1
|
D'Agostino PM. Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria. Nat Prod Rep 2023; 40:1701-1717. [PMID: 37233731 DOI: 10.1039/d3np00011g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: up to 2023Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.
Collapse
Affiliation(s)
- Paul M D'Agostino
- Technical University of Dresden, Chair of Technical Biochemistry, Bergstraβe 66, 01069 Dresden, Germany.
| |
Collapse
|
2
|
Davison JR, Rajwani R, Zhao G, Bewley CA. The genome of antibiotic-producing colonies of the Pelagophyte alga Chrysophaeum taylorii reveals a diverse and non-canonical capacity for secondary metabolism. Sci Rep 2023; 13:11944. [PMID: 37488207 PMCID: PMC10366177 DOI: 10.1038/s41598-023-38042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/01/2023] [Indexed: 07/26/2023] Open
Abstract
Chrysophaeum taylorii is a member of an understudied clade of marine algae that can be responsible for harmful coastal blooms and is known to accumulate bioactive natural products including antibiotics of the chrysophaentin class. Whole genome sequencing of laboratory-cultivated samples revealed an extensive and diverse complement of secondary metabolite biosynthetic genes in C. taylorii, alongside a small microbiome with a more limited biosynthetic potential. 16S microbiome analysis of laboratory cultured alongside wild-collected samples revealed several common taxa; however, analysis of biosynthetic genes suggested an algal origin for the chrysophaentins, possibly via one of several non-canonical polyketide synthase genes encoded within the genome.
Collapse
Affiliation(s)
- Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
- LifeMine Therapeutics, 30 Acorn Park Dr., Cambridge, MA, 02140, USA.
| | - Rahim Rajwani
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Chemoenzymatic Synthesis of Indole-Containing Acyloin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010354. [PMID: 36615552 PMCID: PMC9822442 DOI: 10.3390/molecules28010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Indole-containing acyloins are either key intermediates of many antimicrobial/antiviral natural products or building blocks in the synthesis of biologically active molecules. As such, access to structurally diverse indole-containing acyloins has attracted considerable attention. In this report, we present a pilot study of using biotransformation to provide acyloins that contain various indole substituents. The biotransformation system contains the tryptophan synthase standalone β-subunit variant, PfTrpB6, generated from directed evolution in the literature; a commercially available L-amino acid oxidase (LAAO); and the thiamine-diphosphate (ThDP)-dependent enzyme NzsH, encoded in the biosynthetic gene cluster (nzs) of the bacterial carbazole alkaloid natural product named neocarazostatin A. The utilization of the first two enzymes, the PfTrpB variant and LAAO, is designed to provide structurally diverse indole 3-pyruvate derivatives as donor substrates for NzsH-catalysed biotransformation to provide acyloin derivatives. Our results demonstrate that NzsH displays a considerable substrate profile toward donor substrates for production of acyloins with different indole ring systems, suggesting that NzsH could be further explored as a potential biocatalyst via directed evolution to improve the catalytic efficiency in the future.
Collapse
|
4
|
He Y, Suyama TL, Kim H, Glukhov E, Gerwick WH. Discovery of Novel Tyrosinase Inhibitors From Marine Cyanobacteria. Front Microbiol 2022; 13:912621. [PMID: 35910604 PMCID: PMC9329053 DOI: 10.3389/fmicb.2022.912621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Tyrosinase, an important oxidase involved in the primary immune response in humans, can sometimes become problematic as it can catalyze undesirable oxidation reactions. Therefore, for decades there has been a strong pharmaceutical interest in the discovery of novel inhibitors of this enzyme. Recent studies have also indicated that tyrosinase inhibitors can potentially be used in the treatment of melanoma cancer. Over the years, many new tyrosinase inhibitors have been discovered from various natural sources; however, marine natural products (MNPs) have contributed only a small number of promising candidates. Therefore, in this study we focused on the discovery of new MNP tyrosinase inhibitors of marine cyanobacterial and algal origins. A colorimetric tyrosinase inhibitory assay was used to screen over 4,500 marine extracts against mushroom tyrosinase (A. bisporus). Our results revealed that scytonemin monomer (ScyM), a pure compound from our compound library and also the monomeric last-step precursor in the biosynthesis of the well-known cyanobacterial sunscreen pigment “scytonemin,” consistently showed the highest tyrosinase inhibitory score. Determination of the half maximal inhibitory concentration (IC50) further indicated that ScyM is more potent than the commonly used commercial inhibitor standard “kojic acid” (KA; IC50 of ScyM: 4.90 μM vs. IC50 of KA: 11.31 μM). After a scaled-up chemical synthesis of ScyM as well as its O-methyl analog (ScyM-OMe), we conducted a series of follow-up studies on their structures, inhibitory properties, and mode of inhibition. Our results supported ScyM as the second case ever of a novel tyrosinase inhibitory compound based on a marine cyanobacterial natural product. The excellent in vitro performance of ScyM makes it a promising candidate for applications such as a skin-whitening agent or an adjuvant therapy for melanoma cancer treatment.
Collapse
Affiliation(s)
- Yifan He
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Yifan He,
| | - Takashi L. Suyama
- Department of Chemistry and Forensic Science, Waynesburg University, Waynesburg, PA, United States
- Takashi L. Suyama,
| | - Hyunwoo Kim
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- College of Pharmacy, Dongguk University, Goyang, South Korea
| | - Evgenia Glukhov
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- William H. Gerwick,
| |
Collapse
|
5
|
Biosynthesis of cyanobacterin, a paradigm for furanolide core structure assembly. Nat Chem Biol 2022; 18:652-658. [PMID: 35618928 DOI: 10.1038/s41589-022-01013-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
The γ-butyrolactone motif is found in many natural signaling molecules and other specialized metabolites. A prominent example is the potent aquatic phytotoxin cyanobacterin, which has a highly functionalized γ-butyrolactone core structure. The enzymatic machinery that assembles cyanobacterin and structurally related natural products (herein termed furanolides) has remained elusive for decades. Here, we elucidate the biosynthetic process of furanolide assembly. The cyanobacterin biosynthetic gene cluster was identified by targeted bioinformatic screening and validated by heterologous expression in Escherichia coli. Full functional evaluation of the recombinant key enzymes in vivo and in vitro, individually and in concert, provided in-depth mechanistic insights into a streamlined C-C bond-forming cascade that involves installation of compatible reactivity at seemingly unreactive Cα positions of amino acid precursors. Our work extends the biosynthetic and biocatalytic toolbox for γ-butyrolactone formation, provides a general paradigm for furanolide biosynthesis and sets the stage for their targeted discovery, biosynthetic engineering and enzymatic synthesis.
Collapse
|
6
|
Ricca M, Zhang W, Li J, Fellowes T, White JM, Donnelly PS, Rizzacasa MA. Synthesis of acyloin natural products by Mukaiyama hydration. Org Biomol Chem 2022; 20:4038-4047. [PMID: 35506986 DOI: 10.1039/d2ob00651k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acyloin natural products are a family of bioactive compounds isolated from fungi and myxobacteria. The total synthesis of 7 members of the acyloin family was achieved via a HWE reaction followed by Mukaiyama-Isayama hydration, using novel Co(II) and Co(III) Schiff base SALPN complexes as catalysts for the key enone hydration step. Furthermore, we have shown that a mild acyloin rearrangement is possible under Mukaiyama hydration conditions, which was crucial in the success of this approach.
Collapse
Affiliation(s)
- Michael Ricca
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Wei Zhang
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Jiaqi Li
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Thomas Fellowes
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Jonathan M White
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Paul S Donnelly
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Mark A Rizzacasa
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
7
|
Sen S, Mallick N. Scytonemin: Unravelling major progress and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Substrate-Specific Engineering of Amino Acid Dehydrogenase Superfamily for Synthesis of a Variety of Chiral Amines and Amino Acids. Catalysts 2022. [DOI: 10.3390/catal12040380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amino acid dehydrogenases (AADHs) are a group of enzymes that catalyze the reversible reductive amination of keto acids with ammonia to produce chiral amino acids using either nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as cofactors. Among them, glutamate dehydrogenase, valine dehydrogenase, leucine dehydrogenase, phenylalanine dehydrogenase, and tryptophan dehydrogenase have been classified as a superfamily of amino acid dehydrogenases (s-AADHs) by previous researchers because of their conserved structures and catalytic mechanisms. Owing to their excellent stereoselectivity, high atom economy, and low environmental impact of the reaction pathway, these enzymes have been extensively engineered to break strict substrate specificities for the synthesis of high value-added chiral compounds (chiral amino acids, chiral amines, and chiral amino alcohols). Substrate specificity engineering of s-AADHs mainly focuses on recognition engineering of the substrate side chain R group and substrate backbone carboxyl group. This review summarizes the reported studies on substrate specificity engineering of s-AADHs and reports that this superfamily of enzymes shares substrate specificity engineering hotspots (the inside of the pocket, substrate backbone carboxyl anchor sites, substrate entrance tunnel, and hinge region), which sheds light on the substrate-specific tailoring of these enzymes.
Collapse
|
9
|
Bennett J, Soule T. Expression of Scytonemin Biosynthesis Genes under Alternative Stress Conditions in the Cyanobacterium Nostoc punctiforme. Microorganisms 2022; 10:microorganisms10020427. [PMID: 35208882 PMCID: PMC8879130 DOI: 10.3390/microorganisms10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
The indole-alkaloid scytonemin is a sunscreen pigment that is widely produced among cyanobacteria as an ultraviolet radiation (UVR) survival strategy. Scytonemin biosynthesis is encoded by two gene clusters that are known to be induced by long-wavelength radiation (UVA). Previous studies have characterized the transcriptome of cyanobacteria in response to a wide range of conditions, but the effect on the expression of scytonemin biosynthesis genes has not been specifically targeted. Therefore, the aim of this study is to determine the variable response of scytonemin biosynthesis genes to a variety of environmental conditions. Cells were acclimated to white light before supplementation with UVA, UVB, high light, or osmotic stress for 48 h. The presence of scytonemin was determined by absorbance spectroscopy and gene expression of representative scytonemin biosynthesis genes was measured using quantitative PCR. Scytonemin genes were up-regulated in UVA, UVB, and high light, although the scytonemin pigment was not detected under high light. There was no scytonemin or upregulation of these genes under osmotic stress. The lack of pigment production under high light, despite increased gene expression, suggests a time-dependent delay for pigment production or additional mechanisms or genes that may be involved in scytonemin production beyond those currently known.
Collapse
|
10
|
New Deoxyenhygrolides from Plesiocystis pacifica Provide Insights into Butenolide Core Biosynthesis. Mar Drugs 2022; 20:md20010072. [PMID: 35049927 PMCID: PMC8777810 DOI: 10.3390/md20010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Marine myxobacteria present a virtually unexploited reservoir for the discovery of natural products with diverse biological functions and novel chemical scaffolds. We report here the isolation and structure elucidation of eight new deoxyenhygrolides (1–8) from the marine myxobacterium Plesiocystis pacifica DSM 14875T. The herein described deoxyenhygrolides C–J (1–8) feature a butenolide core with an ethyl residue at C-3 of the γ-lactone in contrast to the previously described derivatives, deoxyenhygrolides A and B, which feature an isobutyl residue at this position. The butenolide core is 2,4-substituted with a benzyl (1, 2 and 7), benzoyl (3 and 4) or benzyl alcohol (5, 6 and 8) moiety in the 2-position and a benzylidene (1–6) or benzylic hemiketal (7 and 8) in the 4-position. The description of these new deoxyenhygrolide derivatives, alongside genomic in silico investigation regarding putative biosynthetic genes, provides some new puzzle pieces on how this natural product class might be formed by marine myxobacteria.
Collapse
|
11
|
Gao X, Jing X, Liu X, Lindblad P. Biotechnological Production of the Sunscreen Pigment Scytonemin in Cyanobacteria: Progress and Strategy. Mar Drugs 2021; 19:129. [PMID: 33673485 PMCID: PMC7997468 DOI: 10.3390/md19030129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Scytonemin is a promising UV-screen and antioxidant small molecule with commercial value in cosmetics and medicine. It is solely biosynthesized in some cyanobacteria. Recently, its biosynthesis mechanism has been elucidated in the model cyanobacterium Nostoc punctiforme PCC 73102. The direct precursors for scytonemin biosynthesis are tryptophan and p-hydroxyphenylpyruvate, which are generated through the shikimate and aromatic amino acid biosynthesis pathway. More upstream substrates are the central carbon metabolism intermediates phosphoenolpyruvate and erythrose-4-phosphate. Thus, it is a long route to synthesize scytonemin from the fixed atmospheric CO2 in cyanobacteria. Metabolic engineering has risen as an important biotechnological means for achieving sustainable high-efficiency and high-yield target metabolites. In this review, we summarized the biochemical properties of this molecule, its biosynthetic gene clusters and transcriptional regulations, the associated carbon flux-driving progresses, and the host selection and biosynthetic strategies, with the aim to expand our understanding on engineering suitable cyanobacteria for cost-effective production of scytonemin in future practices.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Xin Jing
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångstrom, Uppsala University, Box 523, 751 20 Uppsala, Sweden;
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångstrom, Uppsala University, Box 523, 751 20 Uppsala, Sweden;
| |
Collapse
|
12
|
Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141576. [PMID: 33370909 DOI: 10.1016/j.scitotenv.2020.141576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet radiation (UVR) has detrimental effects on human health. It induces oxidative stress, deregulates signaling mechanisms, and produces DNA mutations, factors that ultimately can lead to the development of skin cancer. Therefore, reducing exposure to UVR is of major importance. Among available measures to diminish exposure is the use of sunscreens. However, recent studies indicate that several of the currently used filters have adverse effects on marine ecosystems and human health. This situation leads to the search for new photoprotective compounds that, apart from offering protection, are environmentally friendly. The answer may lie in the same marine ecosystems since molecules such as mycosporine-like amino acids (MAAs) and scytonemin can serve as the defense system of some marine organisms against UVR. This review will discuss the harmful effects of UVR and the mechanisms that microalgae have developed to cope with it. Then it will focus on the biological distribution, characteristics, extraction, and purification methods of MAAs and scytonemin molecules to finally assess its potential as new filters for sunscreen formulation.
Collapse
Affiliation(s)
- Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Veronica Rodriguez-Martinez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico.
| |
Collapse
|
13
|
Jeong Y, Cho SH, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020; 8:E1849. [PMID: 33255283 PMCID: PMC7761380 DOI: 10.3390/microorganisms8121849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for enhanced production of industrially valued compounds, including secondary metabolites and non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and systems biology approaches for advanced metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Sang-Hyeok Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon 21999, Korea;
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
| | - Suhyung Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Byung-Kwan Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| |
Collapse
|
14
|
Shimada N, Takahashi N, Ohse N, Koshizuka M, Makino K. Synthesis of Weinreb amides using diboronic acid anhydride-catalyzed dehydrative amidation of carboxylic acids. Chem Commun (Camb) 2020; 56:13145-13148. [PMID: 33007055 DOI: 10.1039/d0cc05630h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first successful example of the direct synthesis of Weinreb amides using catalytic hydroxy-directed dehydrative amidation of carboxylic acids using the diboronic acid anhydride catalyst is described. The methodology is applicable to the concise syntheses of eight α-hydroxyketone natural products, namely, sattabacin, 4-hydroxy sattabacin, kurasoins A and B, soraphinols A and B, and circumcins B and C.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | | | |
Collapse
|
15
|
UV-A Irradiation Increases Scytonemin Biosynthesis in Cyanobacteria Inhabiting Halites at Salar Grande, Atacama Desert. Microorganisms 2020; 8:microorganisms8111690. [PMID: 33142998 PMCID: PMC7692114 DOI: 10.3390/microorganisms8111690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023] Open
Abstract
Microbial consortia inhabiting evaporitic salt nodules at the Atacama Desert are dominated by unculturable cyanobacteria from the genus Halothece. Halite nodules provide transparency to photosynthetically active radiation and diminish photochemically damaging UV light. Atacama cyanobacteria synthesize scytonemin, a heterocyclic dimer, lipid soluble, UV-filtering pigment (in vivo absorption maximum at 370 nm) that accumulates at the extracellular sheath. Our goal was to demonstrate if UV-A irradiations modulate scytonemin biosynthesis in ground halites containing uncultured Halothece sp. cyanobacteria. Pulverized halite nodules with endolithic colonization were incubated under continuous UV-A radiation (3.6 W/m2) for 96 h, at 67% relative humidity, mimicking their natural habitat. Scytonemin content and relative transcription levels of scyB gene (a key gene in the biosynthesis of scytonemin) were evaluated by spectrophotometry and quantitative RT-PCR, respectively. After 48 h under these experimental conditions, the ratio scytonemin/chlorophyll a and the transcription of scyB gene increased to a maximal 1.7-fold value. Therefore, endolithic Halothece cyanobacteria in halites are metabolically active and UV radiation is an environmental stressor with a positive influence on scyB gene transcription and scytonemin biosynthesis. Endolithobiontic cyanobacteria in Atacama show a resilient evolutive and adaptive strategy to survive in one of the most extreme environments on Earth.
Collapse
|
16
|
Popović S, Krizmanić J, Vidaković D, Karadžić V, Milovanović Ž, Pećić M, Subakov Simić G. Biofilms in caves: easy method for the assessment of dominant phototrophic groups/taxa in situ. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:720. [PMID: 33089398 DOI: 10.1007/s10661-020-08686-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Domination of certain aerophytic phototrophic group or specific taxon in biofilms is connected with biofilm features recognised in situ. Well-developed, gelatinous, olive to dark-green biofilms are composed mostly of coccoid cyanobacterial forms. The same features, characterised biofilms dominated by one coccoid taxon, except the latter were vividly coloured. Gloeobacter caused the appearance of purple, Gloeocapsa representatives yellow and Chroococcidiopsis black biofilm. The brown to the dark colour of heterocytous biofilms was mainly caused by Nostoc. Simple trichal Cyanobacteria were occasionally present in biofilm, except in one blue-coloured sample. According to the principal component analysis (PCA), well-developed and gelatinous biofilms were correlated with Cyanobacteria, while scanning electron microscopy (SEM) revealed richness of extracellular polymeric substances (EPS) in such biofilms. Biofilm with calcified cyanobacterium (Geitleria cf. calcarea) was also found. Chlorophyta-abundant biofilms (many rich in Desmococcus), thinner than cyanobacterial, were predominantly green and occasionally yellow and blue. Many were dry when observed in situ (confirmed with PCA), with few being moistened (i.e. Klebsormidium-dominant). Diatom biofilms were usually developed on sediment, mosses or near seeping water (demonstrated by PCA) and were also thinner than cyanobacterial ones. Compared to cyanobacterial biofilms, SEM showed less developed EPS in those rich in diatoms and green algae, where microorganisms are more exposed to the environment. The study demonstrates an easy method for biofilm assessment based on visual characterisation and provides encouragement for more frequent biofilm investigation in caves that can be important from an ecological, biological, biotechnological point of view and which assessment can have an irreplaceable role in potential monitoring and protection.
Collapse
Affiliation(s)
- Slađana Popović
- Center for Ecology and Technoeconomics, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Jelena Krizmanić
- Faculty of Biology, Institute of Botany and Botanical Garden 'Jevremovac', University of Belgrade, Belgrade, Serbia
| | - Danijela Vidaković
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Karadžić
- Institute of Public Health of Serbia Dr. Milan Jovanovic Batut, Belgrade, Serbia
| | - Željka Milovanović
- Center for Ecology and Technoeconomics, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Pećić
- Faculty of Biology, Institute of Botany and Botanical Garden 'Jevremovac', University of Belgrade, Belgrade, Serbia
| | - Gordana Subakov Simić
- Faculty of Biology, Institute of Botany and Botanical Garden 'Jevremovac', University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Li Y, Naman CB, Alexander KL, Guan H, Gerwick WH. The Chemistry, Biochemistry and Pharmacology of Marine Natural Products from Leptolyngbya, a Chemically Endowed Genus of Cyanobacteria. Mar Drugs 2020; 18:E508. [PMID: 33036172 PMCID: PMC7600079 DOI: 10.3390/md18100508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Leptolyngbya, a well-known genus of cyanobacteria, is found in various ecological habitats including marine, fresh water, swamps, and rice fields. Species of this genus are associated with many ecological phenomena such as nitrogen fixation, primary productivity through photosynthesis and algal blooms. As a result, there have been a number of investigations of the ecology, natural product chemistry, and biological characteristics of members of this genus. In general, the secondary metabolites of cyanobacteria are considered to be rich sources for drug discovery and development. In this review, the secondary metabolites reported in marine Leptolyngbya with their associated biological activities or interesting biosynthetic pathways are reviewed, and new insights and perspectives on their metabolic capacities are gained.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
| | - C. Benjamin Naman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Kelsey L. Alexander
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
18
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Zhang SY, Zhan ZJ, Zhang H, Qi H, Zhang LQ, Chen SX, Gan LS, Wang JD, Ma LF. Morindolestatin, Naturally Occurring Dehydromorpholinocarbazole Alkaloid from Soil-Derived Bacterium of the Genus Streptomyces. Org Lett 2020; 22:1113-1116. [PMID: 31977234 DOI: 10.1021/acs.orglett.9b04609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel antilipid peroxidative carbazole alkaloids, antiostatin A5 (1), antiostatin A6 (2), and (±)-morindolestatin (3), were isolated from a new soil-derived Streptomyces sp. Compound 2 possesses an unusual cyclohexene side chain. Compound 3 was a pair of enantiomers featuring an unprecedented [1,4]oxazino[2,3-c]carbazole ring system. The absolute configuration of 3 was determined by online HPLC-ECD and ECD calculation. A racemization mechanism and putative biosynthetic pathway are discussed.
Collapse
Affiliation(s)
- Shao-Yong Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Hui Zhang
- Zhejiang Key Laboratory of Antifungal Drugs , Zhejiang Hisun Pharmaceutical Co., Ltd. , Taizhou 318000 , P.R. China
| | - Huan Qi
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Li-Qin Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Shi-Xin Chen
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Li-She Gan
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Ji-Dong Wang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Lie-Feng Ma
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P.R. China.,Zhejiang Xinguang Pharmaceutical Limited Liability Company , Shaoxing , 312400 , P.R. China
| |
Collapse
|
20
|
Pathak J, Pandey A, Maurya PK, Rajneesh R, Sinha RP, Singh SP. Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40011-019-01134-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Matsui D, Asano Y. Creation of thermostable l-tryptophan dehydrogenase by protein engineering and its application for l-tryptophan quantification. Anal Biochem 2019; 579:57-63. [DOI: 10.1016/j.ab.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
|
22
|
Schieferdecker S, Shabuer G, Letzel AC, Urbansky B, Ishida-Ito M, Ishida K, Cyrulies M, Dahse HM, Pidot S, Hertweck C. Biosynthesis of Diverse Antimicrobial and Antiproliferative Acyloins in Anaerobic Bacteria. ACS Chem Biol 2019; 14:1490-1497. [PMID: 31243958 DOI: 10.1021/acschembio.9b00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metabolic profiling and genome mining revealed that anaerobic bacteria have the potential to produce acyloin natural products. In addition to sattazolin A and B, three new sattazolin congeners and a novel acyloin named clostrocyloin were isolated from three strains of Clostridium beijerinckii, a bacterium used for industrial solvent production. Bioactivity profiling showed that the sattazolin derivatives possess antimicrobial activities against mycobacteria and pseudomonads with only low cytotoxicity. Clostrocyloin was found to be mainly active against fungi. The thiamine diphosphate (ThDP)-dependent sattazolin-producing synthase was identified in silico and characterized both in vivo and in in vitro enzyme assays. A related acyloin synthase from the clostrocyloin producer was shown to be responsible for the production of the acyloin core of clostrocyloin. The biotransformation experiments provided first insights into the substrate scope of the clostrocyloin synthase and revealed biosynthetic intermediates.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gulimila Shabuer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Anne-Catrin Letzel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Barbara Urbansky
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Michael Cyrulies
- BioPilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sacha Pidot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Victoria 3010, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
23
|
Sélem-Mojica N, Aguilar C, Gutiérrez-García K, Martínez-Guerrero CE, Barona-Gómez F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Microb Genom 2019; 5. [PMID: 30946645 PMCID: PMC6939163 DOI: 10.1099/mgen.0.000260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Natural products (NPs), or specialized metabolites, are important for medicine and agriculture alike, and for the fitness of the organisms that produce them. NP genome-mining aims at extracting biosynthetic information from the genomes of microbes presumed to produce these compounds. Typically, canonical enzyme sequences from known biosynthetic systems are identified after sequence similarity searches. Despite this being an efficient process, the likelihood of identifying truly novel systems by this approach is low. To overcome this limitation, we previously introduced EvoMining, a genome-mining approach that incorporates evolutionary principles. Here, we release and use our latest EvoMining version, which includes novel visualization features and customizable databases, to analyse 42 central metabolic enzyme families (EFs) conserved throughout Actinobacteria, Cyanobacteria, Pseudomonas and Archaea. We found that expansion-and-recruitment profiles of these 42 families are lineage specific, opening the metabolic space related to ‘shell’ enzymes. These enzymes, which have been overlooked, are EFs with orthologues present in most of the genomes of a taxonomic group, but not in all. As a case study of canonical shell enzymes, we characterized the expansion and recruitment of glutamate dehydrogenase and acetolactate synthase into scytonemin biosynthesis, and into other central metabolic pathways driving Archaea and Bacteria adaptive evolution. By defining the origin and fate of enzymes, EvoMining complements traditional genome-mining approaches as an unbiased strategy and opens the door to gaining insights into the evolution of NP biosynthesis. We anticipate that EvoMining will be broadly used for evolutionary studies, and for generating predictions of unprecedented chemical scaffolds and new antibiotics. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Nelly Sélem-Mojica
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, México
| | - César Aguilar
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, México
| | | | - Christian E Martínez-Guerrero
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, México.,Present address: Nuclear-Mitochondrial Interaction and Paleogenomics Laboratory, Langebio, Cinvestav-IPN, Irapuato, México
| | - Fancisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, México
| |
Collapse
|
24
|
Pathak J, Ahmed H, Rajneesh, Singh SP, Häder DP, Sinha RP. Genetic regulation of scytonemin and mycosporine-like amino acids (MAAs) biosynthesis in cyanobacteria. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
D'Agostino PM, Woodhouse JN, Liew HT, Sehnal L, Pickford R, Wong HL, Burns BP, Neilan BA. Bioinformatic, phylogenetic and chemical analysis of the UV‐absorbing compounds scytonemin and mycosporine‐like amino acids from the microbial mat communities of Shark Bay, Australia. Environ Microbiol 2019; 21:702-715. [DOI: 10.1111/1462-2920.14517] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Paul M. D'Agostino
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) Technische Universität München Garching Germany
| | - Jason N. Woodhouse
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- Department of Experimental Limnology Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Stechlin Germany
| | - Heng Tai Liew
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore
| | - Luděk Sehnal
- Research Centre for Toxic Compounds in the Environment, Faculty of Science Masaryk University Kamenice 5, 625 00, Brno Czech Republic
| | - Russel Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre University of New South Wales Sydney New South Wales Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
| | - Brendan P. Burns
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- School of Environmental and Life Sciences University of Newcastle Newcastle New South Wales Australia
| |
Collapse
|
26
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
27
|
Asano Y. Screening and development of enzymes for determination and transformation of amino acids. Biosci Biotechnol Biochem 2019; 83:1402-1416. [PMID: 30621552 DOI: 10.1080/09168451.2018.1559027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high stereo- and substrate specificities of enzymes have been utilized for micro-determination of amino acids. Here, I review the discovery of l-Phe dehydrogenase and its practical use in the diagnosis of phenylketonuria in more than 5,400,000 neonates over two decades in Japan. Screening and uses of other selective enzymes for micro-determination of amino acids have also been discussed. In addition, novel enzymatic assays with the systematic use of known enzymes, including assays based on a pyrophosphate detection system using pyrophosphate dikinase for a variety of l-amino acids with amino-acyl-tRNA synthetase have been reviewed. Finally, I review the substrate specificities of a few amino acid-metabolizing enzymes that have been altered, using protein engineering techniques, mainly for production of useful chemicals, thus enabling the wider use of natural enzymes.
Collapse
Affiliation(s)
- Yasuhisa Asano
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Toyama , Japan
| |
Collapse
|
28
|
The Widely Conserved ebo Cluster Is Involved in Precursor Transport to the Periplasm during Scytonemin Synthesis in Nostoc punctiforme. mBio 2018; 9:mBio.02266-18. [PMID: 30482833 PMCID: PMC6282210 DOI: 10.1128/mbio.02266-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Scytonemin is a dimeric indole-phenol sunscreen synthesized by some cyanobacteria under conditions of exposure to UVA radiation. While its biosynthetic pathway has been elucidated only partially, comparative genomics reveals that the scytonemin operon often contains a cluster of five highly conserved genes (ebo cluster) of unknown function that is widespread and conserved among several bacterial and algal phyla. We sought to elucidate the function of the ebo cluster in the cyanobacterium Nostoc punctiforme by constructing and analyzing in-frame deletion mutants (one for each ebo gene and one for the entire cluster). Under conditions of UVA induction, all ebo mutants were scytoneminless, and all accumulated a single compound, the scytonemin monomer, clearly implicating all ebo genes in scytonemin production. We showed that the scytonemin monomer also accumulated in an induced deletion mutant of scyE, a non-ebo scytonemin gene whose product is demonstrably targeted to the periplasm. Confocal autofluorescence microscopy revealed that the accumulation was confined to the cytoplasm in all ebo mutants but that that was not the case in the scyE deletion, with an intact ebo cluster, where the scytonemin monomer was also excreted to the periplasm. The results implicate the ebo cluster in the export of the scytonemin monomer to the periplasm for final oxidative dimerization by ScyE. By extension, the ebo gene cluster may play similar roles in metabolite translocation across many bacterial phyla. We discuss potential mechanisms for such a role on the basis of structural and phylogenetic considerations of the ebo proteins.IMPORTANCE Elucidating the biochemical and genetic basis of scytonemin constitutes an interesting challenge because of its unique structure and the unusual fact that it is partially synthesized in the periplasmic space. Our work points to the ebo gene cluster, associated with the scytonemin operon of cyanobacteria, as being responsible for the excretion of scytonemin intermediates from the cytoplasm into the periplasm during biosynthesis. Few conserved systems have been described that facilitate the membrane translocation of small molecules. Because the ebo cluster is well conserved among a large diversity of bacteria and algae and yet insights into its potential function are lacking, our findings suggest that translocation of small molecules across the plasma membrane may be its generic role across microbes.
Collapse
|
29
|
Wu F, Huang W, Yiliqi, Yang J, Gu Y. Relay Catalysis of Bismuth Trichloride and Byproduct Hydrogen Bromide Enables the Synthesis of Carbazole and Benzo[α]carbazoles from Indoles and α-Bromoacetaldehyde Acetals. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fengtian Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering; HuazhongUniversity of Science and Technology; 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Wenbo Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering; HuazhongUniversity of Science and Technology; 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Yiliqi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering; HuazhongUniversity of Science and Technology; 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Jian Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering; HuazhongUniversity of Science and Technology; 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering; HuazhongUniversity of Science and Technology; 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Lanzhou 730000 People's Republic of China
| |
Collapse
|
30
|
Su L, Lv M, Kyeremeh K, Deng Z, Deng H, Yu Y. A ThDP-dependent enzymatic carboligation reaction involved in Neocarazostatin A tricyclic carbazole formation. Org Biomol Chem 2018; 14:8679-8684. [PMID: 27714211 DOI: 10.1039/c6ob01651k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the biosynthetic pathway of Neocarazostatin A (1) has been identified, the detailed enzymatic reactions underlying the assembly of the carbazole ring still remain largely unknown. We demonstrate here that NzsH, a putative thiamine diphosphate dependent enzyme, can catalyze an acyloin coupling reaction between indole-3-pyruvate and pyruvate to generate a β-ketoacid intermediate. Our findings thus shed light on further characterization of the unusual biosynthetic pathway of the bacterial tricyclic carbazole alkaloids.
Collapse
Affiliation(s)
- Li Su
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| | - Meinan Lv
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon-Accra, Ghana
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| |
Collapse
|
31
|
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol 2017; 6:rsob.160249. [PMID: 27906133 PMCID: PMC5133447 DOI: 10.1098/rsob.160249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 01/26/2023] Open
Abstract
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid–cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Anzhelika Butenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
32
|
Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme. Appl Environ Microbiol 2017; 83:AEM.02710-16. [PMID: 27815281 DOI: 10.1128/aem.02710-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023] Open
Abstract
l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)+-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD+ Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD+/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. IMPORTANCE In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the following informative results. Several residues in the active site form a hydrophobic cluster, which may be a part of the hydrophobic core essential for protein folding. To our knowledge, there is no previous report demonstrating that a hydrophobic cluster in the active site of any l-amino acid dehydrogenase may have a critical impact on protein folding. Furthermore, our results suggest that this hydrophobic cluster could strictly accommodate l-Trp. These studies show the structural characteristics of l-Trp dehydrogenase and hence would facilitate novel applications of l-Trp dehydrogenase.
Collapse
|
33
|
Varnali T. A comparison of scytonemin and its carbon analogue in terms of antioxidant properties through free radical mechanisms and conformational analysis: a DFT investigation. J Mol Model 2016; 22:213. [DOI: 10.1007/s00894-016-3094-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
34
|
Naurin S, Bennett J, Videau P, Philmus B, Soule T. The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133. JOURNAL OF PHYCOLOGY 2016; 52:564-571. [PMID: 27020740 DOI: 10.1111/jpy.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production.
Collapse
Affiliation(s)
- Sejuti Naurin
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| | - Janine Bennett
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| | - Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Tanya Soule
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| |
Collapse
|
35
|
Soule T, Shipe D, Lothamer J. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress. Curr Microbiol 2016; 73:455-62. [DOI: 10.1007/s00284-016-1084-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
|
36
|
Ferreira D, Garcia-Pichel F. Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133. Front Microbiol 2016; 7:735. [PMID: 27242750 PMCID: PMC4870267 DOI: 10.3389/fmicb.2016.00735] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/02/2016] [Indexed: 11/15/2022] Open
Abstract
The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (ΔscyD, ΔscyE, and ΔscyF) and their phenotypes studied. Expectedly, ΔscyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ΔscyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ΔscyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.
Collapse
Affiliation(s)
- Daniela Ferreira
- School of Life Sciences, Arizona State University, Tempe AZ, USA
| | | |
Collapse
|
37
|
Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends Microbiol 2016; 23:642-652. [PMID: 26433696 DOI: 10.1016/j.tim.2015.07.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.
Collapse
Affiliation(s)
- Elke Dittmann
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Kaarina Sivonen
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - David P Fewer
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
38
|
Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms. ACTA ACUST UNITED AC 2016; 22:317-28. [PMID: 25794436 DOI: 10.1016/j.chembiol.2015.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 01/19/2023]
Abstract
Tryptophan, the most chemically complex and the least abundant of the 20 common proteinogenic amino acids, is a biosynthetic precursor to a large number of complex microbial natural products. Many of these molecules are promising scaffolds for drug discovery and development. The chemical features of tryptophan, including its ability to undergo enzymatic modifications at almost every atom in its structure and its propensity to undergo spontaneous, non-enzyme catalyzed chemistry, make it a unique biological precursor for the generation of chemical complexity. Here, we review the pathways that enable incorporation of tryptophan into complex metabolites in bacteria, with a focus on recently discovered, unusual metabolic transformations.
Collapse
|
39
|
Colosimo DA, MacMillan JB. Detailed Mechanistic Study of the Non-enzymatic Formation of the Discoipyrrole Family of Natural Products. J Am Chem Soc 2016; 138:2383-8. [PMID: 26824832 PMCID: PMC4896212 DOI: 10.1021/jacs.5b13320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Discoipyrroles A–D (DPA–DPD)
are recently discovered
natural products produced by the marine bacterium Bacillus
hunanensis that exhibit anticancer properties in vitro.
Initial biosynthetic studies demonstrated that DPA is formed in the
liquid fermentation medium of B. hunanensis from three secreted metabolites through an unknown but protein-independent
mechanism. The increased identification of natural products that depend
on non-enzymatic steps creates a significant need to understand how
these different reactions can occur. In this work, we utilized 15N-labeled starting materials and continuous high-sensitivity 1H–15N HMBC NMR spectroscopy to resolve scarce
reaction intermediates of the non-enzymatic discoipyrrole reaction
as they formed in real time. This information guided supplemental
experiments using 13C- and 18O-labeled materials
to elucidate the details of DPA’s non-enzymatic biosynthesis,
which features a highly concerted pyrrole formation and necessary
O2-mediated oxidation. We have illustrated a novel way
of using isotopically enhanced two-dimensional NMR spectroscopy to
interrogate reaction mechanisms as they occur. In addition, these
findings add to our growing knowledge of how multicomponent non-enzymatic
reactions can occur through inherently reactive bacterial metabolites.
Collapse
Affiliation(s)
- Dominic A Colosimo
- Department of Biochemistry, University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - John B MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
40
|
Huang S, Elsayed S, Lv M, Tabudravu J, Rateb M, Gyampoh R, Kyeremeh K, Ebel R, Jaspars M, Deng Z, Yu Y, Deng H. Biosynthesis of Neocarazostatin A Reveals the Sequential Carbazole Prenylation and Hydroxylation in the Tailoring Steps. ACTA ACUST UNITED AC 2015; 22:1633-42. [DOI: 10.1016/j.chembiol.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 01/01/2023]
|
41
|
Rastogi RP, Sonani RR, Madamwar D. Cyanobacterial Sunscreen Scytonemin: Role in Photoprotection and Biomedical Research. Appl Biochem Biotechnol 2015; 176:1551-63. [PMID: 26013282 DOI: 10.1007/s12010-015-1676-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Abstract
Cyanobacteria are the most promising group of photosynthetic microorganisms capable of producing an array of natural products of industrial importance. Scytonemin is a small hydrophobic alkaloid pigment molecules present in the extracellular sheath of several cyanobacteria as a protective mechanism against short wavelength solar ultraviolet (UV) radiation. It has great efficacy to minimize the production of reactive oxygen species and formation of DNA lesions. The biosynthesis of scytonemin is regulated by different physico-chemical stressors. Scytonemin display multiple roles, functioning as a potent UV sunscreen and antioxidant molecules, and can be exploited in cosmetic and other industries for the development of new cosmeceuticals. Herein, we review the occurrence, biosynthesis, and potential application of scytonemin in photoprotection, pharmaceuticals, and biomedical research.
Collapse
Affiliation(s)
- Rajesh Prasad Rastogi
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Sardar Patel University, Post Box No. 39, Vallabh Vidyanagar, 388 120, Anand, Gujarat, India,
| | | | | |
Collapse
|
42
|
Mukai C, Arima K, Hirata S, Yasuda S. Synthesis of a carbon analogue of scytonemin. Chem Pharm Bull (Tokyo) 2015; 63:273-7. [PMID: 25832021 DOI: 10.1248/cpb.c14-00838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of a carbon analogue of scytonemin was accomplished on the basis of molybdenum-mediated intramolecular double Pauson-Khand type reaction of bis(allenyne), followed by the double aldol condensation of the formed double Pauson-Khand type adduct.
Collapse
Affiliation(s)
- Chisato Mukai
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | | | | | |
Collapse
|
43
|
Enhancement of stability of l-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to l-tryptophan assay. J Biotechnol 2015; 196-197:27-32. [DOI: 10.1016/j.jbiotec.2015.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 11/20/2022]
|
44
|
Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim YJ, Rhee JS, Choi EM, Brown MT, Häder DP, Han T. Ultraviolet radiation and cyanobacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:154-69. [DOI: 10.1016/j.jphotobiol.2014.09.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
|
45
|
Rastogi RP, Sonani RR, Madamwar D. The high-energy radiation protectant extracellular sheath pigment scytonemin and its reduced counterpart in the cyanobacterium Scytonema sp. R77DM. BIORESOURCE TECHNOLOGY 2014; 171:396-400. [PMID: 25226055 DOI: 10.1016/j.biortech.2014.08.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
A cyanobacterial extracellular sheath pigment from Scytonema sp. R77DM was partially characterized and investigated for its increased production under abiotic factors, and UV-screening function. HPLC with PDA detection, and ion trap liquid chromatography/mass spectrometry analysis revealed the presence of a pigment scytonemin and its reduced counterpart. Ultraviolet radiation showed more stimulative effects on scytonemin production. A significant synergistic enhancement of scytonemin synthesis was observed under combined stress of heat and UV radiation. Scytonemin also exhibited efficient UV-screening function by reducing the in vivo production of reactive oxygen species (ROS) and cyclobutane thymine dimer. UV-induced formation of ROS and thymine dimer was also reduced upon exposure of cyanobacterial cells to exogenous antioxidant, ascorbic acid; however, the effect was more significant when both scytonemin and ascorbic acid were applied in combination. Moreover, the results indicate the potential role of scytonemin pigment as natural photoprotectant against high energy solar insolation.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
| | - Ravi R Sonani
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
| |
Collapse
|
46
|
Dong J, Pan L, Xu X, Liu Q. α-Trifluoromethyl-(indol-3-yl)methanols as trifluoromethylated C31,3-dipoles: [3+2] cycloaddition for the synthesis of 1-(trifluoromethyl)-cyclopenta[b]indole alkaloids. Chem Commun (Camb) 2014; 50:14797-800. [DOI: 10.1039/c4cc05895j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Wase N, Pham TK, Ow SY, Wright PC. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133. J Proteomics 2014; 109:332-55. [DOI: 10.1016/j.jprot.2014.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 11/29/2022]
|
48
|
Shinzato C, Mungpakdee S, Satoh N, Shoguchi E. A genomic approach to coral-dinoflagellate symbiosis: studies of Acropora digitifera and Symbiodinium minutum. Front Microbiol 2014; 5:336. [PMID: 25071748 PMCID: PMC4083563 DOI: 10.3389/fmicb.2014.00336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022] Open
Abstract
Far more intimate knowledge of scleractinian coral biology is essential in order to understand how diverse coral-symbiont endosymbioses have been established. In particular, molecular and cellular mechanisms enabling the establishment and maintenance of obligate endosymbiosis with photosynthetic dinoflagellates require further clarification. By extension, such understanding may also shed light upon environmental conditions that promote the collapse of this mutualism. Genomic data undergird studies of all symbiotic processes. Here we review recent genomic data derived from the scleractinian coral, Acropora digitifera, and the endosymbiotic dinoflagellate, Symbiodinium minutum. We discuss Acropora genes involved in calcification, embryonic development, innate immunity, apoptosis, autophagy, UV resistance, fluorescence, photoreceptors, circadian clocks, etc. We also detail gene loss in amino acid metabolism that may explain at least part of the Acropora stress-response. Characteristic features of the Symbiodinium genome are also reviewed, focusing on the expansion of certain gene families, the molecular basis for permanently condensed chromatin, unique spliceosomal splicing, and unusual gene arrangement. Salient features of the Symbiodinium plastid and mitochondrial genomes are also illuminated. Although many questions regarding these interdependent genomes remain, we summarize information necessary for future studies of coral-dinoflagellate endosymbiosis.
Collapse
Affiliation(s)
- Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Sutada Mungpakdee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
49
|
Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme. Enzyme Microb Technol 2014; 60:40-6. [PMID: 24835098 DOI: 10.1016/j.enzmictec.2014.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023]
Abstract
An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family.
Collapse
|
50
|
|