1
|
Harris M, Dolan RF, Bryce JR, Ewusi JG, Cook GA. In Vitro Glycosylation of the Membrane Protein γ-Sarcoglycan in Nanodiscs. ACS OMEGA 2023; 8:40904-40910. [PMID: 37929139 PMCID: PMC10620887 DOI: 10.1021/acsomega.3c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Membrane glycoproteins are proteins that reside in the membranes of cells and are post-translationally modified to have sugars attached to their amino acid side chains. Studies of this subset of proteins in their native states are becoming more important since they have been linked to numerous human diseases. However, these proteins are difficult to study due to their hydrophobic nature and their propensity to aggregate. Using membrane mimetics allows us to solubilize these proteins, which, in turn, allows us to perform glycosylation in vitro to study the effects of the modification on protein structure, dynamics, and interactions. Here, the membrane glycoprotein γ-sarcoglycan was incorporated into nanodiscs composed of long-chain lipids and membrane scaffold proteins to perform N-linked glycosylation in which an enzyme attaches a sugar to the asparagine side chain within the glycosylation site. We previously performed glycosylation of membrane proteins in vitro when the protein had been solubilized using different detergents and short-chain lipids. This work demonstrates successful glycosylation of a full-length membrane protein in nanodiscs providing a more biologically relevant sample to study the effects of the modification.
Collapse
Affiliation(s)
- Michael
S. Harris
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rachel F. Dolan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - James R. Bryce
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jonas G. Ewusi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Gabriel A. Cook
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
2
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Newman KE, Khalid S. Conformational dynamics and putative substrate extrusion pathways of the N-glycosylated outer membrane factor CmeC from Campylobacter jejuni. PLoS Comput Biol 2023; 19:e1010841. [PMID: 36638139 PMCID: PMC9879487 DOI: 10.1371/journal.pcbi.1010841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/26/2023] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
The outer membrane factor CmeC of the efflux machinery CmeABC plays an important role in conferring antibiotic and bile resistance to Campylobacter jejuni. Curiously, the protein is N-glycosylated, with the glycans playing a key role in the effective function of this system. In this work we have employed atomistic equilibrium molecular dynamics simulations of CmeC in a representative model of the C. jejuni outer membrane to characterise the dynamics of the protein and its associated glycans. We show that the glycans are more conformationally labile than had previously been thought. The extracellular loops of CmeC visit the open and closed states freely suggesting the absence of a gating mechanism on this side, while the narrow periplasmic entrance remains tightly closed, regulated via coordination to solvated cations. We identify several cation binding sites on the interior surface of the protein. Additionally, we used steered molecular dynamics simulations to elucidate translocation pathways for a bile acid and a macrolide antibiotic. These, and additional equilibrium simulations suggest that the anionic bile acid utilises multivalent cations to climb the ladder of acidic residues that line the interior surface of the protein.
Collapse
Affiliation(s)
- Kahlan E. Newman
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional regulation of the mtrCDE efflux pump operon: importance for Neisseria gonorrhoeae antimicrobial resistance. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35916832 DOI: 10.1099/mic.0.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review focuses on the mechanisms of transcriptional control of an important multidrug efflux pump system (MtrCDE) possessed by Neisseria gonorrhoeae, the aetiological agent of the sexually transmitted infection termed gonorrhoea. The mtrCDE operon that encodes this tripartite protein efflux pump is subject to both cis- and trans-acting transcriptional factors that negatively or positively influence expression. Critically, levels of MtrCDE can influence levels of gonococcal susceptibility to classical antibiotics, host-derived antimicrobials and various biocides. The regulatory systems that control mtrCDE can have profound influences on the capacity of gonococci to resist current and past antibiotic therapy regimens as well as virulence. The emergence, mechanisms of action and clinical significance of the transcriptional regulatory systems that impact mtrCDE expression in gonococci are reviewed here with the aim of linking bacterial antimicrobial resistance with multidrug efflux capability.
Collapse
Affiliation(s)
- Julio C Ayala
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Jacqueline T Balthazar
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - William M Shafer
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA.,Laboratories of Bacterial Pathogenesis, VA Medical Center (Atlanta), Decatur, Georgia, 30033, USA.,The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Conformational preferences of triantennary and tetraantennary hybrid N-glycans in aqueous solution: Insights from 20 μs long atomistic molecular dynamic simulations. J Biomol Struct Dyn 2022; 41:3305-3320. [PMID: 35262462 DOI: 10.1080/07391102.2022.2047109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the current study, we have investigated the conformational dynamics of a triantennary (N-glycan1) and tetraantennary (N-glycan2) hybrid N-glycans found on the surface of the HIV glycoprotein using 20 μs long all-atom molecular dynamics (MD) simulations. The main objective of the present study is to elucidate the influence of adding a complex branch on the overall glycan structural dynamics. Our investigation suggests that the average RMSD value increases when a complex branch is added to N-glycan1. However, the RMSD distribution is relatively wider in the case of N-glycan1 compared to N-glycan2, which indicates that multiple complex branches restrict the conformational variability of glycans. A similar observation is obtained from the principal component analysis of both glycans. All the puckering states (4C1 to 1C4) of each monosaccharide except mannose are sampled in our simulations, although the 4C1 chair form is energetically more favorable than 1C4. In N-glycan1, the 1-6 linkage in the mannose branch [Man(9)-α(1-6)-Man(5)] stays in the gauche-gauche cluster, whereas it moves towards trans-gauche in N-glycan2. For both glycans, mannose branches are more flexible than the complex branches, and adding a complex branch does not influence the dynamics of the mannose branches. We have noticed that the end-to-end distance of the complex branch shortens by ∼ 10 Å in the presence of another complex branch. This suggests that in the presence of an additional complex branch, the other complex branch adopts a close folded structure. All these conformational changes involve the selective formation of inter-residue and water-mediated hydrogen-bond networks.
Collapse
|
6
|
Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol 2021; 2:1441-1461. [PMID: 34704048 PMCID: PMC8496066 DOI: 10.1039/d1cb00045d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Posttranslational modifications can alter protein structures, functions and locations, and are important cellular regulatory and signalling mechanisms. Spectroscopic techniques such as nuclear magnetic resonance, infrared and Raman spectroscopy, as well as small-angle scattering, can provide insights into the structural and dynamic effects of protein posttranslational modifications and their impact on interactions with binding partners. However, heterogeneity of modified proteins from natural sources and spectral complexity often hinder analyses, especially for large proteins and macromolecular assemblies. Selective labelling of proteins with stable isotopes can greatly simplify spectra, as one can focus on labelled residues or segments of interest. Employing chemical biology tools for modifying and isotopically labelling proteins with atomic precision provides access to unique protein samples for structural biology and spectroscopy. Here, we review site-specific and segmental isotope labelling methods that are employed in combination with chemical and enzymatic tools to access posttranslationally modified proteins. We discuss illustrative examples in which these methods have been used to facilitate spectroscopic studies of posttranslationally modified proteins, providing new insights into biology.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| | - Anne C Conibear
- The University of Queensland, School of Biomedical Sciences St Lucia Brisbane 4072 QLD Australia
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| |
Collapse
|
7
|
Cain JA, Dale AL, Sumer-Bayraktar Z, Solis N, Cordwell SJ. Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol Omics 2021; 16:287-304. [PMID: 32347268 DOI: 10.1039/d0mo00032a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis in humans that is primarily associated with the consumption of inadequately prepared poultry products, since the organism is generally thought to be asymptomatic in avian species. Unlike many other microorganisms, C. jejuni is capable of performing extensive post-translational modification (PTM) of proteins by N- and O-linked glycosylation, both of which are required for optimal chicken colonization and human virulence. The biosynthesis and attachment of N-glycans to C. jejuni proteins is encoded by the pgl (protein glycosylation) locus, with the PglB oligosaccharyltransferase (OST) enabling en bloc transfer of a heptasaccharide N-glycan from a lipid carrier in the inner membrane to proteins exposed within the periplasm. Seventy-eight C. jejuni glycoproteins (represented by 134 sites of experimentally verified N-glycosylation) have now been identified, and include inner and outer membrane proteins, periplasmic proteins and lipoproteins, which are generally of poorly defined or unknown function. Despite our extensive knowledge of the targets of this apparently widespread process, we still do not fully understand the role N-glycosylation plays biologically, although several phenotypes, including wild-type stress resistance, biofilm formation, motility and chemotaxis have been related to a functional pgl system. Recent work has described enzymatic processes (nitrate reductase NapAB) and antibiotic efflux (CmeABC) as major targets requiring N-glycan attachment for optimal function, and experimental evidence also points to roles in cell binding via glycan-glycan interactions, protein complex formation and protein stability by conferring protection against host and bacterial proteolytic activity. Here we examine the biochemistry of the N-linked glycosylation system, define its currently known protein targets and discuss evidence for the structural and functional roles of this PTM in individual proteins and globally in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia. and Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia and Sydney Mass Spectrometry, The University of Sydney, 2006, Australia
| |
Collapse
|
8
|
Ahangama Liyanage L, Harris MS, Cook GA. In Vitro Glycosylation of Membrane Proteins Using N-Glycosyltransferase. ACS OMEGA 2021; 6:12133-12142. [PMID: 34056367 PMCID: PMC8154143 DOI: 10.1021/acsomega.1c00835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Glycoproteins are post-translationally modified proteins that take part in nearly every biological process and make up a large percent of the proteome. N-Linked glycosylation can be performed by N-glycosyltransferase (NGT), which recognizes the consensus amino acid sequence, -Asn-X-Ser/Thr- (NXT), within the protein. The enzyme catalyzes glycosidic bond formation between the oligosaccharide donor, containing nucleoside phosphatase, and the amide nitrogen of the asparagine residue. The attachment of the sugar moiety can influence physiological and biological properties of the protein by affecting their folding, modulating interactions with other biomolecules, and modifying their functions at the cellular level. We are specifically interested in the properties of membrane glycoproteins, which are key components in a number of different disease states. Therefore, the use of in vitro protein glycosylation can help further evaluate the effects of the properties for these important macromolecules. In vitro studies of N-linked glycosylation were done in a stepwise fashion in a membrane-mimetic environment to confirm that the methods for glycosylating soluble proteins could be applicable to membrane proteins. Detergent and lipid systems were used since hydrophobic peptides and membrane proteins are insoluble in aqueous solvents. The stepwise method consisted of the glycosylation of a soluble 7-residue peptide, a hydrophobic WALP-NVT peptide, and a γ-sarcoglycan membrane protein, all of which contained the glycosylation site Asn-Val-Thr (NVT). Glycosylation of the samples was performed using Escherichia coli-expressed NGT from the Actinobacillus pleuropneumoniae genome, and a single sugar moiety of glucose, provided from a nucleotide-linked donor, was added to the glycosylation site. Gel electrophoresis, mass spectrometry, and NMR studies were used for the detection of glycosyltransferase activity and to show the attachment of a single glucose molecule. Our experiments demonstrated that small or large membrane proteins that contain an N-glycosylation consensus sequence can be glycosylated by NGT in membrane-mimetic environments.
Collapse
|
9
|
Chakraborty S, Berndsen ZT, Hengartner NW, Korber BT, Ward AB, Gnanakaran S. Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. iScience 2020; 23:101836. [PMID: 33319171 PMCID: PMC7724196 DOI: 10.1016/j.isci.2020.101836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Dense surface glycosylation on the HIV-1 envelope (Env) protein acts as a shield from the adaptive immune system. However, the molecular complexity and flexibility of glycans make experimental studies a challenge. Here we have integrated high-throughput atomistic modeling of fully glycosylated HIV-1 Env with graph theory to capture immunologically important features of the shield topology. This is the first complete all-atom model of HIV-1 Env SOSIP glycan shield that includes both oligomannose and complex glycans, providing physiologically relevant insights of the glycan shield. This integrated approach including quantitative comparison with cryo-electron microscopy data provides hitherto unexplored details of the native shield architecture and its difference from the high-mannose glycoform. We have also derived a measure to quantify the shielding effect over the antigenic protein surface that defines regions of relative vulnerability and resilience of the shield and can be harnessed for rational immunogen design.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Non-Linear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center and Collaboration of AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicolas W. Hengartner
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bette T. Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center and Collaboration of AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - S. Gnanakaran
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
10
|
Jonker HRA, Saxena K, Shcherbakova A, Tiemann B, Bakker H, Schwalbe H. NMR Spectroscopic Characterization of the C‐Mannose Conformation in a Thrombospondin Repeat Using a Selective Labeling Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Aleksandra Shcherbakova
- Institute of Clinical Biochemistry Hannover Medical School Carl-Neuberg-Strasse 1 30625 Hannover Germany
| | - Birgit Tiemann
- Institute of Clinical Biochemistry Hannover Medical School Carl-Neuberg-Strasse 1 30625 Hannover Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry Hannover Medical School Carl-Neuberg-Strasse 1 30625 Hannover Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
11
|
Jonker HRA, Saxena K, Shcherbakova A, Tiemann B, Bakker H, Schwalbe H. NMR Spectroscopic Characterization of the C-Mannose Conformation in a Thrombospondin Repeat Using a Selective Labeling Approach. Angew Chem Int Ed Engl 2020; 59:20659-20665. [PMID: 32745319 PMCID: PMC7692951 DOI: 10.1002/anie.202009489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/24/2022]
Abstract
Despite the great interest in glycoproteins, structural information reporting on conformation and dynamics of the sugar moieties are limited. We present a new biochemical method to express proteins with glycans that are selectively labeled with NMR-active nuclei. We report on the incorporation of 13 C-labeled mannose in the C-mannosylated UNC-5 thrombospondin repeat. The conformational landscape of the C-mannose sugar puckers attached to tryptophan residues of UNC-5 is characterized by interconversion between the canonical 1 C4 state and the B03 / 1 S3 state. This flexibility may be essential for protein folding and stabilization. We foresee that this versatile tool to produce proteins with selectively labeled C-mannose can be applied and adjusted to other systems and modifications and potentially paves a way to advance glycoprotein research by unravelling the dynamical and conformational properties of glycan structures and their interactions.
Collapse
Affiliation(s)
- Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Aleksandra Shcherbakova
- Institute of Clinical BiochemistryHannover Medical SchoolCarl-Neuberg-Strasse 130625HannoverGermany
| | - Birgit Tiemann
- Institute of Clinical BiochemistryHannover Medical SchoolCarl-Neuberg-Strasse 130625HannoverGermany
| | - Hans Bakker
- Institute of Clinical BiochemistryHannover Medical SchoolCarl-Neuberg-Strasse 130625HannoverGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
12
|
Unione L, Ardá A, Jiménez-Barbero J, Millet O. NMR of glycoproteins: profiling, structure, conformation and interactions. Curr Opin Struct Biol 2020; 68:9-17. [PMID: 33129067 DOI: 10.1016/j.sbi.2020.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
In glycoproteins, carbohydrates are responsible for the selective interaction and tight regulation of cellular processes, constituting the main information transducer interface in protein-glycoprotein interactions. Increasing experimental and computational evidence suggest that such interactions often induce allosteric changes in the host protein, underlining the importance of studying intact glycoproteins. Technical issues have precluded such studies for years but, nowadays, a promising era is emerging where NMR spectroscopy, among other techniques, allows the characterization of the composition, structure and segmental dynamics of glycoproteins. In this review, we discuss such advances and highlight some selected examples. This novel technology unravels multiple new functional mechanisms, subtly hidden within the sugar code.
Collapse
Affiliation(s)
- Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Oscar Millet
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain.
| |
Collapse
|
13
|
Scherbinina SI, Toukach PV. Three-Dimensional Structures of Carbohydrates and Where to Find Them. Int J Mol Sci 2020; 21:E7702. [PMID: 33081008 PMCID: PMC7593929 DOI: 10.3390/ijms21207702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.
Collapse
Affiliation(s)
- Sofya I. Scherbinina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Philip V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
14
|
Dubb RK, Nothaft H, Beadle B, Richards MR, Szymanski CM. N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. Glycobiology 2020; 30:105-119. [PMID: 31588498 DOI: 10.1093/glycob/cwz082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a prevalent gastrointestinal pathogen associated with increasing rates of antimicrobial resistance development. It was also the first bacterium demonstrated to possess a general N-linked protein glycosylation pathway capable of modifying > 80 different proteins, including the primary Campylobacter multidrug efflux pump, CmeABC. Here we demonstrate that N-glycosylation is necessary for the function of the efflux pump and may, in part, explain the evolutionary pressure to maintain this protein modification system. Mutants of cmeA in two common wildtype (WT) strains are highly susceptible to erythromycin (EM), ciprofloxacin and bile salts when compared to the isogenic parental strains. Complementation of the cmeA mutants with the native cmeA allele restores the WT phenotype, whereas expression of a cmeA allele with point mutations in both N-glycosylation sites is comparable to the cmeA mutants. Moreover, loss of CmeA glycosylation leads to reduced chicken colonization levels similar to the cmeA knock-out strain, while complementation fully restores colonization. Reconstitution of C. jejuni CmeABC into Escherichia coli together with the C. jejuni N-glycosylation pathway increases the EM minimum inhibitory concentration and decreases ethidium bromide accumulation when compared to cells lacking the pathway. Molecular dynamics simulations reveal that the protein structures of the glycosylated and non-glycosylated CmeA models do not vary from one another, and in vitro studies show no change in CmeA multimerization or peptidoglycan association. Therefore, we conclude that N-glycosylation has a broader influence on CmeABC function most likely playing a role in complex stability.
Collapse
Affiliation(s)
- Rajinder K Dubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Bernadette Beadle
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michele R Richards
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
15
|
Kumar A, Narayanan V, Sekhar A. Characterizing Post-Translational Modifications and Their Effects on Protein Conformation Using NMR Spectroscopy. Biochemistry 2019; 59:57-73. [PMID: 31682116 DOI: 10.1021/acs.biochem.9b00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of the cellular proteome substantially exceeds the number of genes coded by the DNA of an organism because one or more residues in a majority of eukaryotic proteins are post-translationally modified (PTM) by the covalent conjugation of specific chemical groups. We now know that PTMs alter protein conformation and function in ways that are not entirely understood at the molecular level. NMR spectroscopy has been particularly successful as an analytical tool in elucidating the themes underlying the structural role of PTMs. In this Perspective, we focus on the NMR-based characterization of three abundant PTMs: phosphorylation, acetylation, and glycosylation. We detail NMR methods that have found success in detecting these modifications at a site-specific level. We also highlight NMR studies that have mapped the conformational changes ensuing from these PTMs as well as evaluated their relation to function. The NMR toolbox is expanding rapidly with experiments available to probe not only the average structure of biomolecules but also how this structure changes with time on time scales ranging from picoseconds to seconds. The atomic resolution insights into the biomolecular structure, dynamics, and mechanism accessible from NMR spectroscopy ensure that NMR will continue to be at the forefront of research in the structural biology of PTMs.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Vaishali Narayanan
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| |
Collapse
|
16
|
Unione L, Lenza M, Ardá A, Urquiza P, Laín A, Falcón-Pérez JM, Jiménez-Barbero J, Millet O. Glycoprofile Analysis of an Intact Glycoprotein As Inferred by NMR Spectroscopy. ACS CENTRAL SCIENCE 2019; 5:1554-1561. [PMID: 31572782 PMCID: PMC6764210 DOI: 10.1021/acscentsci.9b00540] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 05/10/2023]
Abstract
Protein N-glycosylation stands out for its intrinsic and functionally related heterogeneity. Despite its biomedical interest, Glycoprofile analysis still remains a major scientific challenge. Here, we present an NMR-based strategy to delineate the N-glycan composition in intact glycoproteins and under physiological conditions. The employed methodology allowed dissecting the glycan pattern of the IgE high-affinity receptor (FcεRIα) expressed in human HEK 293 cells, identifying the presence and relative abundance of specific glycan epitopes. Chemical shifts and differences in the signal line-broadening between the native and the unfolded states were integrated to build a structural model of FcεRIα that was able to identify intramolecular interactions between high-mannose N-glycans and the protein surface. In turn, complex type N-glycans reflect a large solvent accessibility, suggesting a functional role as interaction sites for receptors. The interaction between intact FcεRIα and the lectin hGal3, also studied here, confirms this hypothesis and opens new avenues for the detection of specific N-glycan epitopes and for the studies of glycoprotein-receptor interactions mediated by N-glycans.
Collapse
Affiliation(s)
- Luca Unione
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
- E-mail:
| | - Maria
Pia Lenza
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
| | - Ana Ardá
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
| | - Pedro Urquiza
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
| | - Ana Laín
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
| | - Juan Manuel Falcón-Pérez
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
- Basque
Foundation for Science IKERBASQUE, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
- Basque
Foundation for Science IKERBASQUE, 48009 Bilbao, Spain
- Dept.
Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- E-mail:
| | - Oscar Millet
- CIC
bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
- E-mail:
| |
Collapse
|
17
|
Sunkari YK, Pulukuri KK, Kandiyal PS, Vaishnav J, Ampapathi RS, Chakraborty TK. Conformation Analysis of GalNAc-Appended Sugar Amino Acid Foldamers as Glycopeptide Mimics. Chembiochem 2018; 19:1507-1513. [PMID: 29727041 DOI: 10.1002/cbic.201800087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/08/2022]
Abstract
Sugar amino acid (SAA)-based foldamers with well-defined secondary structures were appended with N-acetylgalactosamine (GalNAc) sugars to access sequence-defined, multidentate glycoconjugates with full control over number, spacing and position. Conformation analysis of these glycopeptides by extensive NMR spectroscopic studies revealed that the appended GalNAc units had a profound influence on the native conformational behaviour of the SAA foldamers. Whereas the 2,5-cis glycoconjugate showed a helical structure in water, comprising of two consecutive 16-membered hydrogen bonds, its 2,5-trans congener displayed an unprecedented 16/10-mixed turn structure not seen before in any glycopeptide foldamer.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kiran Kumar Pulukuri
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jayanti Vaishnav
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Tushar Kanti Chakraborty
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
18
|
Klukowski P, Augoff M, Zięba M, Drwal M, Gonczarek A, Walczak MJ. NMRNet: a deep learning approach to automated peak picking of protein NMR spectra. Bioinformatics 2018; 34:2590-2597. [DOI: 10.1093/bioinformatics/bty134] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/09/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Piotr Klukowski
- Department of Computer Science, Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, Wrocław, Poland
| | - Michał Augoff
- Department of Computer Science, Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, Wrocław, Poland
| | - Maciej Zięba
- Department of Computer Science, Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, Wrocław, Poland
| | - Maciej Drwal
- Department of Computer Science, Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, Wrocław, Poland
| | - Adam Gonczarek
- Department of Computer Science, Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, Wrocław, Poland
- Alphamoon Ltd., ul. Wlodkowica 21/3, Wrocław, Poland
| | - Michał J Walczak
- Captor Therapeutics Ltd., ul. Dunska 11, Wrocław, Poland
- Alphamoon Ltd., ul. Wlodkowica 21/3, Wrocław, Poland
| |
Collapse
|
19
|
Ramírez AS, Boilevin J, Mehdipour AR, Hummer G, Darbre T, Reymond JL, Locher KP. Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase. Nat Commun 2018; 9:445. [PMID: 29386647 PMCID: PMC5792488 DOI: 10.1038/s41467-018-02880-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
The membrane-associated, processive and retaining glycosyltransferase PglH from Campylobacter jejuni is part of the biosynthetic pathway of the lipid-linked oligosaccharide (LLO) that serves as the glycan donor in bacterial protein N-glycosylation. Using an unknown counting mechanism, PglH catalyzes the transfer of exactly three α1,4 N-acetylgalactosamine (GalNAc) units to the growing LLO precursor, GalNAc-α1,4-GalNAc-α1,3-Bac-α1-PP-undecaprenyl. Here, we present crystal structures of PglH in three distinct states, including a binary complex with UDP-GalNAc and two ternary complexes containing a chemo-enzymatically generated LLO analog and either UDP or synthetic, nonhydrolyzable UDP-CH2-GalNAc. PglH contains an amphipathic helix ("ruler helix") that has a dual role of facilitating membrane attachment and glycan counting. The ruler helix contains three positively charged side chains that can bind the pyrophosphate group of the LLO substrate and thus limit the addition of GalNAc units to three. These results, combined with molecular dynamics simulations, provide the mechanism of glycan counting by PglH.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093, Zürich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Ahmad Reza Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, DE-60438, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, DE-60438, Frankfurt, Germany.,Institute of Biophysics, Goethe University, DE-60438, Frankfurt, Germany
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093, Zürich, Switzerland.
| |
Collapse
|
20
|
Schoborg JA, Hershewe JM, Stark JC, Kightlinger W, Kath JE, Jaroentomeechai T, Natarajan A, DeLisa MP, Jewett MC. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol Bioeng 2017; 115:739-750. [PMID: 29178580 DOI: 10.1002/bit.26502] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, or the attachment of sugar moieties (glycans) to proteins, is important for protein stability, activity, and immunogenicity. However, understanding the roles and regulations of site-specific glycosylation events remains a significant challenge due to several technological limitations. These limitations include a lack of available tools for biochemical characterization of enzymes involved in glycosylation. A particular challenge is the synthesis of oligosaccharyltransferases (OSTs), which catalyze the attachment of glycans to specific amino acid residues in target proteins. The difficulty arises from the fact that canonical OSTs are large (>70 kDa) and possess multiple transmembrane helices, making them difficult to overexpress in living cells. Here, we address this challenge by establishing a bacterial cell-free protein synthesis platform that enables rapid production of a variety of OSTs in their active conformations. Specifically, by using lipid nanodiscs as cellular membrane mimics, we obtained yields of up to 420 μg/ml for the single-subunit OST enzyme, "Protein glycosylation B" (PglB) from Campylobacter jejuni, as well as for three additional PglB homologs from Campylobacter coli, Campylobacter lari, and Desulfovibrio gigas. Importantly, all of these enzymes catalyzed N-glycosylation reactions in vitro with no purification or processing needed. Furthermore, we demonstrate the ability of cell-free synthesized OSTs to glycosylate multiple target proteins with varying N-glycosylation acceptor sequons. We anticipate that this broadly applicable production method will advance glycoengineering efforts by enabling preparative expression of membrane-embedded OSTs from all kingdoms of life.
Collapse
Affiliation(s)
- Jennifer A Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - James E Kath
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | | | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York.,Department of Microbiology, Cornell University, Ithaca, New York
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| |
Collapse
|
21
|
Guan X, Chaffey PK, Chen H, Feng W, Wei X, Yang LM, Ruan Y, Wang X, Li Y, Barosh KB, Tran AH, Zhu J, Liang W, Zheng YT, Wang X, Tan Z. O-GalNAcylation of RANTES Improves Its Properties as a Human Immunodeficiency Virus Type 1 Entry Inhibitor. Biochemistry 2017; 57:136-148. [PMID: 29202246 DOI: 10.1021/acs.biochem.7b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics. Here, we seek to fill the gaps by studying the PTMs of a small representative chemotactic cytokine, RANTES. RANTES can inhibit HIV-1 infection by competing with it for binding to receptor CCR5 and stimulating CCR5 endocytosis. Unfortunately, RANTES can induce strong signaling, leading to severe inflammatory side effects. We apply a chemical biology approach to explore the potential of post-translationally modified RANTES as safe inhibitors of HIV-1 infection. We synthesized and systematically tested a library of RANTES isoforms for their ability to inhibit inflammatory signaling and prevent HIV-1 infection of primary human cells. Through this research, we revealed that most of the glycosylated variants have decreased inflammation-associated properties and identified one particular glyco variant, a truncated RANTES containing a Galβ1-3GalNAc disaccharide α-linked to Ser4, which stands out as having the best overall properties: relatively high HIV-1 inhibition potency but also weak inflammatory properties. Moreover, our results provided a structural basis for the observed changes in the properties of RANTES. Taken together, this work highlights the potential importance of glycosylation as an alternative strategy for developing CCR5 inhibitors to treat HIV-1 infection and, more generally, for reducing or eliminating unwanted properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Huan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Wei Feng
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Kimberly B Barosh
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Amy H Tran
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Jaimie Zhu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Xu Wang
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
22
|
Jensen PF, Comamala G, Trelle MB, Madsen JB, Jørgensen TJD, Rand KD. Removal of N-Linked Glycosylations at Acidic pH by PNGase A Facilitates Hydrogen/Deuterium Exchange Mass Spectrometry Analysis of N-Linked Glycoproteins. Anal Chem 2016; 88:12479-12488. [DOI: 10.1021/acs.analchem.6b03951] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pernille Foged Jensen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Gerard Comamala
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Morten Beck Trelle
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jeppe Buur Madsen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Kasper. D. Rand
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Silverman JM, Imperiali B. Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons. J Biol Chem 2016; 291:22001-22010. [PMID: 27573243 DOI: 10.1074/jbc.m116.747121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Site selectivity of protein N-linked glycosylation is dependent on many factors, including accessibility of the modification site, amino acid composition of the glycosylation consensus sequence, and cellular localization of target proteins. Previous studies have shown that the bacterial oligosaccharyltransferase, PglB, of Campylobacter jejuni favors acceptor proteins with consensus sequences ((D/E)X1NX2(S/T), where X1,2 ≠ proline) in flexible, solvent-exposed motifs; however, several native glycoproteins are known to harbor consensus sequences within structured regions of the acceptor protein, suggesting that unfolding or partial unfolding is required for efficient N-linked glycosylation in the native environment. To derive insight into these observations, we generated structural homology models of the N-linked glycoproteome of C. jejuni This evaluation highlights the potential diversity of secondary structural conformations of previously identified N-linked glycosylation sequons. Detailed assessment of PglB activity with a structurally characterized acceptor protein, PEB3, demonstrated that this natively folded substrate protein is not efficiently glycosylated in vitro, whereas structural destabilization increases glycosylation efficiency. Furthermore, in vivo glycosylation studies in both glyco-competent Escherichia coli and the native system, C. jejuni, revealed that efficient glycosylation of glycoproteins, AcrA and PEB3, depends on translocation to the periplasmic space via the general secretory pathway. Our studies provide quantitative evidence that many acceptor proteins are likely to be N-linked-glycosylated before complete folding and suggest that PglB activity is coupled to general secretion-mediated translocation to the periplasm. This work extends our understanding of the molecular mechanisms underlying N-linked glycosylation in bacteria.
Collapse
Affiliation(s)
- Julie Michelle Silverman
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Barbara Imperiali
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
24
|
Sunkari YK, Alam F, Kandiyal PS, Aloysius S, Ampapathi RS, Chakraborty TK. Influence of Linker Length on Conformational Preferences of Glycosylated Sugar Amino Acid Foldamers. Chembiochem 2016; 17:1839-1844. [DOI: 10.1002/cbic.201600386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Yashoda Krishna Sunkari
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Faiyaz Alam
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Siriwardena Aloysius
- Laboratoire des Glucides (UMR 6912); CNRS-FRE-3517; Universit de Picardie Jules Verne, 33, Rue St Leu, Faculte des Sciences; Amiens 80039 France
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Tushar Kanti Chakraborty
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| |
Collapse
|
25
|
Jo S, Qi Y, Im W. Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. Glycobiology 2015; 26:19-29. [PMID: 26405106 DOI: 10.1093/glycob/cwv083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
N-linked glycans are on protein surfaces and have direct and water/ion-mediated interactions with surrounding amino acids. Such contacts could restrict their conformational freedom compared to the same glycans free in solution. In this work, we have examined the conformational freedom of the N-glycan core pentasaccharide moiety in solution using standard molecular dynamics (MD) simulations as well as temperature replica-exchange MD simulations. Both simulations yield the comparable conformational variability of the pentasaccharide in solution, indicating the convergence of both simulations. The glycoprotein crystal structures are analyzed to compare the conformational freedom of the N-glycan on the protein surface with the simulation result. Surprisingly, the pentasaccharide free in solution shows more restricted conformational variability than the N-glycan on the protein surface. The interactions between the carbohydrate and the protein side chain appear to be responsible for the increased conformational diversity of the N-glycan on the protein surface. Finally, the transfer entropy analysis of the simulation trajectory also reveals an unexpected causality relationship between intramolecular hydrogen bonds and the conformational states in that the hydrogen bonds play a role in maintaining the conformational states rather than driving the change in glycosidic torsional states.
Collapse
Affiliation(s)
- Sunhwan Jo
- Leadership Computing Center, Argonne National Laboratory, 9700 Cass Ave Bldg. 240, Argonne, IL 60439, USA
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
26
|
Pedebos C, Arantes PR, Giesel GM, Verli H. In silicoInvestigation of the PglB Active Site Reveals Transient Catalytic States and Octahedral Metal Ion Coordination. Glycobiology 2015. [DOI: 10.1093/glycob/cwv053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational Modifications of Intact Proteins Detected by NMR Spectroscopy: Application to Glycosylation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Symmons MF, Marshall RL, Bavro VN. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol 2015; 6:513. [PMID: 26074901 PMCID: PMC4446572 DOI: 10.3389/fmicb.2015.00513] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle.
Collapse
Affiliation(s)
- Martyn F Symmons
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| | - Vassiliy N Bavro
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| |
Collapse
|
29
|
Arnautova Y, Abagyan R, Totrov M. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins. J Chem Theory Comput 2015; 11:2167-2186. [PMID: 25999804 PMCID: PMC4431507 DOI: 10.1021/ct501138c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 01/24/2023]
Abstract
We present an extension of the all-atom internal-coordinate force field, ICMFF, that allows for simulation of heterogeneous systems including hexopyranose saccharides and glycan chains in addition to proteins. A library of standard glycan geometries containing α- and β-anomers of the most common hexapyranoses, i.e., d-galactose, d-glucose, d-mannose, d-xylose, l-fucose, N-acetylglucosamine, N-acetylgalactosamine, sialic, and glucuronic acids, is created based on the analysis of the saccharide structures reported in the Cambridge Structural Database. The new force field parameters include molecular electrostatic potential-derived partial atomic charges and the torsional parameters derived from quantum mechanical data for a collection of minimal molecular fragments and related molecules. The ϕ/ψ torsional parameters for different types of glycosidic linkages are developed using model compounds containing the key atoms in the full carbohydrates, i.e., glycosidic-linked tetrahydropyran-cyclohexane dimers. Target data for parameter optimization include two-dimensional energy surfaces corresponding to the ϕ/ψ glycosidic dihedral angles in the disaccharide analogues, as determined by quantum mechanical MP2/6-31G** single-point energies on HF/6-31G** optimized structures. To achieve better agreement with the observed geometries of glycosidic linkages, the bond angles at the O-linkage atoms are added to the internal variable set and the corresponding bond bending energy term is parametrized using quantum mechanical data. The resulting force field is validated on glycan chains of 1-12 residues from a set of high-resolution X-ray glycoprotein structures based on heavy atom root-mean-square deviations of the lowest-energy glycan conformations generated by the biased probability Monte Carlo (BPMC) molecular mechanics simulations from the native structures. The appropriate BPMC distributions for monosaccharide-monosaccharide and protein-glycan linkages are derived from the extensive analysis of conformational properties of glycoprotein structures reported in the Protein Data Bank. Use of the BPMC search leads to significant improvements in sampling efficiency for glycan simulations. Moreover, good agreement with the X-ray glycoprotein structures is achieved for all glycan chain lengths. Thus, average/median RMSDs are 0.81/0.68 Å for one-residue glycans and 1.32/1.47 Å for three-residue glycans. RMSD from the native structure for the lowest-energy conformation of the 12-residue glycan chain (PDB ID 3og2) is 1.53 Å. Additionally, results obtained for free short oligosaccharides using the new force field are in line with the available experimental data, i.e., the most populated conformations in solution are predicted to be the lowest energy ones. The newly developed parameters allow for the accurate modeling of linear and branched hexopyranose glycosides in heterogeneous systems.
Collapse
Affiliation(s)
- Yelena
A. Arnautova
- Molsoft
L.L.C., 11199 Sorrento
Valley Road, S209, San Diego, California 92121, United States
| | - Ruben Abagyan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Maxim Totrov
- Molsoft
L.L.C., 11199 Sorrento
Valley Road, S209, San Diego, California 92121, United States
| |
Collapse
|
30
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
31
|
Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational modifications of intact proteins detected by NMR spectroscopy: application to glycosylation. Angew Chem Int Ed Engl 2015; 54:7096-100. [PMID: 25924827 DOI: 10.1002/anie.201502093] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 02/02/2023]
Abstract
Posttranslational modifications (PTMs) are an integral part of the majority of proteins. The characterization of structure and function of PTMs can be very challenging especially for glycans. Existing methods to analyze PTMs require complicated sample preparations and suffer from missing certain modifications, the inability to identify linkage types and thus chemical structure. We present a direct, robust, and simple NMR spectroscopy method for the detection and identification of PTMs in proteins. No isotope labeling is required, nor does the molecular weight of the studied protein limit the application. The method can directly detect modifications on intact proteins without sophisticated sample preparation. This approach is well suited for diagnostics of proteins derived from native organisms and for the quality control of biotechnologically produced therapeutic proteins.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland). .,Present address: Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg (Austria).
| | - Michal J Walczak
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland).
| | - Markus Aebi
- Institute of Microbiology, ETH Zürich, 8093 Zürich (Switzerland)
| | - Gerhard Wider
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland)
| |
Collapse
|
32
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
33
|
Ishiwata A, Taguchi Y, Lee YJ, Watanabe T, Kohda D, Ito Y. N-Glycosylation with synthetic undecaprenyl pyrophosphate-linked oligosaccharide to oligopeptides by PglB oligosaccharyltransferase from Campylobacter jejuni. Chembiochem 2015; 16:731-7. [PMID: 25688550 DOI: 10.1002/cbic.201402658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/11/2022]
Abstract
The oligosaccharyltransferase PglB from Campylobacter jejuni catalyses the N-glycosylation reaction with undecaprenyl-pyrophosphate-linked Glc1 GalNAc5 Bac1 (Und-PP-Glc1 GalNAc5 Bac1 ). Experiments using chemically synthesized donors coupled to fluorescently tagged peptides confirmed that biosynthetic intermediate Und-PP-Bac1 and Und-PP-GalNAc2 Bac1 are transferred efficiently to the Asn residue in the consensus sequence (D/E-X'-N-X-T/S, X',X≠P). The products were analyzed in detail by tandem MS to confirm their chemical structures.
Collapse
|
34
|
Pol-Fachin L, Verli H, Lins RD. Extension and validation of the GROMOS 53A6(GLYC) parameter set for glycoproteins. J Comput Chem 2014; 35:2087-95. [PMID: 25196137 DOI: 10.1002/jcc.23721] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/23/2014] [Accepted: 08/09/2014] [Indexed: 11/08/2022]
Abstract
An extension of the GROMOS 53A6GLYC force field for carbohydrates to encompass glycoprotein linkages is presented. The set includes new atomic charges and incorporates adequate torsional potential parameters for N-, S-, C-, P-, and O-glycosydic linkages, offering compatibility with the GROMOS force field family for proteins. Validation included the description of glycosydic linkage geometries between amino acid and monosaccharide residues, comparison of NMR-derived protein-carbohydrate and carbohydrate-carbohydrate nuclear overhauser effect (NOE) signals for glycoproteins and the effects of glycosylation on protein flexibility and dynamics.
Collapse
Affiliation(s)
- Laercio Pol-Fachin
- Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 91500-970; Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil, 50670-540
| | | | | |
Collapse
|
35
|
The in vitro interaction of CmeA with CmeC. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Scott NE, Kinsella RL, Edwards AVG, Larsen MR, Dutta S, Saba J, Foster LJ, Feldman MF. Diversity within the O-linked protein glycosylation systems of acinetobacter species. Mol Cell Proteomics 2014; 13:2354-70. [PMID: 24917611 DOI: 10.1074/mcp.m114.038315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.
Collapse
Affiliation(s)
- Nichollas E Scott
- From the ‡Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rachel L Kinsella
- §Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Alistair V G Edwards
- ¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5000, Denmark
| | - Martin R Larsen
- ¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5000, Denmark
| | | | - Julian Saba
- ‖Thermo Fisher Scientific, San Jose, California 95134
| | - Leonard J Foster
- From the ‡Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mario F Feldman
- §Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada;
| |
Collapse
|
37
|
Kamiya Y, Satoh T, Kato K. Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol 2014; 26:44-53. [PMID: 24841384 DOI: 10.1016/j.sbi.2014.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/01/2023]
Abstract
Because of the complexity, heterogeneity, and flexibility of the glycans, the structural analysis of glycoproteins has been eschewed until recently, with a few prominent exceptions. This aversion may have branded structural biologists as glycophobics. However, recent technological advancements in glycoprotein expression systems, employing genetically engineered production vehicles derived from mammalian, insect, yeast, and even bacterial cells, have yielded encouraging breakthroughs. The major advance is the active control of glycoform expression of target glycoproteins based on the genetic manipulation of glycan biogenetic pathways, which was previously overlooked, abolished, or considered unmanageable. Moreover, synthetic and/or chemoenzymatic approaches now enable the preparation of glycoproteins with uniform glycoforms designed in a tailored fashion.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; The Glycoscience Institute, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan; GLYENCE Co., Ltd., 2-22-8 Chikusa, Chikusa-ku, Nagoya 464-0858, Japan.
| |
Collapse
|
38
|
Lizak C, Gerber S, Michaud G, Schubert M, Fan YY, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. Nat Commun 2014; 4:2627. [PMID: 24149797 DOI: 10.1038/ncomms3627] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/16/2013] [Indexed: 11/09/2022] Open
Abstract
The initial glycan transfer in asparagine-linked protein glycosylation is catalysed by the integral membrane enzyme oligosaccharyltransferase (OST). Here we study the mechanism of the bacterial PglB protein, a single-subunit OST, using chemically synthesized acceptor peptide analogues. We find that PglB can glycosylate not only asparagine but also glutamine, homoserine and the hydroxamate Asp(NHOH), although at much lower rates. In contrast, N-methylated asparagine or 2,4-diaminobutanoic acid (Dab) are not glycosylated. We find that of the various peptide analogues, only asparagine- or Dab-containing peptides bind tightly to PglB. Glycopeptide products are unable to bind, providing the driving force of product release. We find no suitably positioned residues near the active site of PglB that can activate the acceptor asparagine by deprotonation, making a general base mechanism unlikely and leaving carboxamide twisting as the most likely mechanistic proposal for asparagine activation.
Collapse
Affiliation(s)
- Christian Lizak
- 1] Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tan NY, Bailey UM, Jamaluddin MF, Mahmud SHB, Raman SC, Schulz BL. Sequence-based protein stabilization in the absence of glycosylation. Nat Commun 2014; 5:3099. [DOI: 10.1038/ncomms4099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022] Open
|
40
|
Olkhov RV, Weissenborn MJ, Flitsch SL, Shaw AM. Glycosylation characterization of human and porcine fibrinogen proteins by lectin-binding biophotonic microarray imaging. Anal Chem 2013; 86:621-8. [PMID: 24328092 DOI: 10.1021/ac402872t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lectin binding has been studied using the particle plasmon light-scattering properties of gold nanoparticles printed into an array format. Performance of the kinetic assay is evaluated from a detailed analysis of the binding of concanavalin A (ConA) and wheat germ agglutinin (WGA) to their target monosaccharides indicating affinity constants in the order of KD ∼10 nM for the lectin-monosaccharide interaction. The detection limits for the lectins following a 200 s injection time were determined as 10 ng/mL or 0.23 nM and 100 ng/mL or 0.93 nM, respectively. Subsequently, a nine-lectin screen was performed on the porcine and human fibrinogen glycoproteins. The observed spectra of lectin-protein specific binding rates result in characteristic patterns that evidently correlate with the structure of the glycans and allow one to distinguish between glycosylation of the porcine and human fibrinogens. The array technology has the potential to perform a multilectin screen of large numbers of proteins providing information on protein glycosylation and their microheterogeneity.
Collapse
Affiliation(s)
- Rouslan V Olkhov
- College of Life and Environmental Sciences, University of Exeter , Exeter, Devon EX4 4QD, United Kingdom
| | | | | | | |
Collapse
|
41
|
Siriwardena A, Pulukuri KK, Kandiyal PS, Roy S, Bande O, Ghosh S, Fernández JMG, Martin FA, Ghigo JM, Beloin C, Ito K, Woods RJ, Ampapathi RS, Chakraborty TK. Sugar-modified foldamers as conformationally defined and biologically distinct glycopeptide mimics. Angew Chem Int Ed Engl 2013; 52:10221-6. [PMID: 23943598 PMCID: PMC4167674 DOI: 10.1002/anie.201304239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/02/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Aloysius Siriwardena
- Laboratoiredes Glucides, FRE-3517, Université de Picardie Jules Verne, Amiens 80039 (France)
| | - Kiran Kumar Pulukuri
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India)
| | - Pancham S. Kandiyal
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute (India), Lucknow 226031 (India)
| | - Saumya Roy
- Laboratoiredes Glucides, FRE-3517, Université de Picardie Jules Verne, Amiens 80039 (France)
| | - Omprakash Bande
- Laboratoiredes Glucides, FRE-3517, Université de Picardie Jules Verne, Amiens 80039 (France)
| | - Subhash Ghosh
- Organic Chemistry Division III, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007 (India)
| | - José Manuel Garcia Fernández
- Instituto de Investigaciones, Quìmicas(IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla (Spain)
| | - Fernando Ariel Martin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15 (France)
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15 (France)
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15 (France)
| | - Keigo Ito
- The Complex Carbohydrate Research Center, The Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, 30602 GA (USA)
| | - Robert J. Woods
- The Complex Carbohydrate Research Center, The Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, 30602 GA (USA). The School of Chemistry, National University of Ireland, Galway University Road, Galway (Ireland)
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute (India), Lucknow 226031 (India)
| | - Tushar Kanti Chakraborty
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India)
| |
Collapse
|
42
|
Zierke M, Smieško M, Rabbani S, Aeschbacher T, Cutting B, Allain FHT, Schubert M, Ernst B. Stabilization of branched oligosaccharides: Lewis(x) benefits from a nonconventional C-H···O hydrogen bond. J Am Chem Soc 2013; 135:13464-72. [PMID: 24001318 DOI: 10.1021/ja4054702] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although animal lectins usually show a high degree of specificity for glycan structures, their single-site binding affinities are typically weak, a drawback which is often compensated in biological systems by an oligovalent presentation of carbohydrate epitopes. For the design of monovalent glycomimetics, structural information regarding solution and bound conformation of the carbohydrate lead represents a valuable starting point. In this paper, we focus on the conformation of the trisaccharide Le(x) (Gal[Fucα(1-3)]β(1-4)GlcNAc). Mainly because of the unfavorable tumbling regime, the elucidation of the solution conformation of Le(x) by NMR has only been partially successful so far. Le(x) was therefore attached to a (13)C,(15)N-labeled protein. (13)C,(15)N-filtered NOESY NMR techniques at ultrahigh field allowed increasing the maximal NOE enhancement, resulting in a high number of distance restraints per glycosidic bond and, consequently, a well-defined structure. In addition to the known contributors to the conformational restriction of the Le(x) structure (exoanomeric effect, steric compression induced by the NHAc group adjacent to the linking position of L-fucose, and the hydrophobic interaction of L-fucose with the β-face of D-galactose), a nonconventional C-H···O hydrogen bond between H-C(5) of L-fucose and O(5) of D-galactose was identified. According to quantum mechanical calculations, this C-H···O hydrogen bond is the most prominent factor in stabilization, contributing 40% of the total stabilization energy. We therefore propose that the nonconventional hydrogen bond contributing to a reduction of the conformational flexibility of the Le(x) core represents a novel element of the glycocode. Its relevance to the stabilization of related branched oligosaccharides is currently being studied.
Collapse
Affiliation(s)
- Mirko Zierke
- University of Basel , Klingelbergstraße 50, CH-4056 Basel, Basel-City, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Siriwardena A, Pulukuri KK, Kandiyal PS, Roy S, Bande O, Ghosh S, Garcia Fernández JM, Ariel Martin F, Ghigo JM, Beloin C, Ito K, Woods RJ, Ampapathi RS, Chakraborty TK. Sugar-Modified Foldamers as Conformationally Defined and Biologically Distinct Glycopeptide Mimics. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Guttman M, Weinkam P, Sali A, Lee KK. All-atom ensemble modeling to analyze small-angle x-ray scattering of glycosylated proteins. Structure 2013; 21:321-31. [PMID: 23473666 PMCID: PMC3840220 DOI: 10.1016/j.str.2013.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/22/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
The flexible and heterogeneous nature of carbohydrate chains often renders glycoproteins refractory to traditional structure determination methods. Small-angle X-ray scattering (SAXS) can be a useful tool for obtaining structural information of these systems. All-atom modeling of glycoproteins with flexible glycan chains was applied to interpret the solution SAXS data for a set of glycoproteins. For simpler systems (single glycan, with a well-defined protein structure), all-atom modeling generates models in excellent agreement with the scattering pattern and reveals the approximate spatial occupancy of the glycan chain in solution. For more complex systems (several glycan chains, or unknown protein substructure), the approach can still provide insightful models, though the orientations of glycans become poorly determined. Ab initio shape reconstructions appear to capture the global morphology of glycoproteins but in most cases offer little information about glycan spatial occupancy. The all-atom modeling methodology is available as a web server at http://salilab.org/allosmod-foxs.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| | - Patrick Weinkam
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| |
Collapse
|
45
|
Gerber S, Lizak C, Michaud G, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP. Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. J Biol Chem 2013; 288:8849-61. [PMID: 23382388 DOI: 10.1074/jbc.m112.445940] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Linked glycosylation is an essential post-translational protein modification in the eukaryotic cell. The initial transfer of an oligosaccharide from a lipid carrier onto asparagine residues within a consensus sequon is catalyzed by oligosaccharyltransferase (OST). The first X-ray structure of a complete bacterial OST enzyme, Campylobacter lari PglB, was recently determined. To understand the mechanism of PglB, we have quantified sequon binding and glycosylation turnover in vitro using purified enzyme and fluorescently labeled, synthetic peptide substrates. Using fluorescence anisotropy, we determined a dissociation constant of 1.0 μm and a strict requirement for divalent metal ions for consensus (DQNAT) sequon binding. Using in-gel fluorescence detection, we quantified exceedingly low glycosylation rates that remained undetected using in vivo assays. We found that an alanine in the -2 sequon position, converting the bacterial sequon to a eukaryotic one, resulted in strongly lowered sequon binding, with in vitro turnover reduced 50,000-fold. A threonine is preferred over serine in the +2 sequon position, reflected by a 4-fold higher affinity and a 1.2-fold higher glycosylation rate. The interaction of the +2 sequon position with PglB is modulated by isoleucine 572. Our study demonstrates an intricate interplay of peptide and metal binding as the first step of protein N-glycosylation.
Collapse
Affiliation(s)
- Sabina Gerber
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Theillet FX, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon MK, Kriwacki RW, Landrieu I, Lippens G, Selenko P. Cell signaling, post-translational protein modifications and NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 54:217-36. [PMID: 23011410 PMCID: PMC4939263 DOI: 10.1007/s10858-012-9674-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/07/2012] [Indexed: 05/13/2023]
Abstract
Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Caroline Smet-Nocca
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Stamatios Liokatis
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Rossukon Thongwichian
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Jonas Kosten
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Mi-Kyung Yoon
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Isabelle Landrieu
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Guy Lippens
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Philipp Selenko
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| |
Collapse
|
47
|
Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J Med Microbiol 2012; 61:919-926. [DOI: 10.1099/jmm.0.039438-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vanessa S. Terra
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Dominic C. Mills
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Laura E. Yates
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sherif Abouelhadid
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Jon Cuccui
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
48
|
Ellis CR, Maiti B, Noid WG. Specific and nonspecific effects of glycosylation. J Am Chem Soc 2012; 134:8184-93. [PMID: 22524526 DOI: 10.1021/ja301005f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosylation regulates vital cellular processes and dramatically influences protein folding and stability. In particular, experiments have demonstrated that asparagine (N)-linked disaccharides drive a "conformational switch" in a model peptide. The present work investigates this conformational switch via extensive atomically detailed replica exchange molecular dynamics simulations in explicit solvent. To distinguish the effects of specific and nonspecific interactions upon the peptide conformational ensemble, these simulations considered model peptides that were N-linked to a disaccharide and to a steric crowder of the same shape. The simulations are remarkably consistent with experiment and provide detailed insight into the peptide structure ensemble. They suggest that steric crowding by N-linked disaccharides excludes extended conformations, but does not significantly impact the tetrahedral structure of the surrounding solvent or otherwise alter the peptide free energy surface. However, the combination of steric crowding with specific hydrogen bonds and hydrophobic stacking interactions more dramatically impacts the peptide ensemble and stabilizes new structures.
Collapse
Affiliation(s)
- Christopher R Ellis
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | |
Collapse
|
49
|
Kajihara Y, Tanabe Y, Sasaoka S, Okamoto R. Homogeneous Human Complex-Type Oligosaccharides in Correctly Folded Intact Glycoproteins: Evaluation of Oligosaccharide Influence On Protein Folding, Stability, and Conformational Properties. Chemistry 2012; 18:5944-53. [DOI: 10.1002/chem.201103428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Indexed: 11/06/2022]
|
50
|
Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 2012; 21:576-82. [PMID: 21978957 DOI: 10.1016/j.sbi.2011.08.005] [Citation(s) in RCA: 515] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/01/2011] [Accepted: 08/04/2011] [Indexed: 11/20/2022]
Abstract
N-linked glycosylation, a protein modification system present in all domains of life, is characterized by a high structural diversity of N-linked glycans found among different species and by a large number of proteins that are glycosylated. Based on structural, functional, and phylogenetic approaches, this review discusses the highly conserved processes that are at the basis of this unique general protein modification system.
Collapse
|