1
|
Tran TT, Fanucci GE. Natural Polymorphisms D60E and I62V Stabilize a Closed Conformation in HIV-1 Protease in the Absence of an Inhibitor or Substrate. Viruses 2024; 16:236. [PMID: 38400012 PMCID: PMC10892587 DOI: 10.3390/v16020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
HIV infection remains a global health issue plagued by drug resistance and virological failure. Natural polymorphisms (NPs) contained within several African and Brazilian protease (PR) variants have been shown to induce a conformational landscape of more closed conformations compared to the sequence of subtype B prevalent in North America and Western Europe. Here we demonstrate through experimental pulsed EPR distance measurements and molecular dynamic (MD) simulations that the two common NPs D60E and I62V found within subtypes F and H can induce a closed conformation when introduced into HIV-1PR subtype B. Specifically, D60E alters the conformation in subtype B through the formation of a salt bridge with residue K43 contained within the nexus between the flap and hinge region of the HIV-1 PR fold. On the other hand, I62V modulates the packing of the hydrophobic cluster of the cantilever and fulcrum, also resulting in a more closed conformation.
Collapse
Affiliation(s)
| | - Gail E. Fanucci
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Dakshinamoorthy A, Asmita A, Senapati S. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. ACS OMEGA 2023; 8:9748-9763. [PMID: 36969469 PMCID: PMC10034783 DOI: 10.1021/acsomega.2c08279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Since the emergence of the Human Immunodeficiency Virus (HIV) in the 1980s, strategies to combat HIV-AIDS are continuously evolving. Among the many tested targets to tackle this virus, its protease enzyme (PR) was proven to be an attractive option that brought about numerous research publications and ten FDA-approved drugs to inhibit the PR activity. However, the drug-induced mutations in the enzyme made these small molecule inhibitors ineffective with prolonged usage. The research on HIV PR, therefore, remains a thrust area even today. Through this review, we reiterate the importance of understanding the various structural and functional components of HIV PR in redesigning the structure-based small molecule inhibitors. We also discuss at length the currently available FDA-approved drugs and how these drug molecules induced mutations in the enzyme structure. We then recapitulate the reported mechanisms on how these drug-resistant variants remain sufficiently active to cleave the natural substrates. We end with the future scope covering the recently proposed strategies that show promise to deal with the mutations.
Collapse
|
3
|
Sherry D, Worth R, Ismail ZS, Sayed Y. Cantilever-centric mechanism of cooperative non-active site mutations in HIV protease: Implications for flap dynamics. J Mol Graph Model 2021; 106:107931. [PMID: 34030114 DOI: 10.1016/j.jmgm.2021.107931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
The HIV-1 protease is an important drug target in antiretroviral therapy due to the crucial role it plays in viral maturation. A greater understanding of the dynamics of the protease as a result of drug-induced mutations has been successfully elucidated using computational models in the past. We performed induced-fit docking studies and molecular dynamics simulations on the wild-type South African HIV-1 subtype C protease and two non-active site mutation-containing protease variants; HP3 PR and HP4 PR. The HP3 PR contained the I13V, I62V, and V77I mutations while HP4 PR contained the same mutations with the addition of the L33F mutation. The simulations were initiated in a cubic cell universe containing explicit solvent, with the protease variants beginning in the fully closed conformation. The trajectory for each simulation totalled 50 ns. The results indicate that the mutations increase the dynamics of the flap, hinge, fulcrum and cantilever regions when compared to the wild-type protease while in complex with protease inhibitors. Specifically, these mutations result in the protease favouring the semi-open conformation when in complex with inhibitors. Moreover, the HP4 PR adopted curled flap tip conformers which coordinated several water molecules into the active site in a manner that may reduce inhibitor binding affinity. The mutations affected the thermodynamic landscape of inhibitor binding as there were fewer observable chemical contacts between the mutated variants and saquinavir, atazanavir and darunavir. These data help to elucidate the biophysical basis for the selection of cooperative non-active site mutations by the HI virus.
Collapse
Affiliation(s)
- Dean Sherry
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Zaahida Sheik Ismail
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
4
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
5
|
Khan SN, Persons JD, Guerrero M, Ilina TV, Oda M, Ishima R. A synergy of activity, stability, and inhibitor-interaction of HIV-1 protease mutants evolved under drug-pressure. Protein Sci 2020; 30:571-582. [PMID: 33314454 DOI: 10.1002/pro.4013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/01/2023]
Abstract
A clinically-relevant, drug-resistant mutant of HIV-1 protease (PR), termed Flap+(I54V) and containing L10I, G48V, I54V and V82A mutations, is known to produce significant changes in the entropy and enthalpy balance of drug-PR interactions, compared to wild-type PR. A similar mutant, Flap+(I54A) , which evolves from Flap+(I54V) and contains the single change at residue 54 relative to Flap+(I54V) , does not. Yet, how Flap+(I54A) behaves in solution is not known. To understand the molecular basis of V54A evolution, we compared nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, isothermal titration calorimetry, and enzymatic assay data from four PR proteins: PR (pWT), Flap+(I54V) , Flap+(I54A) , and Flap+(I54) , a control mutant that contains only L10I, G48V and V82A mutations. Our data consistently show that selection to the smaller side chain at residue 54, not only decreases inhibitor affinity, but also restores the catalytic activity.
Collapse
Affiliation(s)
- Shahid N Khan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - John D Persons
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michel Guerrero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Darunavir-Resistant HIV-1 Protease Constructs Uphold a Conformational Selection Hypothesis for Drug Resistance. Viruses 2020; 12:v12111275. [PMID: 33171603 PMCID: PMC7695139 DOI: 10.3390/v12111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance continues to be a barrier to the effectiveness of highly active antiretroviral therapy in the treatment of human immunodeficiency virus 1 (HIV-1) infection. Darunavir (DRV) is a highly potent protease inhibitor (PI) that is oftentimes effective when drug resistance has emerged against first-generation inhibitors. Resistance to darunavir does evolve and requires 10–20 amino acid substitutions. The conformational landscapes of six highly characterized HIV-1 protease (PR) constructs that harbor up to 19 DRV-associated mutations were characterized by distance measurements with pulsed electron double resonance (PELDOR) paramagnetic resonance spectroscopy, namely double electron–electron resonance (DEER). The results show that the accumulated substitutions alter the conformational landscape compared to PI-naïve protease where the semi-open conformation is destabilized as the dominant population with open-like states becoming prevalent in many cases. A linear correlation is found between values of the DRV inhibition parameter Ki and the open-like to closed-state population ratio determined from DEER. The nearly 50% decrease in occupancy of the semi-open conformation is associated with reduced enzymatic activity, characterized previously in the literature.
Collapse
|
7
|
Tran TT, Liu Z, Fanucci GE. Conformational landscape of non-B variants of HIV-1 protease: A pulsed EPR study. Biochem Biophys Res Commun 2020; 532:219-224. [PMID: 32863004 DOI: 10.1016/j.bbrc.2020.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023]
Abstract
HIV infection is a global health epidemic with current FDA-approved HIV-1 Protease inhibitors (PIs) designed against subtype B protease, yet they are used in HIV treatment world-wide regardless of patient HIV classification. In this study, double electron-electron resonance (DEER) electron paramagnetic resonance (EPR) spectroscopy was utilized to gain insights in how natural polymorphisms in several African and Brazilian protease (PR) variants affect the conformational landscape both in the absence and presence of inhibitors. Findings show that Subtypes F and H HIV-1 PR adopt a primarily closed conformation in the unbound state with two secondary mutations, D60E and I62V, postulated to be responsible for the increased probability for closed conformation. In contrast, subtype D, CRF_AG, and CRF_BF HIV-1 PR adopt a primarily semi-open conformation, as observed for PI-naïve-subtype B when unbound by substrate or inhibitor. The impact that inhibitor binding has on shifting the conformational land scape of these variants is also characterized, where analysis provides classification of inhibitor induced shifts away from the semi-open state into weak, moderate and strong effects. The findings are compared to those for prior studies of inhibitor induced conformational shifts in PI-naïve Subtype B, C and CRF_AE.
Collapse
Affiliation(s)
- Trang T Tran
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Zhanglong Liu
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Bogetti X, Ghosh S, Gamble Jarvi A, Wang J, Saxena S. Molecular Dynamics Simulations Based on Newly Developed Force Field Parameters for Cu 2+ Spin Labels Provide Insights into Double-Histidine-Based Double Electron-Electron Resonance. J Phys Chem B 2020; 124:2788-2797. [PMID: 32181671 DOI: 10.1021/acs.jpcb.0c00739] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electron paramagnetic resonance (EPR) in combination with the recently developed double-histidine (dHis)-based Cu2+ spin labeling has provided valuable insights into protein structure and conformational dynamics. To relate sparse distance constraints measured by EPR to protein fluctuations in solution, modeling techniques are needed. In this work, we have developed force field parameters for Cu2+-nitrilotriacetic and Cu2+-iminodiacetic acid spin labels. We employed molecular dynamics (MD) simulations to capture the atomic-level details of dHis-labeled protein fluctuations. The interspin distances extracted from 200 ns MD trajectories show good agreement with the experimental results. The MD simulations also illustrate the dramatic rigidity of the Cu2+ labels compared to the standard nitroxide spin label. Further, the relative orientations between spin-labeled sites were measured to provide insight into the use of double electron-electron resonance (DEER) methods for such labels. The relative mean angles, as well as the standard deviations of the relative angles, agree well in general with the spectral simulations published previously. The fluctuations of relative orientations help rationalize why orientation selectivity effects are minimal at X-band frequencies, but observable at the Q-band for such labels. In summary, the results show that by combining the experimental results with MD simulations precise information about protein conformations as well as flexibility can be obtained.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Wang RG, Zhang HX, Zheng QC. Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses. Phys Chem Chem Phys 2020; 22:4464-4480. [DOI: 10.1039/c9cp06657h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MD simulations, MM-PBSA, and SIE analyses were used to investigate the drug resistance mechanisms of two mutations G48T and L89M in HIV-1 protease toward four inhibitors.
Collapse
Affiliation(s)
- Rui-Ge Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| |
Collapse
|
10
|
Ishima R, Kurt Yilmaz N, Schiffer CA. NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations. JOURNAL OF BIOMOLECULAR NMR 2019; 73:365-374. [PMID: 31243634 PMCID: PMC6941145 DOI: 10.1007/s10858-019-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Over the last two decades, both the sensitivity of NMR and the time scale of molecular dynamics (MD) simulation have increased tremendously and have advanced the field of protein dynamics. HIV-1 protease has been extensively studied using these two methods, and has presented a framework for cross-evaluation of structural ensembles and internal dynamics by integrating the two methods. Here, we review studies from our laboratories over the last several years, to understand the mechanistic basis of protease drug-resistance mutations and inhibitor responses, using NMR and crystal structure-based parallel MD simulations. Our studies demonstrate that NMR relaxation experiments, together with crystal structures and MD simulations, significantly contributed to the current understanding of structural/dynamic changes due to HIV-1 protease drug resistance mutations.
Collapse
Affiliation(s)
- Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Chen J, Peng C, Wang J, Zhu W. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling. Proteins 2018; 86:1294-1305. [PMID: 30260044 DOI: 10.1002/prot.25610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/02/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022]
Abstract
Recently, allosteric regulations of HIV-1 protease (PR) are suggested as a promising approach to relieve drug resistance of mutations toward inhibitors targeting the active site of PR. Replica-exchange molecular dynamics (REMD) simulations and normal mode analysis (NMA) are integrated to enhance conformational sampling of PR. Molecular mechanics generalized Born surface area (MM-GBSA) method was applied to calculate binding free energies of three inhibitors APV, DRV, and NIT to the wild-type (WT) and multidrug resistance (MDR) PRs. The results suggest that binding free energies of APV and DRV are decreased in the MDR PR relative to the WT PR, suggesting drug resistance of mutations on these two inhibitors. However, the binding ability of the allosteric inhibitor NIT is not impaired in the MDR PR. In addition, internal dynamics analysis based on REMD simulations proves that mutations hardly produce obvious effect on the conformation of the MDR PR in comparison to the WT PR. Scanning of hydrophobic contacts and hydrogen bond contacts of inhibitors with residues of PRs on the concatenated trajectories of REMD demonstrates that mutations change the symmetric interaction networks of APV and DRV with PR, but do not generate obvious influence on the asymmetric interaction network of NIT with PR. In summary, allosteric inhibitor NIT can adapt the MDR PR better than those inhibitors toward the active site of PR, thus allosteric inhibitors of PR may be a possible channel to overcome drug resistance of PR.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China.,Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Peng
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Appadurai R, Senapati S. How Mutations Can Resist Drug Binding yet Keep HIV-1 Protease Functional. Biochemistry 2017; 56:2907-2920. [DOI: 10.1021/acs.biochem.7b00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rajeswari Appadurai
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sanjib Senapati
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
13
|
Edwards TH, Stoll S. A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:87-97. [PMID: 27414762 PMCID: PMC4996738 DOI: 10.1016/j.jmr.2016.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 05/05/2023]
Abstract
Double Electron-Electron Resonance (DEER) spectroscopy is a solid-state pulse Electron Paramagnetic Resonance (EPR) experiment that measures distances between unpaired electrons, most commonly between protein-bound spin labels separated by 1.5-8nm. From the experimental data, a distance distribution P(r) is extracted using Tikhonov regularization. The disadvantage of this method is that it does not directly provide error bars for the resulting P(r), rendering correct interpretation difficult. Here we introduce a Bayesian statistical approach that quantifies uncertainty in P(r) arising from noise and numerical regularization. This method provides credible intervals (error bars) of P(r) at each r. This allows practitioners to answer whether or not small features are significant, whether or not apparent shoulders are significant, and whether or not two distance distributions are significantly different from each other. In addition, the method quantifies uncertainty in the regularization parameter.
Collapse
Affiliation(s)
- Thomas H Edwards
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States.
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States.
| |
Collapse
|
14
|
Liu Z, Huang X, Hu L, Pham L, Poole KM, Tang Y, Mahon BP, Tang W, Li K, Goldfarb NE, Dunn BM, McKenna R, Fanucci GE. Effects of Hinge-region Natural Polymorphisms on Human Immunodeficiency Virus-Type 1 Protease Structure, Dynamics, and Drug Pressure Evolution. J Biol Chem 2016; 291:22741-22756. [PMID: 27576689 DOI: 10.1074/jbc.m116.747568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance to current Food and Drug Administration-approved HIV-1 protease (PR) inhibitors drives the need to understand the fundamental mechanisms of how drug pressure-selected mutations, which are oftentimes natural polymorphisms, elicit their effect on enzyme function and resistance. Here, the impacts of the hinge-region natural polymorphism at residue 35, glutamate to aspartate (E35D), alone and in conjunction with residue 57, arginine to lysine (R57K), are characterized with the goal of understanding how altered salt bridge interactions between the hinge and flap regions are associated with changes in structure, motional dynamics, conformational sampling, kinetic parameters, and inhibitor affinity. The combined results reveal that the single E35D substitution leads to diminished salt bridge interactions between residues 35 and 57 and gives rise to the stabilization of open-like conformational states with overall increased backbone dynamics. In HIV-1 PR constructs where sites 35 and 57 are both mutated (e.g. E35D and R57K), x-ray structures reveal an altered network of interactions that replace the salt bridge thus stabilizing the structural integrity between the flap and hinge regions. Despite the altered conformational sampling and dynamics when the salt bridge is disrupted, enzyme kinetic parameters and inhibition constants are similar to those obtained for subtype B PR. Results demonstrate that these hinge-region natural polymorphisms, which may arise as drug pressure secondary mutations, alter protein dynamics and the conformational landscape, which are important thermodynamic parameters to consider for development of inhibitors that target for non-subtype B PR.
Collapse
Affiliation(s)
- Zhanglong Liu
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Xi Huang
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Lingna Hu
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Linh Pham
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Katye M Poole
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Yan Tang
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Brian P Mahon
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Wenxing Tang
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Kunhua Li
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Nathan E Goldfarb
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Ben M Dunn
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Gail E Fanucci
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| |
Collapse
|
15
|
Ung PMU, Ghanakota P, Graham SE, Lexa KW, Carlson HA. Identifying binding hot spots on protein surfaces by mixed-solvent molecular dynamics: HIV-1 protease as a test case. Biopolymers 2016; 105:21-34. [PMID: 26385317 DOI: 10.1002/bip.22742] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022]
Abstract
Mixed-solvent molecular dynamics (MixMD) simulations use full protein flexibility and competition between water and small organic probes to achieve accurate hot-spot mapping on protein surfaces. In this study, we improved MixMD using human immunodeficiency virus type-1 protease (HIVp) as the test case. We used three probe-water solutions (acetonitrile-water, isopropanol-water, and pyrimidine-water), first at 50% w/w concentration and later at 5% v/v. Paradoxically, better mapping was achieved by using fewer probes; 5% simulations gave a superior signal-to-noise ratio and far fewer spurious hot spots than 50% MixMD. Furthermore, very intense and well-defined probe occupancies were observed in the catalytic site and potential allosteric sites that have been confirmed experimentally. The Eye site, an allosteric site underneath the flap of HIVp, has been confirmed by the presence of a 5-nitroindole fragment in a crystal structure. MixMD also mapped two additional hot spots: the Exo site (between the Gly16-Gly17 and Cys67-Gly68 loops) and the Face site (between Glu21-Ala22 and Val84-Ile85 loops). The Exo site was observed to overlap with crystallographic additives such as acetate and dimethyl sulfoxide that are present in different crystal forms of the protein. Analysis of crystal structures of HIVp in different symmetry groups has shown that some surface sites are common interfaces for crystal contacts, which means that they are surfaces that are relatively easy to desolvate and complement with organic molecules. MixMD should identify these sites; in fact, their occupancy values help establish a solid cut-off where "druggable" sites are required to have higher occupancies than the crystal-packing faces.
Collapse
Affiliation(s)
- Peter M U Ung
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065
| | - Phani Ghanakota
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065
| | - Sarah E Graham
- Department of Biophysics, College of LSA, University of Michigan, 930 N. University St., Ann Arbor, MI, 48109-1055
| | - Katrina W Lexa
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065
| | - Heather A Carlson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065.,Department of Biophysics, College of LSA, University of Michigan, 930 N. University St., Ann Arbor, MI, 48109-1055
| |
Collapse
|
16
|
Esquiaqui JM, Sherman EM, Ye JD, Fanucci GE. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink–Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling. Biochemistry 2016; 55:4295-305. [DOI: 10.1021/acs.biochem.6b00287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jackie M. Esquiaqui
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Eileen M. Sherman
- Department
of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Jing-Dong Ye
- Department
of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Gail E. Fanucci
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
17
|
Mahanti M, Bhakat S, Nilsson UJ, Söderhjelm P. Flap Dynamics in Aspartic Proteases: A Computational Perspective. Chem Biol Drug Des 2016; 88:159-77. [PMID: 26872937 DOI: 10.1111/cbdd.12745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in biochemistry and drug design have placed proteases as one of the critical target groups for developing novel small-molecule inhibitors. Among all proteases, aspartic proteases have gained significant attention due to their role in HIV/AIDS, malaria, Alzheimer's disease, etc. The binding cleft is covered by one or two β-hairpins (flaps) which need to be opened before a ligand can bind. After binding, the flaps close to retain the ligand in the active site. Development of computational tools has improved our understanding of flap dynamics and its role in ligand recognition. In the past decade, several computational approaches, for example molecular dynamics (MD) simulations, coarse-grained simulations, replica-exchange molecular dynamics (REMD) and metadynamics, have been used to understand flap dynamics and conformational motions associated with flap movements. This review is intended to summarize the computational progress towards understanding the flap dynamics of proteases and to be a reference for future studies in this field.
Collapse
Affiliation(s)
- Mukul Mahanti
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Soumendranath Bhakat
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden
| |
Collapse
|
18
|
Liu Z, Casey TM, Blackburn ME, Huang X, Pham L, de Vera IMS, Carter JD, Kear-Scott JL, Veloro AM, Galiano L, Fanucci GE. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts. Phys Chem Chem Phys 2016; 18:5819-31. [PMID: 26489725 PMCID: PMC4758878 DOI: 10.1039/c5cp04556h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function.
Collapse
Affiliation(s)
- Zhanglong Liu
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Thomas M Casey
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Mandy E Blackburn
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Xi Huang
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Linh Pham
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Ian Mitchelle S de Vera
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jeffrey D Carter
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jamie L Kear-Scott
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Angelo M Veloro
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Luis Galiano
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
19
|
Zhang X, Xu CX, Di Felice R, Sponer J, Islam B, Stadlbauer P, Ding Y, Mao L, Mao ZW, Qin PZ. Conformations of Human Telomeric G-Quadruplex Studied Using a Nucleotide-Independent Nitroxide Label. Biochemistry 2015; 55:360-72. [PMID: 26678746 DOI: 10.1021/acs.biochem.5b01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Guanine-rich oligonucleotides can form a unique G-quadruplex (GQ) structure with stacking units of four guanine bases organized in a plane through Hoogsteen bonding. GQ structures have been detected in vivo and shown to exert their roles in maintaining genome integrity and regulating gene expression. Understanding GQ conformation is important for understanding its inherent biological role and for devising strategies to control and manipulate functions based on targeting GQ. Although a number of biophysical methods have been used to investigate structure and dynamics of GQs, our understanding is far from complete. As such, this work explores the use of the site-directed spin labeling technique, complemented by molecular dynamics simulations, for investigating GQ conformations. A nucleotide-independent nitroxide label (R5), which has been previously applied for probing conformations of noncoding RNA and DNA duplexes, is attached to multiple sites in a 22-nucleotide DNA strand derived from the human telomeric sequence (hTel-22) that is known to form GQ. The R5 labels are shown to minimally impact GQ folding, and inter-R5 distances measured using double electron-electron resonance spectroscopy are shown to adequately distinguish the different topological conformations of hTel-22 and report variations in their occupancies in response to changes of the environment variables such as salt, crowding agent, and small molecule ligand. The work demonstrates that the R5 label is able to probe GQ conformation and establishes the base for using R5 to study more complex sequences, such as those that may potentially form multimeric GQs in long telomeric repeats.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Cui-Xia Xu
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, China
| | - Rosa Di Felice
- Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States.,Center S3, CNR institute of Nanoscience , Modena, Italy
| | - Jiri Sponer
- Central European Institute of Technology (CEITEC), Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Barira Islam
- Central European Institute of Technology (CEITEC), Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Yuan Ding
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Lingling Mao
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, China
| | - Zong-Wan Mao
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, China
| | - Peter Z Qin
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
20
|
C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir. J Virol 2015; 90:2180-94. [PMID: 26581995 DOI: 10.1128/jvi.01829-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1(WT)), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRV(R) P51); the three compounds remained active against HIV-1DRV(R) P51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRV(R) ) has recently been observed in vivo and in vitro. Here, we identified three novel HIV-1 protease inhibitors (PIs) containing a tetrahydropyrano-tetrahydrofuran (Tp-THF) moiety with a C-5 hydroxyl (GRL-015, -085, and -097) which potently suppress the replication of HIVDRV(R) . Moreover, the emergence of HIV-1 strains resistant to the three compounds was considerably delayed compared to the case of DRV. The C-5 hydroxyl formed a strong hydrogen bonding interaction with the carbonyl oxygen atom of Gly48 of protease as examined in the structural analyses. Interestingly, a compound with Tp-THF lacking the hydroxyl moiety substantially decreased activity against HIVDRV(R) . The three novel compounds should be further developed as potential drugs for treating individuals harboring wild-type and multi-PI-resistant HIV variants as well as HIVDRV(R) .
Collapse
|
21
|
Casey TM, Fanucci GE. Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease. Methods Enzymol 2015; 564:153-87. [PMID: 26477251 DOI: 10.1016/bs.mie.2015.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An understanding of macromolecular conformational equilibrium in biological systems is oftentimes essential to understand function, dysfunction, and disease. For the past few years, our lab has been utilizing site-directed spin labeling (SDSL), coupled with electron paramagnetic resonance (EPR) spectroscopy, to characterize the conformational ensemble and ligand-induced conformational shifts of HIV-1 protease (HIV-1PR). The biomedical importance of characterizing the fractional occupancy of states within the conformational ensemble critically impacts our hypothesis of a conformational selection mechanism of drug-resistance evolution in HIV-1PR. The purpose of the following chapter is to give a timeline perspective of our SDSL EPR approach to characterizing conformational sampling of HIV-1PR. We provide detailed instructions for the procedure utilized in analyzing distance profiles for HIV-1PR obtained from pulsed electron-electron double resonance (PELDOR). Specifically, we employ a version of PELDOR known as double electron-electron resonance (DEER). Data are processed with the software package "DeerAnalysis" (http://www.epr.ethz.ch/software), which implements Tikhonov regularization (TKR), to generate a distance profile from electron spin-echo amplitude modulations. We assign meaning to resultant distance profiles based upon a conformational sampling model, which is described herein. The TKR distance profiles are reconstructed with a linear combination of Gaussian functions, which is then statistically analyzed. In general, DEER has proven powerful for observing structural ensembles in proteins and, more recently, nucleic acids. Our goal is to present our advances in order to aid readers in similar applications.
Collapse
Affiliation(s)
- Thomas M Casey
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
22
|
De Conto V, Braz ASK, Perahia D, Scott LPB. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants. J Mol Graph Model 2015; 59:107-16. [PMID: 25948548 DOI: 10.1016/j.jmgm.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 02/04/2023]
Abstract
The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.
Collapse
Affiliation(s)
- Valderes De Conto
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Antônio S K Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Luis P B Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil; Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France.
| |
Collapse
|
23
|
Karubiu W, Bhakat S, McGillewie L, Soliman MES. Flap dynamics of plasmepsin proteases: insight into proposed parameters and molecular dynamics. MOLECULAR BIOSYSTEMS 2015; 11:1061-6. [DOI: 10.1039/c4mb00631c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, for the first time, we report the flap opening and closing in Plasmepsin proteases – plasmepsin II (PlmII) was used as a prototype model.
Collapse
Affiliation(s)
- Wilson Karubiu
- School of Health Sciences
- University of KwaZulu-Natal
- Durban-4000
- South Africa
| | | | - Lara McGillewie
- School of Health Sciences
- University of KwaZulu-Natal
- Durban-4000
- South Africa
| | | |
Collapse
|
24
|
Ung PMU, Dunbar JB, Gestwicki JE, Carlson HA. An allosteric modulator of HIV-1 protease shows equipotent inhibition of wild-type and drug-resistant proteases. J Med Chem 2014; 57:6468-78. [PMID: 25062388 PMCID: PMC4136727 DOI: 10.1021/jm5008352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
NMR
and MD simulations have demonstrated that the flaps of HIV-1 protease
(HIV-1p) adopt a range of conformations that are coupled with its
enzymatic activity. Previously, a model was created for an allosteric
site located between the flap and the core of HIV-1p, called the Eye
site (2008, 89, 643−65218381626). Here, results from our first study were
combined with a ligand-based, lead-hopping method to identify a novel
compound (NIT). NIT inhibits HIV-1p, independent of the presence of
an active-site inhibitor such as pepstatin A. Assays showed that NIT
acts on an allosteric site other than the dimerization interface.
MD simulations of the ligand–protein complex show that NIT
stably binds in the Eye site and restricts the flaps. That bound state
of NIT is consistent with a crystal structure of similar fragments
bound in the Eye site (2010, 75, 257−26820659109). Most importantly,
NIT is equally potent against wild-type and a multidrug-resistant
mutant of HIV-1p, which highlights the promise of allosteric inhibitors
circumventing existing clinical resistance.
Collapse
Affiliation(s)
- Peter M-U Ung
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | | | | | | |
Collapse
|
25
|
Carter JD, Gonzales EG, Huang X, Smith AN, de Vera IMS, D'Amore PW, Rocca JR, Goodenow MM, Dunn BM, Fanucci GE. Effects of PRE and POST therapy drug-pressure selected mutations on HIV-1 protease conformational sampling. FEBS Lett 2014; 588:3123-8. [PMID: 24983495 DOI: 10.1016/j.febslet.2014.06.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/11/2023]
Abstract
Conformational sampling of pre- and post-therapy subtype B HIV-1 protease sequences derived from a pediatric subject infected via maternal transmission with HIV-1 were characterized by double electron-electron resonance spectroscopy. The conformational ensemble of the PRE construct resembles native-like inhibitor bound states. In contrast, the POST construct, which contains accumulated drug-pressure selected mutations, has a predominantly semi-open conformational ensemble, with increased populations of open-like states. The single point mutant L63P, which is contained in PRE and POST, has decreased dynamics, particularly in the flap region, and also displays a closed-like conformation of inhibitor-bound states. These findings support our hypothesis that secondary mutations accumulate in HIV-1 protease to shift conformational sampling to stabilize open-like conformations, while maintaining the predominant semi-open conformation for activity.
Collapse
Affiliation(s)
- Jeffrey D Carter
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Estrella G Gonzales
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Xi Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Adam N Smith
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | - Peter W D'Amore
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - James R Rocca
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Maureen M Goodenow
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-3633, USA
| | - Ben M Dunn
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610-0245, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
26
|
Temelso B, Alser KA, Gauthier A, Palmer AK, Shields GC. Structural Analysis of α-Fetoprotein (AFP)-like Peptides with Anti-Breast-Cancer Properties. J Phys Chem B 2014; 118:4514-26. [DOI: 10.1021/jp500017b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Berhane Temelso
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Katherine A. Alser
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Arianne Gauthier
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Amber Kay Palmer
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - George C. Shields
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| |
Collapse
|
27
|
Huang X, Britto MD, Kear-Scott JL, Boone CD, Rocca JR, Simmerling C, Mckenna R, Bieri M, Gooley PR, Dunn BM, Fanucci GE. The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics. J Biol Chem 2014; 289:17203-14. [PMID: 24742668 DOI: 10.1074/jbc.m114.571836] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
HIV-1 protease is an essential enzyme for viral particle maturation and is a target in the fight against HIV-1 infection worldwide. Several natural polymorphisms are also associated with drug resistance. Here, we utilized both pulsed electron double resonance, also called double electron-electron resonance, and NMR (15)N relaxation measurements to characterize equilibrium conformational sampling and backbone dynamics of an HIV-1 protease construct containing four specific natural polymorphisms commonly found in subtypes A, F, and CRF_01 A/E. Results show enhanced backbone dynamics, particularly in the flap region, and the persistence of a novel conformational ensemble that we hypothesize is an alternative flap orientation of a curled open state or an asymmetric configuration when interacting with inhibitors.
Collapse
Affiliation(s)
- Xi Huang
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Manuel D Britto
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Jamie L Kear-Scott
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Christopher D Boone
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - James R Rocca
- the Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Carlos Simmerling
- the Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, and
| | - Robert Mckenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Michael Bieri
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R Gooley
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ben M Dunn
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Gail E Fanucci
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611,
| |
Collapse
|
28
|
de Vera IMS, Blackburn ME, Galiano L, Fanucci GE. Pulsed EPR distance measurements in soluble proteins by site-directed spin labeling (SDSL). ACTA ACUST UNITED AC 2013; 74:17.17.1-17.17.29. [PMID: 24510645 DOI: 10.1002/0471140864.ps1717s74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The resurgence of pulsed electron paramagnetic resonance (EPR) in structural biology centers on recent improvements in distance measurements using the double electron-electron resonance (DEER) technique. This unit focuses on EPR-based distance measurements by site-directed spin labeling (SDSL) of engineered cysteine residues in soluble proteins, with HIV-1 protease used as a model. To elucidate conformational changes in proteins, experimental protocols were optimized and existing data analysis programs were employed to derive distance-distribution profiles. Experimental considerations, sample preparation, and error analysis for artifact suppression are also outlined herein.
Collapse
Affiliation(s)
| | - Mandy E Blackburn
- Department of Chemistry, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Luis Galiano
- Department of Chemistry, University of Florida, Gainesville, Florida.,Syngenta Crop Protection, Minnetonka, Minnesota
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Yedidi RS, Liu Z, Kovari IA, Woster PM, Kovari LC. P1 and P1' para-fluoro phenyl groups show enhanced binding and favorable predicted pharmacological properties: structure-based virtual screening of extended lopinavir analogs against multi-drug resistant HIV-1 protease. J Mol Graph Model 2013; 47:18-24. [PMID: 24291501 DOI: 10.1016/j.jmgm.2013.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022]
Abstract
Crystal structure of multidrug-resistant (MDR) clinical isolate 769, human immunodeficiency virus type-1 (HIV-1) protease in complex with lopinavir (LPV) (PDB ID: 1RV7) showed altered binding orientation of LPV in the expanded active site cavity, causing loss of contacts and decrease in potency. In the current study, with a goal to restore the lost contacts, three libraries of LPV analogs containing extended P1 and/or P1' phenyl groups were designed and docked into the expanded active site cavity of the MDR769 HIV-1 protease. The compounds were then ranked based on three criteria: binding affinity, overall binding profile and predicted pharmacological properties. Among the twelve proposed extensions in different combinations, compound 14 (consists of para-fluoro phenyl group as both P1 and P1' moieties) was identified as a lead with improved binding profile, binding affinity against the MDR protease and favorable predicted pharmacological properties comparable to those of LPV. The binding affinity of 14 against wild type (NL4-3) HIV-1 protease was comparable to that of LPV and was better than LPV against an ensemble of MDR HIV-1 protease variants. Thus, 14 shows enhanced binding affinity by restoring lost contacts in the expanded active site cavity of MDR769 HIV-1 protease variants suggesting that it may have higher potency compared to that of LPV and hence should be further synthesized and evaluated against NL4-3 as well as MDR variants of HIV-1.
Collapse
Affiliation(s)
- Ravikiran S Yedidi
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Zhigang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Iulia A Kovari
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Patrick M Woster
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St., QF305B, Charleston, SC 29425, USA
| | - Ladislau C Kovari
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
30
|
Huang X, de Vera IMS, Veloro AM, Rocca JR, Simmerling C, Dunn BM, Fanucci GE. Backbone ¹H, ¹³C, and ¹⁵N chemical shift assignment for HIV-1 protease subtypes and multi-drug resistant variant MDR 769. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:199-202. [PMID: 22752791 PMCID: PMC3518686 DOI: 10.1007/s12104-012-9409-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/21/2012] [Indexed: 06/01/2023]
Abstract
HIV-1 protease (HIV-1PR) is an essential drug target in the treatment of patients infected with HIV-1. Mutations are found to arise in over 38 of 99 amino acid sites in this protein in response to drug therapy or natural selection, where many are found combinations that alter enzyme kinetics or inhibitor susceptibility without a clear structural mechanism. In efforts to understand how these mutations alter the flexibility and dynamics of HIV-1PR, we report the backbone (1)H, (13)C, and (15)N chemical shift assignments for subtypes C, circulating recombinant form CRF01_AE and a multi-drug resistant variant MDR 769. These assignments are essential for future work aimed at characterizing backbone dynamics, exchange dynamics and dynamics of protein/substrate or protein/inhibitor interactions.
Collapse
Affiliation(s)
- Xi Huang
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| | | | - Angelo M. Veloro
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| | - James R. Rocca
- Advanced Magnetic Resonance and Imaging, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Gail E. Fanucci
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| |
Collapse
|
31
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
32
|
Xia J, Deng NJ, Levy RM. NMR relaxation in proteins with fast internal motions and slow conformational exchange: model-free framework and Markov state simulations. J Phys Chem B 2013; 117:6625-34. [PMID: 23638941 DOI: 10.1021/jp400797y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calculating NMR relaxation effects for proteins with dynamics on multiple time scales generally requires very long trajectories based on conventional molecular dynamics simulations. In this report, we have built Markov state models from multiple MD trajectories and used the resulting MSM to capture the very fast internal motions of the protein within a free energy basin on a time scale up to hundreds of picoseconds and the more than 3 orders of magnitude slower conformational exchange between macrostates. To interpret the relaxation data, we derive new equations using the model-free framework which includes two slowly exchanging macrostates, each of which also exhibits fast local motions. Using simulations of HIV-1 protease as an example, we show how the populations of slowly exchanging conformational states as well as order parameters for the different states can be determined from the NMR relaxation data.
Collapse
Affiliation(s)
- Junchao Xia
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
33
|
de Vera IMS, Smith AN, Dancel MCA, Huang X, Dunn BM, Fanucci GE. Elucidating a relationship between conformational sampling and drug resistance in HIV-1 protease. Biochemistry 2013; 52:3278-88. [PMID: 23566104 DOI: 10.1021/bi400109d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enzyme targets in rapidly replicating systems, such as retroviruses, commonly respond to drug-selective pressure with mutations arising in the active site pocket that limit inhibitor effectiveness by introducing steric hindrance or by eliminating essential molecular interactions. However, these primary mutations are disposed to compromising pathogenic fitness. Emerging secondary mutations, which are often found outside of the binding cavity, may or can restore fitness while maintaining drug resistance. The accumulated drug pressure selected mutations could have an indirect effect in the development of resistance, such as altering protein flexibility or the dynamics of protein-ligand interactions. Here, we show that accumulation of mutations in a drug-resistant HIV-1 protease (HIV-1 PR) variant, D30N/M36I/A71V, changes the fractional occupancy of the equilibrium conformational sampling ensemble. Correlations are made among populations of the conformational states, namely, closed-like, semiopen, and open-like, with inhibition constants, as well as kinetic parameters. Mutations that stabilize a closed-like conformation correlate with enzymes of lowered activity and with higher affinity for inhibitors, which is corroborated by a further increase in the fractional occupancy of the closed state upon addition of inhibitor or substrate-mimic. Cross-resistance is found to correlate with combinations of mutations that increase the population of the open-like conformations at the expense of the closed-like state while retaining native-like occupancy of the semiopen population. These correlations suggest that at least three states are required in the conformational sampling model to establish the emergence of drug resistance in HIV-1 PR. More importantly, these results shed light on a possible mechanism whereby mutations combine to impart drug resistance while maintaining catalytic activity.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Chemistry, P.O. Box 117200, University of Florida , Gainesville, Florida 32611-7200, United States
| | | | | | | | | | | |
Collapse
|
34
|
Meher BR, Patel S. Structural and dynamical aspects of HIV-1 protease and its role in drug resistance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 92:299-324. [PMID: 23954105 DOI: 10.1016/b978-0-12-411636-8.00008-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) caused by the retrovirus human immunodeficiency virus (HIV) has become a major epidemic afflicting mankind. The Joint United Nations Program on HIV/AIDS (UNAIDS) projection shows the existence of millions of AIDS patients at the end of 2012. All the Food and Drug Administration (FDA)-approved drugs are getting ineffective due to resistance offered by the mutation-prone HIV. Hence, there is an urgent need for developing new drugs with greater potential. HIV life cycle is controlled by the activities of its essential proteins like glycoproteins (gp41 and gp120), HIV reverse transcriptase (HIV-RT), HIV integrase (HIV-IN), and HIV-1 protease (HIV-pr). This chapter focuses on the protein HIV-pr, which is important for the cleavage of Gag and Gag-Pol polyproteins to form mature, structural, and functional virions. The conformation and dynamics of the protein HIV-pr play a pivotal role in ligand binding and the catalytic process, which is affected by the rapid point mutations and various physiological parameters. The effect of the mutations and the varied simulation protocols on conformational dynamics and drug resistance of HIV-pr is discussed.
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA.
| | | |
Collapse
|
35
|
Huang X, de Vera IMS, Veloro AM, Blackburn ME, Kear JL, Carter JD, Rocca JR, Simmerling C, Dunn BM, Fanucci GE. Inhibitor-induced conformational shifts and ligand-exchange dynamics for HIV-1 protease measured by pulsed EPR and NMR spectroscopy. J Phys Chem B 2012; 116:14235-44. [PMID: 23167829 PMCID: PMC3709468 DOI: 10.1021/jp308207h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double electron-electron resonance (DEER) spectroscopy was utilized to investigate shifts in conformational sampling induced by nine FDA-approved protease inhibitors (PIs) and a nonhydrolyzable substrate mimic for human immunodeficiency virus type 1 protease (HIV-1 PR) subtype B, subtype C, and CRF_01 A/E. The ligand-bound subtype C protease has broader DEER distance profiles, but trends for inhibitor-induced conformational shifts are comparable to those previously reported for subtype B. Ritonavir, one of the strong-binding inhibitors for subtypes B and C, induces less of the closed conformation in CRF_01 A/E. (1)H-(15)N heteronuclear single-quantum coherence (HSQC) spectra were acquired for each protease construct titrated with the same set of inhibitors. NMR (1)H-(15)N HSQC titration data show that inhibitor residence time in the protein binding pocket, inferred from resonance exchange broadening, shifting or splitting correlates with the degree of ligand-induced flap closure measured by DEER spectroscopy. These parallel results show that the ligand-induced conformational shifts resulting from protein-ligand interactions characterized by DEER spectroscopy of HIV-1 PR obtained at the cryogenic temperature are consistent with more physiological solution protein-ligand interactions observed by solution NMR spectroscopy.
Collapse
Affiliation(s)
- Xi Huang
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| | | | - Angelo M. Veloro
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| | - Mandy E. Blackburn
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| | - Jamie L. Kear
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| | - Jeffery D. Carter
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| | - James R. Rocca
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | - Gail E. Fanucci
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA
| |
Collapse
|
36
|
Cai Y, Yilmaz NK, Myint W, Ishima R, Schiffer CA. Differential Flap Dynamics in Wild-type and a Drug Resistant Variant of HIV-1 Protease Revealed by Molecular Dynamics and NMR Relaxation. J Chem Theory Comput 2012; 8:3452-3462. [PMID: 23144597 PMCID: PMC3491577 DOI: 10.1021/ct300076y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the rapidly evolving disease of HIV drug resistance readily emerges, nullifying the effectiveness of therapy. Drug resistance has been extensively studied in HIV-1 protease where resistance occurs when the balance between enzyme inhibition and substrate recognition and turn-over is perturbed to favor catalytic activity. Mutations which confer drug resistance can impact the dynamics and structure of both the bound and unbound forms of the enzyme. Flap+ is a multi-drug-resistant variant of HIV-1 protease with a combination of mutations at the edge of the active site, within the active site, and in the flaps (L10I, G48V, I54V, V82A). The impact of these mutations on the dynamics in the unliganded form in comparison with the wild-type protease was elucidated with Molecular Dynamic simulations and NMR relaxation experiments. The comparative analyses from both methods concur in showing that the enzyme's dynamics are impacted by the drug resistance mutations in Flap+ protease. These alterations in the enzyme dynamics, particularly within the flaps, likely modulate the balance between substrate turn-over and drug binding, thereby conferring drug resistance.
Collapse
Affiliation(s)
- Yufeng Cai
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wazo Myint
- Department of Structural Biology, School of Medicine, University of Pittsburgh Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Rieko Ishima
- Department of Structural Biology, School of Medicine, University of Pittsburgh Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Co-Corresponding authors: Celia A. Schiffer Phone: (508) 856-8008. Rieko Ishima Phone: (412) 648-9056
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Co-Corresponding authors: Celia A. Schiffer Phone: (508) 856-8008. Rieko Ishima Phone: (412) 648-9056
| |
Collapse
|
37
|
de Vera IMS, Blackburn ME, Fanucci GE. Correlating conformational shift induction with altered inhibitor potency in a multidrug resistant HIV-1 protease variant. Biochemistry 2012; 51:7813-5. [PMID: 23009326 DOI: 10.1021/bi301010z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitor-induced conformational ensemble shifts in a multidrug resistant HIV-1 protease variant, MDR769, are characterized by site-directed spin labeling double electron-electron resonance spectroscopy. For MDR769 compared to the native enzyme, changes in inhibitor IC(50) values are related to a parameter defined as |ΔC|, which is the relative change in the inhibitor-induced shift to the closed state. Specifically, a linear correlation is found between |ΔC| and the magnitude of the change in IC(50), provided that inhibitor binding is not too weak. Moreover, inhibitors that exhibit MDR769 resistance no longer induce a strong shift to a closed conformational ensemble as seen previously in the native enzyme.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
38
|
Popova AM, Hatmal MM, Frushicheva M, Price EA, Qin PZ, Haworth IS. Nitroxide sensing of a DNA microenvironment: mechanistic insights from EPR spectroscopy and molecular dynamics simulations. J Phys Chem B 2012; 116:6387-96. [PMID: 22574834 PMCID: PMC3382087 DOI: 10.1021/jp303303v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The behavior of the nitroxide spin labels 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a) and 1-oxyl-2,2,5,5-tetramethylpyrroline (R5) attached at a phosphorothioate-substituted site in a DNA duplex is modulated by the DNA in a site- and stereospecific manner. A better understanding of the mechanisms of R5a/R5 sensing of the DNA microenvironment will enhance our capability to relate information from nitroxide spectra to sequence-dependent properties of DNA. Toward this goal, electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations were used to investigate R5 and R5a attached as R(p) and S(p) diastereomers at phosphorothioate (pS)C(7) of d(CTACTG(pS)C(7)Y(8)TTAG). d(CTAAAGCAGTAG) (Y = T or U). X-band continuous-wave EPR spectra revealed that the dT(8) to dU(8) change alters nanosecond rotational motions of R(p)-R5a but produces no detectable differences for S(p)-R5a, R(p)-R5, and S(p)-R5. MD simulations were able to qualitatively account for these spectral variations and provide a plausible physical basis for the R5/R5a behavior. The simulations also revealed a correlation between DNA backbone B(I)/B(II) conformations and R5/R5a rotational diffusion, thus suggesting a direct connection between DNA local backbone dynamics and EPR-detectable R5/R5a motion. These results advance our understanding of how a DNA microenvironment influences nitroxide motion and the observed EPR spectra. This may enable use of R5/R5a for a quantitative description of the sequence-dependent properties of large biologically relevant DNA molecules.
Collapse
Affiliation(s)
- Anna M. Popova
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Ma’mon M. Hatmal
- Department of Biochemistry, University of Southern California, Los Angeles, California 90033-1039
| | - Maria Frushicheva
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Eric A. Price
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0744
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Ian S. Haworth
- Department of Biochemistry, University of Southern California, Los Angeles, California 90033-1039
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
39
|
Wang Y, Dewdney TG, Liu Z, Reiter SJ, Brunzelle JS, Kovari IA, Kovari LC. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease. BIOLOGY 2012; 1:81-93. [PMID: 24832048 PMCID: PMC4011036 DOI: 10.3390/biology1010081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
Abstract
Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1'F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Tamaria G Dewdney
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Zhigang Liu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Samuel J Reiter
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Iulia A Kovari
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ladislau C Kovari
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
40
|
HIV gp120 H375 is unique to HIV-1 subtype CRF01_AE and confers strong resistance to the entry inhibitor BMS-599793, a candidate microbicide drug. Antimicrob Agents Chemother 2012; 56:4257-67. [PMID: 22615295 DOI: 10.1128/aac.00639-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-599793 is a small molecule entry inhibitor that binds to human immunodeficiency virus type 1 (HIV-1) gp120, resulting in the inhibition of CD4-dependent entry into cells. Since BMS-599793 is currently considered a candidate microbicide drug, we evaluated its efficacy against a number of primary patient HIV isolates from different subtypes and circulating recombinant forms (CRFs) and showed that activity varied between ∼3 ρM and 7 μM at 50% effective concentrations (EC(50)s). Interestingly, CRF01_AE HIV-1 isolates consistently demonstrated natural resistance against this compound. Genotypic analysis of >1,600 sequences (Los Alamos HIV sequence database) indicated that a single amino acid polymorphism in Env, H375, may account for the observed BMS-599793 resistance in CRF01_AE HIV-1. Results of site-directed mutagenesis experiments confirmed this hypothesis, and in silico drug docking simulations identified a drug resistance mechanism at the molecular level. In addition, CRF01_AE viruses were shown to be resistant to multiple broadly neutralizing monoclonal antibodies. Thus, our results not only provide insight into how Env polymorphisms may contribute to entry inhibitor resistance but also may help to elucidate how HIV can evade some broadly neutralizing antibodies. Furthermore, the high frequency of H375 in CRF01_AE HIV-1, and its apparent nonoccurrence in other subtypes, could serve as a means for rapid identification of CRF01_AE infections.
Collapse
|
41
|
Mittal S, Cai Y, Nalam MNL, Bolon DNA, Schiffer CA. Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease. J Am Chem Soc 2012; 134:4163-8. [PMID: 22295904 DOI: 10.1021/ja2095766] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.
Collapse
Affiliation(s)
- Seema Mittal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Distance distributions between paramagnetic centers in the range of 1.8 to 6 nm in membrane proteins and up to 10 nm in deuterated soluble proteins can be measured by the DEER technique. The number of paramagnetic centers and their relative orientation can be characterized. DEER does not require crystallization and is not limited with respect to the size of the protein or protein complex. Diamagnetic proteins are accessible by site-directed spin labeling. To characterize structure or structural changes, experimental protocols were optimized and techniques for artifact suppression were introduced. Data analysis programs were developed, and it was realized that interpretation of the distance distributions must take into account the conformational distribution of spin labels. First methods have appeared for deriving structural models from a small number of distance constraints. The present scope and limitations of the technique are illustrated.
Collapse
Affiliation(s)
- Gunnar Jeschke
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Switzerland.
| |
Collapse
|
43
|
Limiting assumptions in structure-based design: binding entropy. J Comput Aided Mol Des 2012; 26:3-8. [PMID: 22212342 DOI: 10.1007/s10822-011-9494-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/08/2023]
Abstract
In order to deal with the complexity of biological systems at the atomic level, limiting assumptions are often made which do not reflect the reality of the system under study. One example is the assumption that the entropy of binding of the macromolecule is not influenced significantly by the different ligands. Recent experimental data on ligands binding to HIV-1 protease challenge this assumption.
Collapse
|
44
|
Hatmal MM, Li Y, Hegde BG, Hegde PB, Jao CC, Langen R, Haworth IS. Computer modeling of nitroxide spin labels on proteins. Biopolymers 2012; 97:35-44. [PMID: 21792846 PMCID: PMC3422567 DOI: 10.1002/bip.21699] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/24/2011] [Accepted: 06/25/2011] [Indexed: 01/26/2023]
Abstract
Electron paramagnetic resonance using site-directed spin labeling can be used as an approach for determination of protein structures that are difficult to solve by other methods. One important aspect of this approach is the measurement of interlabel distances using the double electron-electron resonance (DEER) method. Interpretation of experimental data could be facilitated by a computational approach to calculation of interlabel distances. We describe an algorithm, PRONOX, for rapid computation of interlabel distances based on calculation of spin label conformer distributions at any site of a protein. The program incorporates features of the label distribution established experimentally, including weighting of favorable conformers of the label. Distances calculated by PRONOX were compared with new DEER distances for amphiphysin and annexin B12 and with published data for FCHo2 (F-BAR), endophilin, and α-synuclein, a total of 44 interlabel distances. The program reproduced these distances accurately (r(2) = 0.94, slope = 0.98). For 9 of the 11 distances for amphiphysin, PRONOX reproduced the experimental data to within 2.5 Å. The speed and accuracy of PRONOX suggest that the algorithm can be used for fitting to DEER data for determination of protein tertiary structure.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern CA, Los Angeles, CA 90089, USA
- Department of Biochemistry, University of Southern California, Los Angeles, CA, 90033-9151, USA
| | - Yiyu Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern CA, Los Angeles, CA 90089, USA
| | - Balachandra G. Hegde
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Prabhavati B. Hegde
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Christine C. Jao
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Biochemistry, University of Southern California, Los Angeles, CA, 90033-9151, USA
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Ian S. Haworth
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern CA, Los Angeles, CA 90089, USA
- Department of Biochemistry, University of Southern California, Los Angeles, CA, 90033-9151, USA
| |
Collapse
|
45
|
Lee J, Goodey NM. Catalytic contributions from remote regions of enzyme structure. Chem Rev 2011; 111:7595-624. [PMID: 21923192 DOI: 10.1021/cr100042n] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 413 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
46
|
Batista PR, Pandey G, Pascutti PG, Bisch PM, Perahia D, Robert CH. Free Energy Profiles along Consensus Normal Modes Provide Insight into HIV-1 Protease Flap Opening. J Chem Theory Comput 2011; 7:2348-52. [PMID: 26606609 DOI: 10.1021/ct200237u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Describing biological macromolecular energetics from computer simulations can pose major challenges, and often necessitates enhanced conformational sampling. We describe the calculation of conformational free-energy profiles along carefully chosen collective coordinates: "consensus" normal modes, developed recently as robust alternatives to conventional normal modes. In an application to the HIV-1 protease, we obtain efficient sampling of significant flap opening movements governing inhibitor binding from relatively short simulations, in close correspondence with experimental results.
Collapse
Affiliation(s)
- Paulo R Batista
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , 21941-902, Brasil.,CNRS Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris Sud 11 , 91405 Orsay, France.,CNRS BIMoDyM -Laboratoire de Biologie et Pharmacologie Appliquées - École Normale Supérieure de Cachan , 94235 Cachan, France
| | - Gaurav Pandey
- Indian Institute of Technology , Roorkee, 247667, India.,CNRS Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris Sud 11 , 91405 Orsay, France
| | - Pedro G Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , 21941-902, Brasil
| | - Paulo M Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , 21941-902, Brasil
| | - David Perahia
- CNRS Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris Sud 11 , 91405 Orsay, France.,CNRS BIMoDyM -Laboratoire de Biologie et Pharmacologie Appliquées - École Normale Supérieure de Cachan , 94235 Cachan, France
| | - Charles H Robert
- CNRS Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris Sud 11 , 91405 Orsay, France.,CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico Chimique, Université Paris Diderot, Sorbonne Paris Cité , 75005 Paris, France
| |
Collapse
|
47
|
Diefenbacher M, Thorsteinsdottir H, Spang A. The Dsl1 tethering complex actively participates in soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) complex assembly at the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem 2011; 286:25027-38. [PMID: 21482823 DOI: 10.1074/jbc.m110.215657] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intracellular transport is largely dependent on vesicles that bud off from one compartment and fuse with the target compartment. The first contact of an incoming vesicle with the target membrane is mediated by tethering factors. The tethering factor responsible for recruiting Golgi-derived vesicles to the ER is the Dsl1 tethering complex, which is comprised of the essential proteins Dsl1p, Dsl3p, and Tip20p. We investigated the role of the Tip20p subunit at the ER by analyzing two mutants, tip20-5 and tip20-8. Both mutants contained multiple mutations that were scattered throughout the TIP20 sequence. Individual mutations could not reproduce the temperature-sensitive phenotype of tip20-5 and tip20-8, indicating that the overall structure of Tip20p might be altered in the mutants. Using molecular dynamics simulations comparing Tip20p and Tip20-8p revealed that some regions, particularly the N-terminal domain and parts of the stalk region, were more flexible in the mutant protein, consistent with its increased susceptibility to proteolysis. Both Tip20-5p and Tip20-8p mutants prevented proper ER trans-SNARE complex assembly in vitro. Moreover, Tip20p mutant proteins disturbed the interaction between Dsl1p and the coatomer coat complex, indicating that the Dsl1p-coatomer interaction could be stabilized or regulated by Tip20p. We provide evidence for a direct role of the Dsl1 complex, in particular Tip20p, in the formation and stabilization of ER SNARE complexes.
Collapse
Affiliation(s)
- Melanie Diefenbacher
- Biozentrum, Growth & Development, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
48
|
Longhi S, Belle V, Fournel A, Guigliarelli B, Carrière F. Probing structural transitions in both structured and disordered proteins using site-directed spin-labeling EPR spectroscopy. J Pept Sci 2011; 17:315-28. [DOI: 10.1002/psc.1344] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/17/2010] [Accepted: 11/20/2010] [Indexed: 11/10/2022]
|
49
|
A comparative study of HIV-1 and HTLV-I protease structure and dynamics reveals a conserved residue interaction network. J Mol Model 2011; 17:2693-705. [PMID: 21279524 DOI: 10.1007/s00894-011-0971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/11/2011] [Indexed: 12/14/2022]
Abstract
The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.
Collapse
|
50
|
Shang Y, Nguyen H, Wickstrom L, Okur A, Simmerling C. Improving the description of salt bridge strength and geometry in a Generalized Born model. J Mol Graph Model 2010; 29:676-84. [PMID: 21168352 DOI: 10.1016/j.jmgm.2010.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The Generalized Born (GB) solvent model is widely used in molecular dynamics simulations because it can be less computationally expensive and it samples conformational changes more efficiently than explicit solvent simulations. Meanwhile, great efforts have been made in the past to improve its precision and accuracy. Previous studies have shown that reducing intrinsic GB radii of some hydrogen atoms would improve AMBER GB-HCT solvent model's accuracy on salt bridges. Here we present our finding that similar correction also shows dramatic improvement for the AMBER GB-OBC solvent model. Potential of mean force and cluster analysis for small peptide replica exchange molecular dynamics simulations suggested that new radii GB simulation with ff99SB/GB-OBC corrected salt bridge strength and achieved significantly higher geometry similarity with TIP3P simulation. Improved performance in 60 ns HIV-1 protease GB simulation further validated this approach for large systems.
Collapse
Affiliation(s)
- Yi Shang
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|