1
|
Stevenson DK, Vreman HJ, Wong RJ. Heme, Heme Oxygenase-1, Statins, and SARS-CoV-2. Antioxidants (Basel) 2023; 12:antiox12030614. [PMID: 36978862 PMCID: PMC10044896 DOI: 10.3390/antiox12030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Heme, a metalloporphyrin, or more specifically, a tetrapyrrole containing ferrous iron, is an ancient molecule [...]
Collapse
|
2
|
Orabueze IC, Babalola R, Azuonwu O, Okoko II, Asare G. Evaluation of possible effects of Persea americana seeds on female reproductive hormonal and toxicity profile. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113870. [PMID: 33484907 DOI: 10.1016/j.jep.2021.113870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seed of Avocado (Persea americana, Lauraceae), non-edible part of the fruit is used as health product. It has been reported as traditional female contraceptive and sterilizer in Peru and some Asian countries and in Nigeria as cardio-protective agent. The present study focused on the effect of hydro-methanolic seed extract of Persea americana on female hormones and toxicity profile using animal models. MATERIALS AND METHODS The serum follicle stimulating hormone (FSH) and progesterone (PROG) concentrations in mature non-pregnant female rats were assayed using hormonal kits. The toxicity profile was assessed using Lorke's acute toxicity model, haemato-biochemical evaluation and histopathological studies of reproductive related organs. Parameters were measured on day-30, 60 and 90. Presence of biomarker flavonoid compounds were confirmed using High Performance Liquid Chromatography. RESULTS The extract at 20, 100 and 500 mg kg -1 altered FSH and PROG hormone profile of the treated groups. The extract initially, dose-dependently decreased FSH level in day-30 (6.95, 3.97, 2.08 IU/L respectively) compared to untreated group before a significant increase was observed for day 60 and 90. Progesterone increased dose-dependently in the treated groups throughout the 90-day treatment duration. This may be Indicating cumulative effect on the hormone. No deleterious or toxicity effect was noticed. CONCLUSIONS The extract of Persea americana seed affects female hormone activity. This may find application in various hormonal management procedures, maternal and reproductive health and fertility control/help health facilities. However, it should be used with caution in women intending to conceive.
Collapse
Affiliation(s)
- Ifeoma C Orabueze
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, PMB 12003, Surulere, Lagos, Nigeria.
| | - Rahmotallah Babalola
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, PMB 12003, Surulere, Lagos, Nigeria
| | - Obioma Azuonwu
- Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria
| | - Ini-Ibehe Okoko
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos, Nigeria
| | - George Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Nigeria
| |
Collapse
|
3
|
Molecular Pathways and Pigments Underlying the Colors of the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus 1758). Genes (Basel) 2021; 12:genes12030421. [PMID: 33804186 PMCID: PMC7998362 DOI: 10.3390/genes12030421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera—the species displaying the broadest range of colors. Three inner shell colors were investigated—red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper–Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.
Collapse
|
4
|
Li Y, Zhou C, Lei W, Wang K, Zheng J. Roles of aryl hydrocarbon receptor in endothelial angiogenic responses†. Biol Reprod 2020; 103:927-937. [PMID: 32716482 PMCID: PMC7731988 DOI: 10.1093/biolre/ioaa128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor, which can be activated by a plethora of structure-diverse ligands. Historically, AhR is known for its involvements in regulation of metabolism of xenobiotics. However, normal physiological roles of AhR have been defined in other essential biological processes, including vascular growth and function, reproduction, and immunoresponses. In contrast, aberrant expression and activation of the AhR signaling pathway occur in a variety of human diseases, many of which (e.g., preeclampsia, atherosclerosis, and hypertension) could be associated with endothelial dysfunction. Indeed, emerging evidence has shown that either exogenous or endogenous AhR ligands can induce endothelial dysfunction in either an AhR-dependent or AhR-independent manner, possibly reliant on the blood vessel origin (artery and vein) of endothelial cells. Given that the AhR signaling pathway has broad impacts on endothelial and cardiovascular function, AhR ligands, AhR, and their downstream genes could be considered novel therapeutic targets for those endothelial-related diseases. This review will discuss the current knowledge of AhR's mediation on endothelial function and potential mechanisms underlying these actions with a focus on placental endothelial cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Lei
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Li M, Li Y, Zhang W, Li S, Gao Y, Ai X, Zhang D, Liu B, Li Q. Metabolomics analysis reveals that elevated atmospheric CO 2 alleviates drought stress in cucumber seedling leaves. Anal Biochem 2018; 559:71-85. [PMID: 30149025 DOI: 10.1016/j.ab.2018.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/25/2022]
Abstract
Elevated atmospheric CO2 alleviates moderate to severe drought stresses at physiological level in cucumber. To investigate the underlying metabolic mechanisms, cucumber seedlings were treated with two [CO2] and three water treatments combinations, and their leaves were analyzed using a non-targeted metabolomics approach. The results showed that elevated [CO2] changed 79 differential metabolites which were mainly associated with alanine, aspartate and glutamate metabolism; arginine and proline metabolism; TCA cycle; and glycerophospholipid metabolism under moderate drought stress. Moreover, elevated [CO2] promoted the accumulation of secondary metabolites; including isoferulic acid, m-coumaric acid and salicyluric acid. Under severe drought stress, elevated [CO2] changed 26 differential metabolites which mainly involved in alanine, aspartate and glutamate metabolism; pyruvate metabolism; arginine and proline metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; starch and sucrose metabolism; glycolysis or gluconeogenesis; and pyrimidine metabolism. In addition, elevated [CO2] accumulated carbohydrates, 1,2,3-trihydroxybenzene, pyrocatechol, glutamate, and l-gulonolactone, to allow adaption to severe drought. In conclusion, the metabolites and metabolic pathways associated with the alleviation of drought stresses by elevated [CO2] were different according to the level of drought stress. Our results may provide a theoretical basis for CO2 fertilization and application of exogenous metabolites to enhance drought tolerance of cucumber.
Collapse
Affiliation(s)
- Man Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yiman Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wendong Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shuhao Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xizhen Ai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; State Key Laboratory of Crop Biology, Tai'an, Shandong, 271018, China
| | - Dalong Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, Shandong, 271018, China
| | - Binbin Liu
- State Key Laboratory of Crop Biology, Tai'an, Shandong, 271018, China.
| | - Qingming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; State Key Laboratory of Crop Biology, Tai'an, Shandong, 271018, China; Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, Shandong, 271018, China.
| |
Collapse
|
6
|
Laccase-catalysed cleavage of malvidin-3-O-galactoside to 2,6-dimethoxy-1,4-benzoquinone and a coumarin galactoside. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Frański R. Gas phase decomposition of bilirubin-derived anions. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:343-346. [PMID: 28244182 DOI: 10.1002/jms.3924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Affiliation(s)
- R Frański
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| |
Collapse
|
8
|
Rockwell NC, Lagarias JC, Bhattacharya D. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Front Ecol Evol 2014; 2. [PMID: 25729749 DOI: 10.3389/fevo.2014.00066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The origin of the photosynthetic organelle in eukaryotes, the plastid, changed forever the evolutionary trajectory of life on our planet. Plastids are highly specialized compartments derived from a putative single cyanobacterial primary endosymbiosis that occurred in the common ancestor of the supergroup Archaeplastida that comprises the Viridiplantae (green algae and plants), red algae, and glaucophyte algae. These lineages include critical primary producers of freshwater and terrestrial ecosystems, progenitors of which provided plastids through secondary endosymbiosis to other algae such as diatoms and dinoflagellates that are critical to marine ecosystems. Despite its broad importance and the success of algal and plant lineages, the phagotrophic origin of the plastid imposed an interesting challenge on the predatory eukaryotic ancestor of the Archaeplastida. By engulfing an oxygenic photosynthetic cell, the host lineage imposed an oxidative stress upon itself in the presence of light. Adaptations to meet this challenge were thus likely to have occurred early on during the transition from a predatory phagotroph to an obligate phototroph (or mixotroph). Modern algae have recently been shown to employ linear tetrapyrroles (bilins) to respond to oxidative stress under high light. Here we explore the early events in plastid evolution and the possible ancient roles of bilins in responding to light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources; Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08903
| |
Collapse
|
9
|
Quinn KD, Nguyen NQT, Wach MM, Wood TD. Tandem mass spectrometry of bilin tetrapyrroles by electrospray ionization and collision-induced dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1767-75. [PMID: 22777778 PMCID: PMC3395471 DOI: 10.1002/rcm.6287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Bilins are metabolic products of hosts and bacteria on porphyrins, and are markers of health state and human waste contamination. Although bilin tandem mass spectrometry reports exist, their fragmentation behavior as a function of structure has not been compared, nor has fragmentation been examined as a function of collision energy. METHODS The fragmentation of bilins generated by positive ion mode electrospray ionization is examined by collision-induced dissociation (CID). CID on a quadrupole ion trap and on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer as a function of collision energy is compared. Methyl esterification was used to deduce which product ions contain the inner pyrrole rings. FT-ICR high mass accuracy measurements were used to determine the formulas of the resultant product ions. RESULTS The central carbon's bonding to the inner pyrrole rings influences fragmentation. Bilirubin is unique because fragmentation adjacent to the central methylene group between innermost rings predominates, and loss of a terminal pyrrole is observed only with helium collision gas. The other bilins lose the terminal pyrroles first; as CID energy is increased, additional fragmentation due to neutral losses of small molecules such as H(2)O, CO, CO(2), and methanol occurs. CONCLUSIONS Based on these observations, fragmentation schemes for the bilins are proposed that are strongly dependent on the molecular structure and collision energy; only bilirubin fragmentation is influenced significantly by the collision gas used. This report should have value in identification of this class of molecules for biomarker detection.
Collapse
Affiliation(s)
- Kevin D. Quinn
- Department of Chemistry, Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | | | - Michael M. Wach
- Department of Chemistry, Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | - Troy D. Wood
- Department of Chemistry, Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| |
Collapse
|
10
|
Fu G, Liu H, Doerksen RJ. Molecular modeling to provide insight into the substrate binding and catalytic mechanism of human biliverdin-IXα reductase. J Phys Chem B 2012; 116:9580-94. [PMID: 22823425 DOI: 10.1021/jp301456j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human biliverdin-IXα reductase (hBVR-A) catalyzes the conversion of biliverdin-IXα to bilirubin-IXα in the last step of heme degradation and is a key enzyme in regulating a wide range of cellular responses. Though the X-ray structure of hBVR-A is available including cofactor, a crystal structure with a bound substrate would be even more useful as a starting point for protein-structure-based inhibitor design, but none have been reported. The present study employed induced fit docking (IFD) to study the substrate binding modes to hBVR-A of biliverdin-IXα and four analogues. The proposed substrate binding modes were examined further by performing molecular dynamics (MD) simulations followed by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The predicted binding free energies for the five biliverdin-IXα analogues match well with the relative potency of their reported experimental binding affinities, supporting that the proposed binding modes are reasonable. Furthermore, the ternary complex structure of hBVR-A binding with biliverdin-IXα and the electron donor cofactor NADPH obtained from MD simulations was exploited to investigate the catalytic mechanism, by calculating the reaction energy profile using the quantum mechanics/molecular mechanics (QM/MM) method. On the basis of our calculations, the energetically preferred pathway consists of an initial protonation of the pyrrolic nitrogen on the biliverdin substrate followed by hydride transfer to yield the reduction product. This conclusion is consistent with a previous mechanistic study on human biliverdin IXβ reductase (hBVR-B).
Collapse
Affiliation(s)
- Gang Fu
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | | | | |
Collapse
|
11
|
Vreman HJ, Wong RJ, Stevenson DK. Quantitating carbon monoxide production from heme by vascular plant preparations in vitro. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:61-68. [PMID: 21055958 DOI: 10.1016/j.plaphy.2010.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 05/30/2023]
Abstract
Heme in animals is mainly degraded enzymatically, producing a predictable amount of carbon monoxide (CO). Under some conditions, alternative sources of CO production are important, such as lipid peroxidation and photo-oxidation. Less is known about CO production in plants as a reflection of enzymatic activity or coupled oxidation, but a sensitive assay for CO production in plants would be a valuable tool to explore the various sources in plants as the conditions of the reactions and mechanisms are defined. Using gas chromatography, we determined the requirements for heme-supported in vitro CO generation by exogenous reactants (NADPH, tissue supernatant, oxygen), optimum reaction conditions (time, temperature, pH, light), and effects of various cofactors and substrates using supernatants from Spinacia oleracea (spinach) leaf and Solanum tuberosa (potato) tuber homogenates. We then determined the CO production rate distribution between organ (root, stem, leaf, flower, fruit) supernatants in a number of commercially available plant species. CO production ranged from 4-65 nmol CO/h/g fresh weight and occurred in all vascular plant tissues examined, with the highest rates in chloroplast-containing tissues. In spinach leaves, CO production was concentrated (>2-fold) in the particulate fraction, whereas in potato tubers, the particulate fraction accounted for <50% of the rates in homogenates. We conclude that gas chromatography is uniquely suited for the determination of CO production in pigmented, heterogeneous plant tissue preparations.
Collapse
Affiliation(s)
- Hendrik J Vreman
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305-5208, USA.
| | | | | |
Collapse
|
12
|
Pirone C, Johnson JV, Quirke JME, Priestap HA, Lee D. Bilirubin present in diverse angiosperms. AOB PLANTS 2010; 2010:plq020. [PMID: 22476078 PMCID: PMC3000704 DOI: 10.1093/aobpla/plq020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/25/2010] [Accepted: 10/24/2010] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Bilirubin is an orange-yellow tetrapyrrole produced from the breakdown of heme by mammals and some other vertebrates. Plants, algae and cyanobacteria synthesize molecules similar to bilirubin, including the protein-bound bilins and phytochromobilin which harvest or sense light. Recently, we discovered bilirubin in the arils of Strelitzia nicolai, the White Bird of Paradise Tree, which was the first example of this molecule in a higher plant. Subsequently, we identified bilirubin in both the arils and the flowers of Strelitzia reginae, the Bird of Paradise Flower. In the arils of both species, bilirubin is present as the primary pigment, and thus functions to produce colour. Previously, no tetrapyrroles were known to generate display colour in plants. We were therefore interested in determining whether bilirubin is broadly distributed in the plant kingdom and whether it contributes to colour in other species. METHODOLOGY In this paper, we use HPLC/UV and HPLC/UV/electrospray ionization-tandem mass spectrometry (HPLC/UV/ESI-MS/MS) to search for bilirubin in 10 species across diverse angiosperm lineages. PRINCIPAL RESULTS Bilirubin was present in eight species from the orders Zingiberales, Arecales and Myrtales, but only contributed to colour in species within the Strelitziaceae. CONCLUSIONS The wide distribution of bilirubin in angiosperms indicates the need to re-assess some metabolic details of an important and universal biosynthetic pathway in plants, and further explore its evolutionary history and function. Although colour production was limited to the Strelitziaceae in this study, further sampling may indicate otherwise.
Collapse
Affiliation(s)
- Cary Pirone
- Department of Biological Sciences, Florida International University, 11200 SW 8 St., OE-167, Miami, FL 33199, USA
| | - Jodie V. Johnson
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 3261, USA
| | - J. Martin E. Quirke
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St., CP-304, Miami, FL 33199, USA
| | - Horacio A. Priestap
- Department of Biological Sciences, Florida International University, 11200 SW 8 St., OE-167, Miami, FL 33199, USA
| | - David Lee
- Department of Biological Sciences, Florida International University, 11200 SW 8 St., OE-167, Miami, FL 33199, USA
| |
Collapse
|
13
|
Abstract
Despite a century of research, several clinically relevant areas of bilirubin biochemistry remain controversial, poorly understood, or unrecognized. These include: (i) The structure and molecularity of bilirubin under physiological environments such as membranes, brain tissue and when bound to proteins. Related to this is the large number of structurally different bilirubin species that may occur in blood under pathological conditions and their potential effects on measurements of bilirubin and free bilirubin. (ii) The mechanism of phototherapy, the neurotoxicity of the photoisomers produced and their influence on measurements of bilirubin and free bilirubin. (iii) The role of membrane transporters in the passage of unconjugated bilirubin across the placenta, intestine, vascular epithelium, blood-brain barrier, and into the liver. (iv) Biochemical mechanisms of bilirubin toxicity, pharmacologic prevention of kernicterus, the contribution of bilirubin to antioxidant defenses, and the practical value of free bilirubin measurements for identifying infants at most risk of kernicterus.
Collapse
|