokohama, Kanagawa 225-0012, Japan
| | - Atsushi Takano
- Department of Applied
Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshiaki Takahashi
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1,
Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Yushu Matsushita
- Department of Applied
Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
20
|
Li A, Lu L, Li X, He L, Do C, Garno JC, Zhang D. Amidine-Mediated Zwitterionic Ring-Opening Polymerization of N-Alkyl N-Carboxyanhydride: Mechanism, Kinetics, and Architecture Elucidation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02611] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ang Li
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Lu Lu
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Xin Li
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - LiLin He
- Biology
and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Changwoo Do
- Biology
and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jayne C. Garno
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
21
|
Amir F, Hossain MD, Jia Z, Monteiro MJ. Precise grafting of macrocyclics and dendrons to a linear polymer chain. Polym Chem 2016. [DOI: 10.1039/c6py01317a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential growth of multifunctional telechelic polymer chains allowing grafting of polymeric dendrons and cyclics equally spaced along the backbone.
Collapse
Affiliation(s)
- Faheem Amir
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- Brisbane
- Australia
| | - Md. D. Hossain
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- Brisbane
- Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- Brisbane
- Australia
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- Brisbane
- Australia
| |
Collapse
|
22
|
Fan X, Li Z, Loh XJ. Recent development of unimolecular micelles as functional materials and applications. Polym Chem 2016. [DOI: 10.1039/c6py01006g] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unimolecular micelles have high functionalities, encapsulation capabilities and site specific confinement abilities in various applications.
Collapse
Affiliation(s)
- Xiaoshan Fan
- School of Chemistry and Chemical Engineering
- Henan Normal University
- China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
23
|
Zhang H, Zhang Z, Gnanou Y, Hadjichristidis N. Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00713] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hefeng Zhang
- Physical Sciences and Engineering
Division, KAUST Catalysis Center,
Polymer Synthesis Laboratory, and ‡Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Zhen Zhang
- Physical Sciences and Engineering
Division, KAUST Catalysis Center,
Polymer Synthesis Laboratory, and ‡Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering
Division, KAUST Catalysis Center,
Polymer Synthesis Laboratory, and ‡Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering
Division, KAUST Catalysis Center,
Polymer Synthesis Laboratory, and ‡Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
24
|
Zhang H, Qu C, He J. Cylindrical polymer brushes with dendritic side chains by iterative anionic reactions. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Yao W, Li Y, Feng C, Lu G, Huang X. Synthesis of a sun-shaped amphiphilic copolymer consisting of a cyclic perfluorocyclobutyl aryl ether-based backbone and lateral PMAA side chains. RSC Adv 2014. [DOI: 10.1039/c4ra11630e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Yi Y, Li L, Zheng S. Poly(ε-caprolactone)-block-poly(N-vinyl pyrrolidone) diblock copolymers grafted from macrocyclic oligomeric silsesquioxane. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.06.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
|
28
|
Polymerization of styrene and cyclization to macrocyclic polystyrene in a one-pot, two-step sequence. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Sreerama SG, Elupula R, Laurent BA, Zhang B, Grayson SM. Use of MALDI-ToF MS to elucidate the structure of oligomeric impurities formed during ‘click’ cyclization of polystyrene. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2014.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Hollow nanotubular toroidal polymer microrings. Nat Chem 2014; 6:97-103. [PMID: 24451584 DOI: 10.1038/nchem.1833] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 11/21/2013] [Indexed: 11/08/2022]
Abstract
Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.
Collapse
|
31
|
Zhu X, Zhou N, Zhu J, Zhang Z, Zhang W, Cheng Z, Tu Y, Zhu X. High-Efficiency Preparation of Macrocyclic Polymers via a Circulatory Extraction-Cyclization Strategy. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Shi H, Zhao Y, Dong X, Zhou Y, Wang D. Frustrated crystallisation and hierarchical self-assembly behaviour of comb-like polymers. Chem Soc Rev 2013; 42:2075-99. [DOI: 10.1039/c2cs35350d] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Voter AF, Tillman ES, Findeis PM, Radzinski SC. Synthesis of Macrocyclic Polymers Formed via Intramolecular Radical Trap-Assisted Atom Transfer Radical Coupling. ACS Macro Lett 2012; 1:1066-1070. [PMID: 35607039 DOI: 10.1021/mz300311p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of cyclic polystyrene (PSt) with an alkoxyamine functionality has been accomplished by intramolecular radical coupling in the presence of a nitroso radical trap. Linear α,ω-dibrominated polystyrene, produced by the atom transfer radical polymerization (ATRP) of styrene using a dibrominated initiator, was subjected to chain-end activation via the atom transfer radical coupling (ATRC) process under pseudodilute conditions in the presence of 2-methyl-2-nitrosopropane (MNP). This radical trap-assisted, intramolecular ATRC (RTA-ATRC) produced cyclic polymers in greater than 90% yields, possessing ⟨G⟩ values in the 0.8-0.9 range as determined by gel permeation chromatography (GPC). Thermal-induced opening of the cycles, made possible by the incorporated alkoxyamine, resulted in a return to the original apparent molecular weight, further supporting the formation of cyclic polymers in the RTA-ATRC reaction. Liquid chromatography-mass spectrometry (LC-MS) provided direct confirmation of the cyclic architecture and the incorporation of the nitroso group into the macrocycle. RTA-ATRC cyclizations carried out with faster rates of polymer addition into the redox active solution and/or in the presence of a much larger excess of MNP (up to a 250:1 ratio of MNP:C-Br chain end) still yielded cyclic polymers that contained alkoxyamine functionality.
Collapse
Affiliation(s)
- Andrew F. Voter
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Eric S. Tillman
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Peter M. Findeis
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Scott C. Radzinski
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| |
Collapse
|
34
|
Zhang K, Tew GN. Cyclic Brush Polymers by Combining Ring-Expansion Metathesis Polymerization and the "Grafting from" Technique. ACS Macro Lett 2012; 1:574-579. [PMID: 35607064 DOI: 10.1021/mz2001675] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel synthetic route to cyclic brush polymers was developed by combining ring-expansion metathesis polymerization (REMP) and the "grafting from" technique. In this approach, ultrahigh molecular weight cyclic polymers with hydroxyl side groups were synthesized first by REMP to form the cyclic macroinitiators. Polyester side chains were then grown from these cyclic macroinitiators by virtue of a triazabicyclodecene-catalyzed cyclic ester ring-opening polymerization to produce the cyclic brush polymers.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst,
Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst,
Massachusetts 01003, United States
| |
Collapse
|
35
|
Banno M, Yamaguchi T, Nagai K, Kaiser C, Hecht S, Yashima E. Optically Active, Amphiphilic Poly(meta-phenylene ethynylene)s: Synthesis, Hydrogen-Bonding Enforced Helix Stability, and Direct AFM Observation of Their Helical Structures. J Am Chem Soc 2012; 134:8718-28. [DOI: 10.1021/ja303204m] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Motonori Banno
- Department of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoko Yamaguchi
- Department of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kanji Nagai
- Department of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Christian Kaiser
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| | - Stefan Hecht
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| | - Eiji Yashima
- Department of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
36
|
Fan X, Huang B, Wang G, Huang J. Synthesis of Amphiphilic Heteroeight-Shaped Polymer Cyclic-[Poly(ethylene oxide)-b-polystyrene]2 via “Click” Chemistry. Macromolecules 2012. [DOI: 10.1021/ma300487x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoshan Fan
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| | - Bing Huang
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| | - Guowei Wang
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| | - Junlian Huang
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| |
Collapse
|
37
|
Han J, Zhu L, Zheng S. Synthesis and characterization of organic–inorganic macrocyclic molecular brushes with poly(ε-caprolactone) side chains. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2012.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
|
39
|
Cai T, Yang WJ, Neoh KG, Kang ET. Preparation of jellyfish-shaped amphiphilic block-graft copolymers consisting of a poly(ε-caprolactone)-block-poly(pentafluorostyrene) ring and poly(ethylene glycol) lateral brushes. Polym Chem 2012. [DOI: 10.1039/c2py00609j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Lahasky SH, Serem WK, Guo L, Garno JC, Zhang D. Synthesis and Characterization of Cyclic Brush-Like Polymers by N-Heterocyclic Carbene-Mediated Zwitterionic Polymerization of N-Propargyl N-Carboxyanhydride and the Grafting-to Approach. Macromolecules 2011. [DOI: 10.1021/ma201948u] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Samuel H. Lahasky
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Wilson K. Serem
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Li Guo
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Jayne C. Garno
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
41
|
Xia Y, Boydston AJ, Grubbs RH. Synthesis and Direct Imaging of Ultrahigh Molecular Weight Cyclic Brush Polymers. Angew Chem Int Ed Engl 2011; 50:5882-5. [DOI: 10.1002/anie.201101860] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/07/2011] [Indexed: 11/06/2022]
|
42
|
Xia Y, Boydston AJ, Grubbs RH. Synthesis and Direct Imaging of Ultrahigh Molecular Weight Cyclic Brush Polymers. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
|
44
|
Zhang Z, Wang G, Huang J. Synthesis of H-shaped A3BA3 copolymer by methyl-2-nitrosopropane induced single electron transfer nitroxide radical coupling. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Córdova ME, Lorenzo AT, Müller AJ, Hoskins JN, Grayson SM. A Comparative Study on the Crystallization Behavior of Analogous Linear and Cyclic Poly(ε-caprolactones). Macromolecules 2011. [DOI: 10.1021/ma200394h] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miguel E. Córdova
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Arnaldo T. Lorenzo
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Alejandro J. Müller
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Jessica N. Hoskins
- Department of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| |
Collapse
|
46
|
Fan X, Wang G, Huang J. Synthesis of macrocyclic molecular brushes with amphiphilic block copolymers as side chains. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24555] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Yamamoto T, Tezuka Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym Chem 2011. [DOI: 10.1039/c1py00088h] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
YAMAMOTO T, TEZUKA Y. Topological Polymer Chemistry: New Synthesis of Cyclic and Multicyclic Polymers and Topology Effects Thereby. KOBUNSHI RONBUNSHU 2011. [DOI: 10.1295/koron.68.782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takuya YAMAMOTO
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Yasuyuki TEZUKA
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| |
Collapse
|
49
|
Han Y, Gao C. Miktoarms hyperbranched polymer brushes: One-step fast synthesis by parallel click chemistry and hierarchical self-assembly. Sci China Chem 2010. [DOI: 10.1007/s11426-010-4134-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Boydston AJ, Holcombe TW, Unruh DA, Fréchet JMJ, Grubbs RH. A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer. J Am Chem Soc 2010; 131:5388-9. [PMID: 19334732 DOI: 10.1021/ja901658c] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic organic nanostructures were prepared via ring-expansion metathesis polymerization of a dendronized norbornene macromonomer. The strategy provides a direct, efficient route to nanoscale rings in a single operation. AFM imaging confirmed toroidal features having diameters of ca. 35-40 nm.
Collapse
Affiliation(s)
- Andrew J Boydston
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|