1
|
Nishikino T, Sugimoto T, Kandori H. Low-temperature FTIR spectroscopy of the L/Q switch of proteorhodopsin. Phys Chem Chem Phys 2024; 26:22959-22967. [PMID: 39171479 DOI: 10.1039/d4cp02248c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Rhodopsins are photoreceptive membrane proteins containing a retinal chromophore, and the color tuning mechanism in rhodopsins is one of the important topics. Color switch is a color-determining residue at the same position, where replacement of red- and blue-shifting amino acids in two wild-type rhodopsins causes spectral blue- and red-shifts, respectively. The first and most famous color switch in microbial rhodopsins is the L/Q switch in proteorhodopsins (PRs). Green- or blue-absorbing PR (GPR or BPR) contains Leu and Gln at position 105 of the C-helix (TM3), respectively, and their replacement converted absorbing colors. The L/Q switch enables bacteria to absorb green or blue light in shallow or deep ocean waters, respectively. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, a comprehensive mutation study of position 105 in GPR revealed that the λmax correlated with the volume of residues, not the hydropathy index. To gain structural insights into the mechanism, we applied low-temperature FTIR spectroscopy of L105Q GPR, and the obtained spectra were compared with those of GPR and BPR. The difference FTIR spectra of L105Q GPR were similar to those of BPR, not GPR, implying that the L/Q switch converts the GPR structure into a BPR structure in terms of the local environments of the retinal chromophore. It includes retinal skeletal vibration, hydrogen-bonding strength of the protonated Schiff base, amide-A vibration (peptide backbone), and protein-bound water molecules. Consequently color is switched accompanying such structural alterations, and known as the L/Q switch.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Selenius E, Sigurdarson AE, Schmerwitz YLA, Levi G. Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States. J Chem Theory Comput 2024; 20:3809-3822. [PMID: 38695313 DOI: 10.1021/acs.jctc.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The performance of time-independent, orbital-optimized calculations of excited states is assessed with respect to charge transfer excitations in organic molecules in comparison to the linear-response time-dependent density functional theory (TD-DFT) approach. A direct optimization method to converge on saddle points of the electronic energy surface is used to carry out calculations with the local density approximation (LDA) and the generalized gradient approximation (GGA) functionals PBE and BLYP for a set of 27 excitations in 15 molecules. The time-independent approach is fully variational and provides a relaxed excited state electron density from which the extent of charge transfer is quantified. The TD-DFT calculations are generally found to provide larger charge transfer distances compared to the orbital-optimized calculations, even when including orbital relaxation effects with the Z-vector method. While the error on the excitation energy relative to theoretical best estimates is found to increase with the extent of charge transfer up to ca. -2 eV for TD-DFT, no correlation is observed for the orbital-optimized approach. The orbital-optimized calculations with the LDA and the GGA functionals provide a mean absolute error of ∼0.7 eV, outperforming TD-DFT with both local and global hybrid functionals for excitations with a long-range charge transfer character. Orbital-optimized calculations with the global hybrid functional B3LYP and the range-separated hybrid functional CAM-B3LYP on a selection of states with short- and long-range charge transfer indicate that inclusion of exact exchange has a small effect on the charge transfer distance, while it significantly improves the excitation energy, with the best-performing functional CAM-B3LYP providing an absolute error typically around 0.15 eV.
Collapse
Affiliation(s)
- Elli Selenius
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| | | | | | - Gianluca Levi
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| |
Collapse
|
3
|
Fujimoto KJ, Minowa F, Nishina M, Nakamura S, Ohashi S, Katayama K, Kandori H, Yanai T. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment. J Phys Chem Lett 2023; 14:1784-1793. [PMID: 36762971 DOI: 10.1021/acs.jpclett.2c03619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Fumika Minowa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Michiya Nishina
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Sayaka Ohashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
4
|
Sumikawa M, Abe-Yoshizumi R, Uchihashi T, Kandori H. Mechanism of the Irreversible Transition from Pentamer to Monomer at pH 2 in a Blue Proteorhodopsin. Biochemistry 2022; 61:1936-1944. [PMID: 36007110 DOI: 10.1021/acs.biochem.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified as blue-absorbing PRs (BPR; λmax ∼ 490 nm) and green-absorbing PRs (GPR; λmax ∼ 525 nm). We previously converted BPR into GPR using an anomalous pH effect, which was achieved by an irreversible process at around pH 2. Recent size-exclusion chromatography (SEC) and atomic force microscopy (AFM) analyses of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect owing to the irreversible transition from pentamer to monomer. Different pKa values of the Schiff base counterion between pentamer and monomer lead to different colors at the same pH. Here, we incorporate systematic mutation into VcBPR and examine the anomalous pH effect. The anomalous pH effect was observed for the mutants of key residues near the retinal chromophore such as D76N, D206N, and Q84L, indicating that the Schiff base counterions and the L/Q switch do not affect the irreversible transition from pentamer to monomer at pH ∼ 2. We then focus on the two specific interactions at the intermonomer interface in a pentamer, E29/R30/D31 and W13/H54. Single mutants such as E29Q, R30A, W13A, and H54A and the wild type (WT) exhibited an anomalous pH effect. In contrast, the anomalous pH effect was lost for E29Q/H54A, R30A/H54A, and W13A/E29Q. Size-exclusion chromatography (SEC) and atomic force microscopy (AFM) measurements showed monomer forms in the original states of the double mutants, being a clear contrast to the pentamer forms of all single mutants in the original states. It was concluded that the pentamer structure of VcBPR was stabilized by an electrostatic interaction in the E29/R30/D31 region and a hydrogen-bonding interaction in the W13/H54 region, which was disrupted at pH 2 and converted into monomers.
Collapse
Affiliation(s)
- Mizuki Sumikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
5
|
Pedraza-González L, Barneschi L, Padula D, De Vico L, Olivucci M. Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol. Top Curr Chem (Cham) 2022; 380:21. [PMID: 35291019 PMCID: PMC8924150 DOI: 10.1007/s41061-022-00374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 10/27/2022]
Abstract
In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
6
|
Hashem HE, Nath A, Kumer A. Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Sumikawa M, Abe-Yoshizumi R, Uchihashi T, Kandori H. Molecular Origin of the Anomalous pH Effect in Blue Proteorhodopsin. J Phys Chem Lett 2021; 12:12225-12229. [PMID: 34928158 DOI: 10.1021/acs.jpclett.1c03355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified into blue-absorbing PR (BPR; λmax ∼ 490 nm) and green-absorbing PR (GPR; λmax ∼ 525 nm). We previously presented conversion of BPR into GPR using the anomalous pH effect. When we lowered the pH of a BPR to pH 2 and returned to pH 7, the protein absorbs green light. This suggests the existence of the critical point of the irreversible process at around pH 2, but the mechanism of anomalous pH effect was fully unknown. The present size exclusion chromatography (SEC) and atomic force microscope (AFM) analysis of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect because of the conversion from pentamer to monomer. The different pKa of the Schiff base counterion between pentamer and monomer leads to different colors at the same pH.
Collapse
Affiliation(s)
- Mizuki Sumikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
8
|
Demoulin B, Maiuri M, Berbasova T, Geiger JH, Borhan B, Garavelli M, Cerullo G, Rivalta I. Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores. Chemistry 2021; 27:16389-16400. [PMID: 34653286 DOI: 10.1002/chem.202102383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/07/2022]
Abstract
Artificial biomimetic chromophore-protein complexes inspired by natural visual pigments can feature color tunability across the full visible spectrum. However, control of excited state dynamics of the retinal chromophore, which is of paramount importance for technological applications, is lacking due to its complex and subtle photophysics/photochemistry. Here, ultrafast transient absorption spectroscopy and quantum mechanics/molecular mechanics simulations are combined for the study of highly tunable rhodopsin mimics, as compared to retinal chromophores in solution. Conical intersections and transient fluorescent intermediates are identified with atomistic resolution, providing unambiguous assignment of their ultrafast excited state absorption features. The results point out that the electrostatic environment of the chromophore, modified by protein point mutations, affects its excited state properties allowing control of its photophysics with same power of chemical modifications of the chromophore. The complex nature of such fine control is a fundamental knowledge for the design of bio-mimetic opto-electronic and photonic devices.
Collapse
Affiliation(s)
- Baptiste Demoulin
- Laboratoire de Chimie, Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342, Lyon, France
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Ivan Rivalta
- Laboratoire de Chimie, Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342, Lyon, France.,Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
9
|
Scholz L, Neugebauer J. Protein Response Effects on Cofactor Excitation Energies from First Principles: Augmenting Subsystem Time-Dependent Density-Functional Theory with Many-Body Expansion Techniques. J Chem Theory Comput 2021; 17:6105-6121. [PMID: 34524815 DOI: 10.1021/acs.jctc.1c00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigate the possibility of describing protein response effects on a chromophore excitation by means of subsystem time-dependent density-functional theory (sTDDFT) in combination with a many-body expansion (MBE) approach. While sTDDFT is in principle intrinsically able to include such contributions, addressing cofactor excitations in protein models or entire proteins with full environment-response treatments is currently out of reach. Taking different model structures of the green fluorescent protein (GFP) and bovine rhodopsin as examples, we demonstrate that an embedded-MBE approach based on sTDDFT in its simplest version leads to a good agreement of the predicted protein response effect already at second order. To reproduce reference response effects from nonsubsystem TDDFT calculations quantitatively (error ≤ 5%), however, a third- or even fourth-order MBE may be required. For the latter case, we explore a selective inclusion of fourth-order terms that drastically reduces the computational burden. In addition, we demonstrate how this sTDDFT-MBE treatment can be utilized as an analysis tool to identify residues with dominant response contributions. This, in turn, can be employed to arrive at smaller structural models for light-absorbing proteins, which still feature all of the main characteristics in terms of photoresponse properties.
Collapse
Affiliation(s)
- Linus Scholz
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
10
|
Fujimoto KJ. Electronic Couplings and Electrostatic Interactions Behind the Light Absorption of Retinal Proteins. Front Mol Biosci 2021; 8:752700. [PMID: 34604313 PMCID: PMC8480471 DOI: 10.3389/fmolb.2021.752700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The photo-functional chromophore retinal exhibits a wide variety of optical absorption properties depending on its intermolecular interactions with surrounding proteins and other chromophores. By utilizing these properties, microbial and animal rhodopsins express biological functions such as ion-transport and signal transduction. In this review, we present the molecular mechanisms underlying light absorption in rhodopsins, as revealed by quantum chemical calculations. Here, symmetry-adapted cluster-configuration interaction (SAC-CI), combined quantum mechanical and molecular mechanical (QM/MM), and transition-density-fragment interaction (TDFI) methods are used to describe the electronic structure of the retinal, the surrounding protein environment, and the electronic coupling between chromophores, respectively. These computational approaches provide successful reproductions of experimentally observed absorption and circular dichroism (CD) spectra, as well as insights into the mechanisms of unique optical properties in terms of chromophore-protein electrostatic interactions and chromophore-chromophore electronic couplings. On the basis of the molecular mechanisms revealed in these studies, we also discuss strategies for artificial design of the optical absorption properties of rhodopsins.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Hashem HE, Mohamed EA, Farag AA, Negm NA, Azmy EAM. New heterocyclic Schiff base‐metal complex: Synthesis, characterization, density functional theory study, and antimicrobial evaluation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heba E. Hashem
- Chemistry Department, Faculty of Women Ain Shams University Heliopolis Egypt
| | - Eslam A. Mohamed
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Ahmed A. Farag
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Nabel A. Negm
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Eman A. M. Azmy
- Chemistry Department, Faculty of Women Ain Shams University Heliopolis Egypt
| |
Collapse
|
12
|
Shtyrov AA, Nikolaev DM, Mironov VN, Vasin AV, Panov MS, Tveryanovich YS, Ryazantsev MN. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. Int J Mol Sci 2021; 22:ijms22063029. [PMID: 33809708 PMCID: PMC8002287 DOI: 10.3390/ijms22063029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
A typical feature of proteins from the rhodopsin family is the sensitivity of their absorption band maximum to protein amino acid composition. For this reason, studies of these proteins often require methodologies that determine spectral shift caused by amino acid substitutions. Generally, quantum mechanics/molecular mechanics models allow for the calculation of a substitution-induced spectral shift with high accuracy, but their application is not always easy and requires special knowledge. In the present study, we propose simple models that allow us to estimate the direct effect of a charged or polar residue substitution without extensive calculations using only rhodopsin three-dimensional structure and plots or tables that are provided in this article. The models are based on absorption maximum values calculated at the SORCI+Q level of theory for cis- and trans-forms of retinal protonated Schiff base in an external electrostatic field of charges and dipoles. Each value corresponds to a certain position of a charged or polar residue relative to the retinal chromophore. The proposed approach was evaluated against an example set consisting of twelve bovine rhodopsin and sodium pumping rhodopsin mutants. The limits of the applicability of the models are also discussed. The results of our study can be useful for the interpretation of experimental data and for the rational design of rhodopsins with required spectral properties.
Collapse
Affiliation(s)
- Andrey A. Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Dmitrii M. Nikolaev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia;
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Yuri S. Tveryanovich
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
- Correspondence:
| |
Collapse
|
13
|
Synthesis and characterization of Schiff base, Co(II) and Cu(II) metal complexes and poly(phenoxy-imine)s containing pyridine unit. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Shigaev AS, Feldman TB, Nadtochenko VA, Ostrovsky MA, Lakhno VD. Quantum-classical model of the rhodopsin retinal chromophore cis–trans photoisomerization with modified inter-subsystem coupling. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Marazzi M, Francés-Monerris A, Mourer M, Pasc A, Monari A. Trans-to-cis photoisomerization of cyclocurcumin in different environments rationalized by computational photochemistry. Phys Chem Chem Phys 2020; 22:4749-4757. [PMID: 32057038 DOI: 10.1039/c9cp06565b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclocurcumin is a turmeric component that has attracted much less attention compared to the well-known curcumin. In spite of the less deep characterization of its properties, cyclocurcumin has shown promising anticancer effects when used in combination with curcumin. Especially, due to its peculiar molecular structure, cyclocurcumin can be regarded as an almost ideal photoswitch, whose capabilities can also be exploited for relevant biological applications. Here, by means of state-of-the-art computational methods for electronic excited-state calculations (TD-DFT, MS-CASPT2, and XMS-CASPT2), we analyze in detail the absorption and photoisomerization pathways leading from the more stable trans isomer to the cis one. The different molecular surroundings, taken into account by means of the electrostatic solvent effect and compared with available experimental data, have been found to be critical in describing the fate of irradiated cyclocurcumin: when in non-polar environments, an excited state barrier prevents photoisomerization and favours fluorescence, whereas in polar solvents, an almost barrierless path results in a striking decrease of fluorescence, opening the way toward a crossing region with the ground state and thus funneling the photoproduction of the cis isomer.
Collapse
Affiliation(s)
- Marco Marazzi
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33, 600, E-28805, Alcalá de Henares, Madrid, Spain. and Chemical Research Institute "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33, 600, E-28805, Alcalá de Henares, Madrid, Spain
| | - Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR-7019, F-5400 Nancy, France. and Departement de Quimica Fisica, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maxime Mourer
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Andreea Pasc
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR-7019, F-5400 Nancy, France.
| |
Collapse
|
16
|
Ryazantsev MN, Nikolaev DM, Struts AV, Brown MF. Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins. J Membr Biol 2019; 252:425-449. [PMID: 31570961 DOI: 10.1007/s00232-019-00095-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Computational chemistry provides versatile methods for studying the properties and functioning of biological systems at different levels of precision and at different time scales. The aim of this article is to review the computational methodologies that are applicable to rhodopsins as archetypes for photoactive membrane proteins that are of great importance both in nature and in modern technologies. For each class of computational techniques, from methods that use quantum mechanics for simulating rhodopsin photophysics to less-accurate coarse-grained methodologies used for long-scale protein dynamics, we consider possible applications and the main directions for improvement.
Collapse
Affiliation(s)
- Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg, Russia, 198504
| | - Dmitrii M Nikolaev
- Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, Saint Petersburg, Russia, 194021
| | - Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Laboratory of Biomolecular NMR, Saint Petersburg State University, Saint Petersburg, Russia, 199034
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
17
|
Pieri E, Ledentu V, Sahlin M, Dehez F, Olivucci M, Ferré N. CpHMD-Then-QM/MM Identification of the Amino Acids Responsible for the Anabaena Sensory Rhodopsin pH-Dependent Electronic Absorption Spectrum. J Chem Theory Comput 2019; 15:4535-4546. [PMID: 31264415 DOI: 10.1021/acs.jctc.9b00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anabaena Sensory Rhodopsin (ASR), a microbial photoactive protein featuring the retinal chromophore in two different conformations, exhibits a pH-dependent electronic absorption spectrum. Using the recently developed CpHMD-then-QM/MM multiscale protocol applied to ASR embedded in a membrane model, the pH-induced changes in its maximum absorption wavelength have been reproduced and analyzed. While the acidic tiny red-shift is essentially correlated with the deprotonation of an aspartic acid located on the ASR extracellular side, the larger blue-shift experimentally reported at pH values larger than 5 involves a cluster of titrating residues sitting on the cytoplasmic side. The ASR pH-dependent spectrum is the consequence of the competitive stabilization of retinal ground and excited states by the protein electrostatic potential.
Collapse
Affiliation(s)
- Elisa Pieri
- Aix-Marseille Univ , CNRS, ICR , 13013 Marseille , France
| | | | - Michael Sahlin
- Aix-Marseille Univ , CNRS, ICR , 13013 Marseille , France
| | - François Dehez
- Laboratoire de Physique et Chimie Théorique , UMR 7019, Faculté des Sciences et Technique , Campus Aiguillettes , 54506 Vandoeuvre-les-Nancy , France
| | - Massimo Olivucci
- Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States.,Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , via A. Moro 2 , 53100 Siena , Italy
| | - Nicolas Ferré
- Aix-Marseille Univ , CNRS, ICR , 13013 Marseille , France
| |
Collapse
|
18
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
19
|
Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferré N, Kandori H, Buckup T. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2018; 20:30159-30173. [PMID: 30484447 DOI: 10.1039/c8cp05469j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discrepancies in the isomerization dynamics and quantum yields of the trans and cis retinal protonated Schiff base is a well-known issue in the context of retinal photochemistry. Anabaena Sensory Rhodopsin (ASR) is a microbial retinal protein that comprises a retinal chromophore in two ground state (GS) conformations: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). In this study, we applied impulsive vibrational spectroscopic techniques (DFWM, pump-DFWM and pump-IVS) to ASR to shed more light on how the structural changes take place in the excited state within the same protein environment. Our findings point to distinct features in the ground state structural conformations as well as to drastically different evolutions in the excited state manifold. The ground state vibrational spectra show stronger Raman activity of the C14-H out-of-plane wag (at about 805 cm-1) for the 13C isomer than that for the AT isomer, which hints at a pre-distortion of 13C in the ground state. Evolution of the Raman frequency after interaction with the actinic pulse shows a blue-shift for the C[double bond, length as m-dash]C stretching and CH3 rocking mode for both isomers. For AT, however, the blue-shift is not instantaneous as observed for the 13C isomer, rather it takes more than 200 fs to reach the maximum frequency shift. This frequency blue-shift is rationalized by a decrease in the effective conjugation length during the isomerization reaction, which further confirms a slower formation of the twisted state for the AT isomer and corroborates the presence of a barrier in the excited state trajectory previously predicted by quantum chemical calculations.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Grabarek D, Andruniów T. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations. J Comput Chem 2018; 39:1720-1727. [PMID: 29727036 DOI: 10.1002/jcc.25346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 11/07/2022]
Abstract
The initial S1 excited-state relaxation of retinal protonated Schiff base (RPSB) analog with central C11C12 double bond locked by eight-membered ring (locked-11.8) was investigated by means of multireference perturbation theory methods (XMCQDPT2, XMS-CASPT2, MS-CASPT2) as well as single-reference coupled-cluster CC2 method. The analysis of XMCQDPT2-based geometries reveals rather weak coupling between in-plane and out-of-plane structural evolution and minor energetical relaxation of three locked-11.8 conformers. Therefore, a strong coupling between bonds length inversion and backbone out-of-plane deformation resulting in a very steep S1 energy profile predicted by CASSCF/CASPT2 calculations is in clear contradiction with the reference XMCQDPT2 results. Even though CC2 method predicts good quality ground-state structures, the excited-state structures display more advanced torsional deformation leading to ca. 0.2 eV exaggerated energy relaxation and significantly red shifted (0.4-0.7 eV) emission maxima. According to our findings, the initial photoisomerization process in locked-11.8, and possibly in other RPSB analogs, studied fully (both geometries and energies) by multireference perturbation theory may be somewhat slower than predicted by CASSCF/CASPT2 or CC2 methods. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
21
|
Yanai K, Ishimura K, Nakayama A, Hasegawa JY. First-Order Interacting Space Approach to Excited-State Molecular Interaction: Solvatochromic Shift of p-Coumaric Acid and Retinal Schiff Base. J Chem Theory Comput 2018; 14:3643-3655. [DOI: 10.1021/acs.jctc.7b01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuma Yanai
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kazuya Ishimura
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Akira Nakayama
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
22
|
Guo Y, Wolff FE, Schapiro I, Elstner M, Marazzi M. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Phys Chem Chem Phys 2018; 20:27501-27509. [DOI: 10.1039/c8cp05210g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Franziska E. Wolff
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research
- Institute of Chemistry
- Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Marcus Elstner
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| |
Collapse
|
23
|
Orozco-Gonzalez Y, Manathunga M, Marín MDC, Agathangelou D, Jung KH, Melaccio F, Ferré N, Haacke S, Coutinho K, Canuto S, Olivucci M. An Average Solvent Electrostatic Configuration Protocol for QM/MM Free Energy Optimization: Implementation and Application to Rhodopsin Systems. J Chem Theory Comput 2017; 13:6391-6404. [DOI: 10.1021/acs.jctc.7b00860] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoelvis Orozco-Gonzalez
- Université de Strasbourg-CNRS, UMR 7504, Institut de Physique et Chimie des Mateŕiaux de Strasbourg, F-67034 Strasbourg, France
- USIAS Institut d’É;tudes Avanceés, Université de Strasbourg, 5 alleé
du Geńeŕal Rouvillois, F-67083 Strasbourg, France
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Madushanka Manathunga
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - María del Carmen Marín
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Damianos Agathangelou
- Université de Strasbourg-CNRS, UMR 7504, Institut de Physique et Chimie des Mateŕiaux de Strasbourg, F-67034 Strasbourg, France
| | - Kwang-Hwan Jung
- Department
of Life Science and Institute of Biological Interfaces, Sogang University 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Federico Melaccio
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Stefan Haacke
- Université de Strasbourg-CNRS, UMR 7504, Institut de Physique et Chimie des Mateŕiaux de Strasbourg, F-67034 Strasbourg, France
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo/SP, Brazil
| | - Sylvio Canuto
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo/SP, Brazil
| | - Massimo Olivucci
- Université de Strasbourg-CNRS, UMR 7504, Institut de Physique et Chimie des Mateŕiaux de Strasbourg, F-67034 Strasbourg, France
- USIAS Institut d’É;tudes Avanceés, Université de Strasbourg, 5 alleé
du Geńeŕal Rouvillois, F-67083 Strasbourg, France
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
24
|
Demoulin B, Altavilla SF, Rivalta I, Garavelli M. Fine Tuning of Retinal Photoinduced Decay in Solution. J Phys Chem Lett 2017; 8:4407-4412. [PMID: 28853582 DOI: 10.1021/acs.jpclett.7b01780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single methylation at position C10 of the all-trans retinal protonated Schiff base switches its excited-state decay in methanol from a slower picosecond into an ultrafast, protein-like subpicosecond process. QM/MM modeling in conjunction with on-the-fly excited-state dynamics provides fundamental understanding of the fine-tuning mechanics that "catalyzes" the photoinduced decay of solvated retinals. Methylation alters the interplay between the ionic S1 and covalent S2 states, reducing the excited-state lifetime by favoring the formation of a S1 transient fluorescent state with fully inverted bond lengths that accounts for the recorded transient spectroscopy and from which a space-saving conical intersection seam is quickly (<1 ps) reached. Minimal and apparently innocent chemical modifications thus affect the characteristic intramolecular charge-transfer of the S1 state as well as the interaction with the covalent S2 excited state, eventually providing the high tunability of retinal photophysics and photochemistry and delivering a new concept for the rational design of retinal-based photoactive molecular devices.
Collapse
Affiliation(s)
- Baptiste Demoulin
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Salvatore Flavio Altavilla
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , V. F. Selmi 2, 40126 Bologna, Italy
| | - Ivan Rivalta
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Marco Garavelli
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , V. F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
25
|
Szefczyk B, Grabarek D, Walczak E, Andruniów T. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2. J Comput Chem 2017; 38:1799-1810. [PMID: 28512740 DOI: 10.1002/jcc.24821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022]
Abstract
This study provides gas-phase S1 excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S1 minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods. However, for those which were found: one planar and two twisted minima, there is an excellent agreement between CASSCF and CASPT2 results in terms of geometrical parameters, one-electron properties, as well as emission and adiabatic energies. CC2 performs well for in-plane S1 minima and their spectroscopic and electronic properties. However, this picture deteriorates for twisted minima. As expected, the CC2 description of the S2 electronic state, with strong multireference and significant double excitation character, is very poor, exhibiting errors in transition energies exceeding 1 eV. They may be substantially diminished by recalculating transition energies with CASPT2 method. Our work shows that CASSCF/CASPT2 and CC2 shortcomings may influence gas-phase retinal analogues' excited state description in a dramatic way. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Borys Szefczyk
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
26
|
Xie P, Zhou P, Alsaedi A, Zhang Y. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:25-31. [PMID: 27865136 DOI: 10.1016/j.saa.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
The absorption spectra of bovine rhodopsin mutant E113Q in solutions were investigated at the molecular level by using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The calculations suggest the mechanism of the absorption variations of E113Q at different pH values. The results indicate that the polarizations of the counterions in the vicinity of Schiff base under protonation and unprotonation states of the mutant E113Q would be a crucial factor to change the energy gap of the retinal to tune the absorption spectra. Glu-181 residue, which is close to the chromophore, cannot serve as the counterion of the protonated Schiff base of E113Q in dark state. Moreover, the results of the absorption maximum in mutant E113Q with the various anions (Cl-, Br-, I- and NO3-) manifested that the mutant E113Q could have the potential for use as a template of anion biosensors at visible wavelength.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Ahmed Alsaedi
- Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China.
| |
Collapse
|
27
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
28
|
Stenrup M, Pieri E, Ledentu V, Ferré N. pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin. Phys Chem Chem Phys 2017; 19:14073-14084. [DOI: 10.1039/c7cp00991g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A minimal electrostatic model is introduced which aims at reproducing and analyzing the visible-light absorption energy shift of a protein with pH.
Collapse
|
29
|
Guareschi R, Valsson O, Curutchet C, Mennucci B, Filippi C. Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin. J Phys Chem Lett 2016; 7:4547-4553. [PMID: 27786481 DOI: 10.1021/acs.jpclett.6b02043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light sensing in photoreceptor proteins is subtly modulated by the multiple interactions between the chromophoric unit and its binding pocket. Many theoretical and experimental studies have tried to uncover the fundamental origin of these interactions but reached contradictory conclusions as to whether electrostatics, polarization, or intrinsically quantum effects prevail. Here, we select rhodopsin as a prototypical photoreceptor system to reveal the molecular mechanism underlying these interactions and regulating the spectral tuning. Combining a multireference perturbation method and density functional theory with a classical but atomistic and polarizable embedding scheme, we show that accounting for electrostatics only leads to a qualitatively wrong picture, while a responsive environment can successfully capture both the classical and quantum dominant effects. Several residues are found to tune the excitation by both differentially stabilizing ground and excited states and through nonclassical "inductive resonance" interactions. The results obtained with such a quantum-in-classical model are validated against both experimental data and fully quantum calculations.
Collapse
Affiliation(s)
- Riccardo Guareschi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Omar Valsson
- Department of Chemistry and Applied Bioscience, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computazionali, Università della Svizzera italiana , Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| | - Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII, s/n 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
30
|
Melaccio F, del Carmen Marín M, Valentini A, Montisci F, Rinaldi S, Cherubini M, Yang X, Kato Y, Stenrup M, Orozco-Gonzalez Y, Ferré N, Luk HL, Kandori H, Olivucci M. Toward Automatic Rhodopsin Modeling as a Tool for High-Throughput Computational Photobiology. J Chem Theory Comput 2016; 12:6020-6034. [DOI: 10.1021/acs.jctc.6b00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Federico Melaccio
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - María del Carmen Marín
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Alessio Valentini
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Fabio Montisci
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Silvia Rinaldi
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Marco Cherubini
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Xuchun Yang
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Yoshitaka Kato
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
| | - Michael Stenrup
- Aix-Marseille Université, CNRS, ICR, 13284 Marseille, France
| | - Yoelvis Orozco-Gonzalez
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Institut
de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg, France
- USIAS
Institut d’Études Avancées, Université de Strasbourg, 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| | - Nicolas Ferré
- Aix-Marseille Université, CNRS, ICR, 13284 Marseille, France
| | - Hoi Ling Luk
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Hideki Kandori
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
| | - Massimo Olivucci
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Institut
de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg, France
- USIAS
Institut d’Études Avancées, Université de Strasbourg, 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
31
|
Li X, Chung LW, Li G. Multiscale Simulations on Spectral Tuning and the Photoisomerization Mechanism in Fluorescent RNA Spinach. J Chem Theory Comput 2016; 12:5453-5464. [PMID: 27685000 DOI: 10.1021/acs.jctc.6b00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fluorescent RNA aptamer Spinach can bind and activate a green fluorescent protein (GFP)-like chromophore (an anionic DFHBDI chromophore) displaying green fluorescence. Spectroscopic properties, spectral tuning, and the photoisomerization mechanism in the Spinach-DFHBDI complex have been investigated by high-level QM and hybrid ONIOM(QM:AMBER) methods (QM method: (TD)DFT, SF-BHHLYP, SAC-CI, LT-DF-LCC2, CASSCF, or MS-CASPT2), as well as classical molecular dynamics (MD) simulations. First, our benchmark calculations have shown that TD-DFT and spin-flip (SF) TD-DFT (SF-BHHLYP) failed to give a satisfactory description of absorption and emission of the anionic DFHBDI chromophore. Comparatively, SAC-CI, LT-DF-LCC2, and MS-CASPT2 can give more reliable transition energies and are mainly used to further study the spectra of the anionic DFHBDI chromophore in Spinach. The RNA environmental effects on the spectral tuning and the photoisomerization mechanism have been elucidated. Our simulations show that interactions of the anionic cis-DFHBDI chromophore with two G-quadruplexes as well as a UAU base triple suppress photoisomerization of DFHBDI. In addition, strong hydrogen bonds between the anionic cis-DFHBDI chromophore and nearby nucleotides facilitate its binding to Spinach and further inhibit the cis-trans photoisomerization of DFHBDI. Solvent molecules, ions, and loss of key hydrogen bonds with nearby nucleotides could induce dissociation of the anionic trans-DFHBDI chromophore from the binding site. These results provide new insights into fluorescent RNA Spinach and may help rational design of other fluorescent RNAs.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Lung Wa Chung
- Department of Chemistry, South University of Science and Technology of China , Shenzhen 518055, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
32
|
Duan HG, Miller RJD, Thorwart M. Impact of Vibrational Coherence on the Quantum Yield at a Conical Intersection. J Phys Chem Lett 2016; 7:3491-3496. [PMID: 27547995 DOI: 10.1021/acs.jpclett.6b01551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the vibrationally coherent quantum dynamics of an electronic wave packet in the vicinity of a conical intersection within a three-state two-mode model. By transforming the coherent tuning and coupling modes into the bath, the underdamped dynamics of the resulting effective three-state model is solved efficiently by the numerically exact hierarchy equation of motion approach. The transient excited-state absorption and two-dimensional spectra reveal the impact of vibrational coherence on the relaxation pathways of the wave packet. We find that both the quantum yield and the isomerization rate are crucially influenced by the vibrational coherence of the wave packet. A less coherent wave packet can traverse the conical intersection more rapidly, while the resulting quantum yield is smaller. Finally, we show that repeated passages of the wave packet through the conical intersection can lead to measurable interference effects in the form of Stueckelberg oscillations.
Collapse
Affiliation(s)
- Hong-Guang Duan
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany
- Max Planck-Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck-Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Departments of Chemistry and Physics, University of Toronto , 80 St. George Street, Toronto, M5S 3H6 Canada
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
33
|
Grabarek D, Walczak E, Andruniów T. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. J Chem Theory Comput 2016; 12:2346-56. [DOI: 10.1021/acs.jctc.6b00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
34
|
Bonvicini A, Demoulin B, Altavilla SF, Nenov A, El-Tahawy MMT, Segarra-Martí J, Giussani A, Batista VS, Garavelli M, Rivalta I. Ultraviolet vision: photophysical properties of the unprotonated retinyl Schiff base in the Siberian hamster cone pigment. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1869-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Segarra-Martí J, Garavelli M, Aquilante F. Multiconfigurational Second-Order Perturbation Theory with Frozen Natural Orbitals Extended to the Treatment of Photochemical Problems. J Chem Theory Comput 2016; 11:3772-84. [PMID: 26574459 DOI: 10.1021/acs.jctc.5b00479] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new flavor of the frozen natural orbital complete active space second-order perturbation theory method (FNO-CASPT2, Aquilante et al., J. Chem. Phys. 131, 034113) is proposed herein. In this new implementation, the virtual space in Cholesky decomposition-based CASPT2 computations (CD-CASPT2) is truncated by excluding those orbitals that contribute the least toward preserving a predefined value of the trace of an approximate density matrix, as that represents a measure of the amount of dynamic correlation retained in the model. In this way, the amount of correlation included is practically constant at all nuclear arrangements, thus allowing for the computation of smooth electronic states surfaces and energy gradients-essential requirements for theoretical studies in photochemistry. The method has been benchmarked for a series of relevant biochromophores for which large speed-ups have been recorded while retaining the accuracy achieved in the corresponding CD-CASPT2 calculations. Both vertical excitation energies and gradient calculations have been carried out to establish general guidelines as to how much correlation needs to be retained in the calculation for the results to be consistent with the CD-CASPT2 findings. Our results feature errors within a tenth of an eV for the most difficult cases and have been validated to be used for gradient computations where an up to 3-fold speed-up is observed depending on the size of the system and the basis set employed.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy.,Université de Lyon, CNRS , Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Francesco Aquilante
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy
| |
Collapse
|
36
|
Ockenfels A, Schapiro I, Gärtner W. Rhodopsins carrying modified chromophores--the 'making of', structural modelling and their light-induced reactivity. Photochem Photobiol Sci 2016; 15:297-308. [PMID: 26860474 DOI: 10.1039/c5pp00322a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of vitamin-A aldehydes (retinals) with modified alkyl group substituents (9-demethyl-, 9-ethyl-, 9-isopropyl-, 10-methyl, 10-methyl-13-demethyl-, and 13-demethyl retinal) was synthesized and their 11-cis isomers were used as chromophores to reconstitute the visual pigment rhodopsin. Structural changes were selectively introduced around the photoisomerizing C11=C12 bond. The effect of these structural changes on rhodopsin formation and bleaching was determined. Global fit of assembly kinetics yielded lifetimes and spectral features of the assembly intermediates. Rhodopsin formation proceeds stepwise with prolonged lifetimes especially for 9-demethyl retinal (longest lifetime τ3 = 7500 s, cf., 3500 s for retinal), and for 10-methyl retinal (τ3 = 7850 s). These slowed-down processes are interpreted as either a loss of fixation (9dm) or an increased steric hindrance (10me) during the conformational adjustment within the protein. Combined quantum mechanics and molecular mechanics (QM/MM) simulations provided structural insight into the retinal analogues-assembled, full-length rhodopsins. Extinction coefficients, quantum yields and kinetics of the bleaching process (μs-to-ms time range) were determined. Global fit analysis yielded lifetimes and spectral features of bleaching intermediates, revealing remarkably altered kinetics: whereas the slowest process of wild-type rhodopsin and of bleached and 11-cis retinal assembled rhodopsin takes place with lifetimes of 7 and 3.8 s, respectively, this process for 10-methyl-13-demethyl retinal was nearly 10 h (34670 s), coming to completion only after ca. 50 h. The structural changes in retinal derivatives clearly identify the precise interactions between chromophore and protein during the light-induced changes that yield the outstanding efficiency of rhodopsin.
Collapse
Affiliation(s)
- Andreas Ockenfels
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany.
| | | | | |
Collapse
|
37
|
An azo-azomethine ligand and its copper(II) complex: Synthesis, X-ray crystal structure, spectral, thermal, electrochemical and photoluminescence properties. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Valsson O, Filippi C, Casida ME. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory. J Chem Phys 2015; 142:144104. [DOI: 10.1063/1.4916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 778] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
40
|
Sandberg MN, Greco JA, Wagner NL, Amora TL, Ramos LA, Chen MH, Knox BE, Birge RR. Low-Temperature Trapping of Photointermediates of the Rhodopsin E181Q Mutant. SOJ BIOCHEMISTRY 2015; 1. [PMID: 25621306 DOI: 10.15226/2376-4589/1/1/00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three active-site components in rhodopsin play a key role in the stability and function of the protein: 1) the counter-ion residues which stabilize the protonated Schiff base, 2) water molecules, and 3) the hydrogen-bonding network. The ionizable residue Glu-181, which is involved in an extended hydrogen-bonding network with Ser-186, Tyr-268, Tyr-192, and key water molecules within the active site of rhodopsin, has been shown to be involved in a complex counter-ion switch mechanism with Glu-113 during the photobleaching sequence of the protein. Herein, we examine the photobleaching sequence of the E181Q rhodopsin mutant by using cryogenic UV-visible spectroscopy to further elucidate the role of Glu-181 during photoactivation of the protein. We find that lower temperatures are required to trap the early photostationary states of the E181Q mutant compared to native rhodopsin. Additionally, a Blue Shifted Intermediate (BSI, λmax = 498 nm, 100 K) is observed after the formation of E181Q Bathorhodopsin (Batho, λmax = 556 nm, 10 K) but prior to formation of E181Q Lumirhodopsin (Lumi, λmax = 506 nm, 220 K). A potential energy diagram of the observed photointermediates suggests the E181Q Batho intermediate has an enthalpy value 7.99 KJ/mol higher than E181Q BSI, whereas in rhodopsin, the BSI is 10.02 KJ/mol higher in enthalpy than Batho. Thus, the Batho to BSI transition is enthalpically driven in E181Q and entropically driven in native rhodopsin. We conclude that the substitution of Glu-181 with Gln-181 results in a significant perturbation of the hydrogen-bonding network within the active site of rhodopsin. In addition, the removal of a key electrostatic interaction between the chromophore and the protein destabilizes the protein in both the dark state and Batho intermediate conformations while having a stabilizing effect on the BSI conformation. The observed destabilization upon this substitution further supports that Glu-181 is negatively charged in the early intermediates of the photobleaching sequence of rhodopsin.
Collapse
Affiliation(s)
- Megan N Sandberg
- Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Jordan A Greco
- Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Nicole L Wagner
- Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Tabitha L Amora
- Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Lavoisier A Ramos
- Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Min-Hsuan Chen
- Departments of Biochemistry and Molecular Biology and Ophthalmology State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Barry E Knox
- Departments of Biochemistry and Molecular Biology and Ophthalmology State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Robert R Birge
- Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
41
|
Dokukina I, Weingart O. Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin. Phys Chem Chem Phys 2015; 17:25142-50. [DOI: 10.1039/c5cp02650d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computed torsion profiles along the reactive coordinate in S1reveal a two-path deactivation mechanism for retinal in C1C2 channelrhodopsin.
Collapse
Affiliation(s)
- I. Dokukina
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - O. Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|
42
|
Walczak E, Andruniów T. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin. Phys Chem Chem Phys 2015; 17:17169-81. [DOI: 10.1039/c5cp01939g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar to native rhodopsin, a two-mode space-saving isomerization mechanism drives the photoreaction in (de)methylated rhodopsin analogues.
Collapse
Affiliation(s)
- Elżbieta Walczak
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Tadeusz Andruniów
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| |
Collapse
|
43
|
Kubli-Garfias C, Vázquez-Ramírez R, Cabrera-Vivas BM, Gómez-Reyes B, Ramírez JC. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision. Photochem Photobiol Sci 2015; 14:1660-72. [DOI: 10.1039/c5pp00091b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprotonated (UR) and protonated (PR) retinal have marked atomic and molecular differences in cis and trans configurations. In conclusion, UR and PR uphold UV and light vision through their different biophysical properties.
Collapse
Affiliation(s)
- Carlos Kubli-Garfias
- Instituto de Investigaciones Biomédicas
- Universidad Nacional Autónoma de México
- México
- Mexico
| | | | | | | | - Juan Carlos Ramírez
- Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla
- Puebla 72530
- Mexico
| |
Collapse
|
44
|
Pescitelli G, Kato HE, Oishi S, Ito J, Maturana AD, Nureki O, Woody RW. Exciton circular dichroism in channelrhodopsin. J Phys Chem B 2014; 118:11873-85. [PMID: 25247388 DOI: 10.1021/jp505917p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant because it was assumed that the N-terminal domain has a crucial role in the dimerization of ChRs. However, the CD spectrum of this mutant has an exciton couplet comparable to that of the wild-type, demonstrating that it is dimeric. Patch-clamp experiments suggest that the N-terminal domain is involved in protein stabilization and channel kinetics rather than dimerization or channel activity.
Collapse
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , via Moruzzi 3, I-56124 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Varsano D, Coccia E, Pulci O, Conte AM, Guidoni L. Ground state structures and electronic excitations of biological chromophores at Quantum Monte Carlo/Many Body Green’s Function Theory level. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin. J Phys Chem B 2014; 118:8396-405. [PMID: 24794143 PMCID: PMC4216198 DOI: 10.1021/jp502538m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump-probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques.
Collapse
|
48
|
Caprasecca S, Jurinovich S, Viani L, Curutchet C, Mennucci B. Geometry Optimization in Polarizable QM/MM Models: The Induced Dipole Formulation. J Chem Theory Comput 2014; 10:1588-98. [DOI: 10.1021/ct500021d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Caprasecca
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| | - Sandro Jurinovich
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| | - Lucas Viani
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| | - Carles Curutchet
- Departament
de Fisicoquímica Facultat de Farmàcia, Universitat de Barcelona Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| |
Collapse
|
49
|
Campomanes P, Neri M, Horta BAC, Röhrig UF, Vanni S, Tavernelli I, Rothlisberger U. Origin of the Spectral Shifts among the Early Intermediates of the Rhodopsin Photocycle. J Am Chem Soc 2014; 136:3842-51. [DOI: 10.1021/ja411303v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Pablo Campomanes
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Marilisa Neri
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Bruno A. C. Horta
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ute F. Röhrig
- Molecular Modeling
Group, Swiss Institute of
Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Stefano Vanni
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ivano Tavernelli
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Polli D, Weingart O, Brida D, Poli E, Maiuri M, Spillane KM, Bottoni A, Kukura P, Mathies RA, Cerullo G, Garavelli M. Wavepacket Splitting and Two-Pathway Deactivation in the Photoexcited Visual Pigment Isorhodopsin. Angew Chem Int Ed Engl 2014; 53:2504-7. [DOI: 10.1002/anie.201309867] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 11/10/2022]
|