1
|
Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int J Mol Sci 2022; 23:ijms23126373. [PMID: 35742812 PMCID: PMC9224347 DOI: 10.3390/ijms23126373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.
Collapse
|
2
|
Zhang M, Chen C, Zhang Y, Geng J. Biological nanopores for sensing applications. Proteins 2022; 90:1786-1799. [PMID: 35092317 DOI: 10.1002/prot.26308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
Biological nanopores are proteins with transmembrane pore that can be embedded in lipid bilayer. With the development of single-channel current measurement technologies, biological nanopores have been reconstituted into planar lipid bilayer and used for single-molecule sensing of various analytes and events such as single-molecule DNA sensing and sequencing. To improve the sensitivity for specific analytes, various engineered nanopore proteins and strategies are deployed. Here, we introduce the origin and principle of nanopore sensing technology as well as the structure and associated properties of frequently used protein nanopores. Furthermore, sensing strategies for different applications are reviewed, with focus on the alteration of buffer condition, protein engineering, and deployment of accessory proteins and adapter-assisted sensing. Finally, outlooks for de novo design of nanopore and nanopore beyond sensing are discussed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjing Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Geng
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Robertson JW, Ghimire M, Reiner JE. Nanopore sensing: A physical-chemical approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183644. [PMID: 33989531 PMCID: PMC9793329 DOI: 10.1016/j.bbamem.2021.183644] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Protein nanopores have emerged as an important class of sensors for the understanding of biophysical processes, such as molecular transport across membranes, and for the detection and characterization of biopolymers. Here, we trace the development of these sensors from the Coulter counter and squid axon studies to the modern applications including exquisite detection of small volume changes and molecular reactions at the single molecule (or reactant) scale. This review focuses on the chemistry of biological pores, and how that influences the physical chemistry of molecular detection.
Collapse
Affiliation(s)
- Joseph W.F. Robertson
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg MD. 20899, correspondence to:
| | - Madhav Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
4
|
Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat Chem 2020; 12:481-488. [DOI: 10.1038/s41557-020-0437-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
|
5
|
Zhou S, Wang H, Chen X, Wang Y, Zhou D, Liang L, Wang L, Wang D, Guan X. Single-molecule Study on the Interactions between Cyclic Nonribosomal Peptides and Protein Nanopore. ACS APPLIED BIO MATERIALS 2019; 3:554-560. [PMID: 34169233 DOI: 10.1021/acsabm.9b00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptides (NRPs) are a type of secondary metabolites mostly originated from microorganisms such as bacteria and fungi. Their proteolytic stability, highly selective bioactivity, and microorganism-specificity have made them an attractive source of drugs for the pharmaceutical industry. Herein, with microcystins (MCs) as a NRP model, we, for the first time, proposed a sensitive method to study the interactions between NRPs and the protein nanopore. Due to the large molecular size (~3 nm diameter) of MCs and their net negative charges, MCs failed to translocate through the α-hemolysin (α-HL) protein channel. Our results demonstrated that the biomolecular interaction of MC-α-HL protein was significantly affected by the applied potential bias. The constant blockage amplitude in the voltage-dependent studies indicated that the current modulation events were dominantly contributed to the bumping interaction between MCs and the α-HL protein under the electrophoretic force. The mean residence time of the bumping events exhibited a two-stage decrease (from 1.90 ms to 1.02 ms, and from 1.02 ms to 0.69 ms) at the threshold voltages of -70 mV and -100 mV, respectively. Using our strategy (i.e., based on their electrophoretic driven interaction with the α-HL protein pore), discrimination of different MC molecules (MC-LR, MC-RR, MC-YR and linear analog) with varied branched residues could be accomplished. This work should provide an insight in developing a rapid and effective method for the identification of cyclic NRPs as valuable biomarkers for fungal infections.
Collapse
Affiliation(s)
- Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
6
|
Willems K, Van Meervelt V, Wloka C, Maglia G. Single-molecule nanopore enzymology. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630164 DOI: 10.1098/rstb.2016.0230] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biological nanopores are a class of membrane proteins that open nanoscale water conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. In addition, a more recent nanopore application is the analysis of single proteins and enzymes. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here, we describe the approaches and challenges in nanopore enzymology.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Kherim Willems
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.,Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Veerle Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Carsten Wloka
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Liu SC, Li MX, Li MY, Wang YQ, Ying YL, Wan YJ, Long YT. Measuring a frequency spectrum for single-molecule interactions with a confined nanopore. Faraday Discuss 2018; 210:87-99. [DOI: 10.1039/c8fd00023a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The time-domain nanopore signal is preciously converted into energy–frequency–time spectra with high frequency resolution and high time resolution using the Hilbert–Huang transform for revealing the detail behaviours of single-molecule weak interactions.
Collapse
Affiliation(s)
- Shao-Chuang Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Meng-Xiao Li
- School of Information Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Meng-Yin Li
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ya-Qian Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yong-Jing Wan
- School of Information Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
8
|
Recent progress in dissecting molecular recognition by DNA polymerases with non-native substrates. Curr Opin Chem Biol 2017; 41:43-49. [PMID: 29096323 DOI: 10.1016/j.cbpa.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022]
Abstract
DNA polymerases must discriminate the correct Watson-Crick base pair-forming deoxynucleoside triphosphate (dNTP) substrate from three other dNTPs and additional triphosphates found in the cell. The rarity of misincorporations in vivo, then, belies the high tolerance for dNTP analogs observed in vitro. Advances over the last 10 years in single-molecule fluorescence and electronic detection of dNTP analog incorporation enable exploration of the mechanism and limits to base discrimination by DNA polymerases. Such studies reveal transient motions of DNA polymerase during substrate recognition and mutagenesis in the context of erroneous dNTP incorporation that can lead to evolution and genetic disease. Further improvements in time resolution and noise reduction of single-molecule studies will uncover deeper mechanistic understanding of this critical, first step in evolution.
Collapse
|
9
|
Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nat Protoc 2017; 12:1901-1911. [PMID: 28837133 DOI: 10.1038/nprot.2017.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanopore techniques offer the possibility to study biomolecules at the single-molecule level in a low-cost, label-free and high-throughput manner. By analyzing the level, duration and frequency of ionic current blockades, information regarding the structural conformation, mass, length and concentration of single molecules can be obtained in physiological conditions. Aerolysin monomers assemble into small pores that provide a confined space for effective electrochemical control of a single molecule interacting with the pore, which significantly improves the temporal resolution of this technique. In comparison with other reported protein nanopores, aerolysin maintains its functional stability in a wide range of pH conditions, which allows for the direct discrimination of oligonucleotides between 2 and 10 nt in length and the monitoring of the stepwise cleavage of oligonucleotides by exonuclease I (Exo I) in real time. This protocol describes the process of activating proaerolysin using immobilized trypsin to obtain the aerolysin monomer, the construction of a lipid membrane and the insertion of an individual aerolysin nanopore into this membrane. A step-by-step description is provided of how to perform single-oligonucleotide analyses and how to process the acquired data. The total time required for this protocol is ∼3 d.
Collapse
|
10
|
Lipid bilayer membrane technologies: A review on single-molecule studies of DNA sequencing by using membrane nanopores. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2321-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Squires AH, Gilboa T, Torfstein C, Varongchayakul N, Meller A. Single-Molecule Characterization of DNA-Protein Interactions Using Nanopore Biosensors. Methods Enzymol 2016; 582:353-385. [PMID: 28062042 DOI: 10.1016/bs.mie.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Detection and characterization of nucleic acid-protein interactions, particularly those involving DNA and proteins such as transcription factors, enzymes, and DNA packaging proteins, remain significant barriers to our understanding of genetic regulation. Nanopores are an extremely sensitive and versatile sensing platform for label-free detection of single biomolecules. Analyte molecules are drawn to and through a nanoscale aperture by an electrophoretic force, which acts upon their native charge while in the sensing region of the pore. When the nanopore's diameter is only slightly larger than the biopolymer's cross section (typically a few nm); the latter must translocate through the pore in a linear fashion due to the constricted geometry in this region. These features allow nanopores to interrogate protein-nucleic acids in multiple sensing modes: first, by scanning and mapping the locations of binding sites along an analyte molecule, and second, by probing the strength of the bond between a protein and nucleic acid, using the native charge of the nucleic acid to apply an electrophoretic force to the complex while the protein is geometrically prevented from passing through the nanopore. In this chapter, we describe progress toward nanopore sensing of protein-nucleic acid complexes in the context of both mapping binding sites and performing force spectroscopy to determine the strength of interactions. We conclude by reviewing the strengths and challenges of the nanopore technique in the context of studying DNA-protein interactions.
Collapse
Affiliation(s)
- A H Squires
- Stanford University, Stanford, CA, United States
| | | | | | | | - A Meller
- The Technion, Haifa, Israel; Boston University, Boston, MA, United States.
| |
Collapse
|
12
|
Franceschini L, Brouns T, Willems K, Carlon E, Maglia G. DNA Translocation through Nanopores at Physiological Ionic Strengths Requires Precise Nanoscale Engineering. ACS NANO 2016; 10:8394-402. [PMID: 27513592 PMCID: PMC5221729 DOI: 10.1021/acsnano.6b03159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many important processes in biology involve the translocation of a biopolymer through a nanometer-scale pore. Moreover, the electrophoretic transport of DNA across nanopores is under intense investigation for single-molecule DNA sequencing and analysis. Here, we show that the precise patterning of the ClyA biological nanopore with positive charges is crucial to observe the electrophoretic translocation of DNA at physiological ionic strength. Surprisingly, the strongly electronegative 3.3 nm internal constriction of the nanopore did not require modifications. Further, DNA translocation could only be observed from the wide entry of the nanopore. Our results suggest that the engineered positive charges are important to align the DNA in order to overcome the entropic and electrostatic barriers for DNA translocation through the narrow constriction. Finally, the dependencies of nucleic acid translocations on the Debye length of the solution are consistent with a physical model where the capture of double-stranded DNA is diffusion-limited while the capture of single-stranded DNA is reaction-limited.
Collapse
|
13
|
Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces. Sci Rep 2015; 5:12066. [PMID: 26174478 PMCID: PMC4502528 DOI: 10.1038/srep12066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022] Open
Abstract
The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.
Collapse
|
14
|
Shi J, Hou J, Fang Y. Recent advances in nanopore-based nucleic acid analysis and sequencing. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1503-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ. Surface charge modulated aptasensor in a single glass conical nanopore. Biosens Bioelectron 2015; 71:37-43. [PMID: 25884732 DOI: 10.1016/j.bios.2015.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/06/2015] [Accepted: 04/04/2015] [Indexed: 11/17/2022]
Abstract
In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.4. With the occurring of recognition event, the negatively charged wall was partially neutralized by the positively charged lysozyme molecules, leading to a sensitive change of the surface charge-dependent current-voltage (I-V) characteristics. Our results not only demonstrate excellent selectivity and sensitivity towards the target protein, but also suggest a route to extend this nanopore-based sensing strategy to the biosensing platform designs of a wide range of proteins based on a charge modulation.
Collapse
Affiliation(s)
- Sheng-Lin Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Bin Zheng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Lei Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
16
|
Carson S, Wanunu M. Challenges in DNA motion control and sequence readout using nanopore devices. NANOTECHNOLOGY 2015; 26:074004. [PMID: 25642629 PMCID: PMC4710574 DOI: 10.1088/0957-4484/26/7/074004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanopores are being hailed as a potential next-generation DNA sequencer that could provide cheap, high-throughput DNA analysis. In this review we present a detailed summary of the various sensing techniques being investigated for use in DNA sequencing and mapping applications. A crucial impasse to the success of nanopores as a reliable DNA analysis tool is the fast and stochastic nature of DNA translocation. We discuss the incorporation of biological motors to step DNA through a pore base-by-base, as well as the many experimental modifications attempted for the purpose of slowing and controlling DNA transport.
Collapse
|
17
|
Van Meervelt V, Soskine M, Maglia G. Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore. ACS NANO 2014; 8:12826-35. [PMID: 25493908 PMCID: PMC4410316 DOI: 10.1021/nn506077e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we showed that folded proteins can be internalized inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalization of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores can be used to probe conformational heterogeneity in protein:DNA interactions.
Collapse
Affiliation(s)
| | - Misha Soskine
- Department of Chemistry, KU Leuven, Leuven, B-3001, Belgium
| | - Giovanni Maglia
- Department of Chemistry, KU Leuven, Leuven, B-3001, Belgium
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, the Netherlands
| |
Collapse
|
18
|
|
19
|
Ying YL, Zhang J, Gao R, Long YT. Nanopore-Based Sequencing and Detection of Nucleic Acids. Angew Chem Int Ed Engl 2013; 52:13154-61. [DOI: 10.1002/anie.201303529] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 01/30/2023]
|
20
|
Wang H, Hurt N, Dunbar WB. Measuring and modeling the kinetics of individual DNA-DNA polymerase complexes on a nanopore. ACS NANO 2013; 7:3876-3886. [PMID: 23565679 PMCID: PMC3682681 DOI: 10.1021/nn401180j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The assembly of a DNA-DNA polymerase binary complex is the precursory step in genome replication, in which the enzyme binds to the 3' junction created when a primer binds to its complementary substrate. In this study, we use an active control method for observing the binding interaction between Klenow fragment (exo-) (KF) in the bulk-phase chamber above an α-hemolysin (α-HL) nanopore and a single DNA molecule tethered noncovalently in the nanopore. Specifically, the control method regulates the temporal availability of the primer-template DNA to KF binding and unbinding above the nanopore, on millisecond-to-second time scales. Our nanopore measurements support a model that incorporates two mutually exclusive binding states of KF to DNA at the primer-template junction site, termed "weakly bound" and "strongly bound" states. The composite binding affinity constant, the equilibrium constant between the weak and strong states, and the unbound-to-strong association rate are quantified from the data using derived modeling analysis. The results support that the strong state is in the nucleotide incorporation pathway, consistent with other nanopore assays. Surprisingly, the measured unbound-to-strong association process does not fit a model that admits binding of only free (unbound) KF to the tethered DNA but does fit an association rate that is proportional to the total (unbound and DNA-bound) KF concentration in the chamber above the nanopore. Our method provides a tool for measuring pre-equilibrium kinetics one molecule at a time, serially and for tens of thousands of single-molecule events, and can be used for other polynucleotide-binding enzymes.
Collapse
Affiliation(s)
- Hongyun Wang
- Department of Applied Mathematics and Statistics, University of California, Santa Cruz, 95064
| | - Nicholas Hurt
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 95064
| | - William B. Dunbar
- Department of Computer Engineering, University of California, Santa Cruz, 95064
| |
Collapse
|
21
|
Lee S, Kang SH. Single-molecule DNA digestion in various alkanethiol-functionalized gold nanopores. Talanta 2013; 107:297-303. [PMID: 23598226 DOI: 10.1016/j.talanta.2013.01.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/29/2022]
Abstract
This paper presents the alkanethiol-functionalized environmental effects of individual DNA molecules in nanopores on enzyme digestion at the single-molecule level. A template consisting of gold deposited within a solid-state nanoporous polycarbonate membrane was used to trap individual λ-DNA and enzyme molecules. The gold surfaces were modified with various functional groups (-OH, -COOH, -NH3). The enzyme digestion rates of single DNA molecules increased with decreasing nanopore diameters. Surprisingly, the digestion rates in the l-cysteine chemisorbed nanopores were 2.1-2.6 times faster than in the mercaptoethanol chemisorbed gold nanopores, even though these nanopores had equivalent interspacial areas. In addition, the membrane of chemisorbed cysteamine with ionized functional groups of H3N(+) at pH 8.2 had a greater positive influence on the enzyme digestion rate than the membrane of chemisorbed mercaptoproponic acid with ionized carboxyl groups (COO(-)). These results suggest that the three-dimensional environment effect is strongly correlated with the functional group in confined nanopores and can significantly change the enzyme digestion rates for nanopores with different internal areas.
Collapse
Affiliation(s)
- Seungah Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | | |
Collapse
|
22
|
Haque F, Li J, Wu HC, Liang XJ, Guo P. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA. NANO TODAY 2013; 8:56-74. [PMID: 23504223 PMCID: PMC3596169 DOI: 10.1016/j.nantod.2012.12.008] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sensitivity and specificity are two most important factors to take into account for molecule sensing, chemical detection and disease diagnosis. A perfect sensitivity is to reach the level where a single molecule can be detected. An ideal specificity is to reach the level where the substance can be detected in the presence of many contaminants. The rapidly progressing nanopore technology is approaching this threshold. A wide assortment of biomotors and cellular pores in living organisms perform diverse biological functions. The elegant design of these transportation machineries has inspired the development of single molecule detection based on modulations of the individual current blockage events. The dynamic growth of nanotechnology and nanobiotechnology has stimulated rapid advances in the study of nanopore based instrumentation over the last decade, and inspired great interest in sensing of single molecules including ions, nucleotides, enantiomers, drugs, and polymers such as PEG, RNA, DNA, and polypeptides. This sensing technology has been extended to medical diagnostics and third generation high throughput DNA sequencing. This review covers current nanopore detection platforms including both biological pores and solid state counterparts. Several biological nanopores have been studied over the years, but this review will focus on the three best characterized systems including α-hemolysin and MspA, both containing a smaller channel for the detection of single-strand DNA, as well as bacteriophage phi29 DNA packaging motor connector that contains a larger channel for the passing of double stranded DNA. The advantage and disadvantage of each system are compared; their current and potential applications in nanomedicine, biotechnology, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghong Li
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Beijing 100084, China
| | - Hai-Chen Wu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
23
|
Maitra RD, Kim J, Dunbar WB. Recent advances in nanopore sequencing. Electrophoresis 2012; 33:3418-28. [PMID: 23138639 PMCID: PMC3804109 DOI: 10.1002/elps.201200272] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 11/05/2022]
Abstract
The prospect of nanopores as a next-generation sequencing platform has been a topic of growing interest and considerable government-sponsored research for more than a decade. Oxford Nanopore Technologies recently announced the first commercial nanopore sequencing devices, to be made available by the end of 2012, while other companies (Life, Roche, and IBM) are also pursuing nanopore sequencing approaches. In this paper, the state of the art in nanopore sequencing is reviewed, focusing on the most recent contributions that have or promise to have next-generation sequencing commercial potential. We consider also the scalability of the circuitry to support multichannel arrays of nanopores in future sequencing devices, which is critical to commercial viability.
Collapse
|
24
|
Lieberman KR, Dahl JM, Mai AH, Akeson M, Wang H. Dynamics of the translocation step measured in individual DNA polymerase complexes. J Am Chem Soc 2012; 134:18816-23. [PMID: 23101437 DOI: 10.1021/ja3090302] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complexes formed between the bacteriophage phi29 DNA polymerase (DNAP) and DNA fluctuate between the pre-translocation and post-translocation states on the millisecond time scale. These fluctuations can be directly observed with single-nucleotide precision in real-time ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an applied electric field. We recently quantified the equilibrium across the translocation step as a function of applied force (voltage), active-site proximal DNA sequences, and the binding of complementary dNTP. To gain insight into the mechanism of this step in the DNAP catalytic cycle, in this study, we have examined the stochastic dynamics of the translocation step. The survival probability of complexes in each of the two states decayed at a single exponential rate, indicating that the observed fluctuations are between two discrete states. We used a robust mathematical formulation based on the autocorrelation function to extract the forward and reverse rates of the transitions between the pre-translocation state and the post-translocation state from ionic current traces of captured phi29 DNAP-DNA binary complexes. We evaluated each transition rate as a function of applied voltage to examine the energy landscape of the phi29 DNAP translocation step. The analysis reveals that active-site proximal DNA sequences influence the depth of the pre-translocation and post-translocation state energy wells and affect the location of the transition state along the direction of the translocation.
Collapse
Affiliation(s)
- Kate R Lieberman
- Biomolecular Engineering, University of California, Santa Cruz, 95064, United States.
| | | | | | | | | |
Collapse
|
25
|
de la Escosura-Muñiz A, Merkoçi A. Nanochannels preparation and application in biosensing. ACS NANO 2012; 6:7556-83. [PMID: 22880686 DOI: 10.1021/nn301368z] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Selective transport in nanochannels (protein-based ion channels) is already used in living systems for electrical signaling in nerves and muscles, and this natural behavior is being approached for the application of biomimetic nanochannels in biosensors. On the basis of this principle, single nanochannels and nanochannel arrays seem to bring new advantages for biosensor development and applications. The purpose of this review is to provide a general comprehensive and critical overview on the latest trends in the development of nanochannel-based biosensing systems. A detailed description and discussion of representative and recent works covering the main nanochannel fabrication techniques, nanoporous material characterizations, and especially their application in both electrochemical and optical sensing systems is given. The state-of-the-art of the developed technology may open the way to new advances in the integration of nanochannels with (bio)molecules and synthetic receptors for the development of novel biodetection systems that can be extended to many other applications with interest for clinical analysis, safety, and security as well as environmental and other industrial studies and applications.
Collapse
Affiliation(s)
- Alfredo de la Escosura-Muñiz
- Nanobioelectronics & Biosensors Group, CIN2, ICN-CSIC, Catalan Institute of Nanotechnology, Campus UAB, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
26
|
Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 2012; 30:349-53. [PMID: 22446694 DOI: 10.1038/nbt.2171] [Citation(s) in RCA: 636] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/03/2012] [Indexed: 11/10/2022]
Abstract
Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore's constriction. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA) with phi29 DNA polymerase (DNAP), which controls the rate of DNA translocation through the pore. As phi29 DNAP synthesizes DNA and functions like a motor to pull a single-stranded template through MspA, we observe well-resolved and reproducible ionic current levels with median durations of ∼28 ms and ionic current differences of up to 40 pA. Using six different DNA sequences with readable regions 42-53 nucleotides long, we record current traces that map to the known DNA sequences. With single-nucleotide resolution and DNA translocation control, this system integrates solutions to two long-standing hurdles to nanopore sequencing.
Collapse
Affiliation(s)
- Elizabeth A Manrao
- Department of Physics, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dahl JM, Mai AH, Cherf GM, Jetha NN, Garalde DR, Marziali A, Akeson M, Wang H, Lieberman KR. Direct observation of translocation in individual DNA polymerase complexes. J Biol Chem 2012; 287:13407-21. [PMID: 22378784 DOI: 10.1074/jbc.m111.338418] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complexes of phi29 DNA polymerase and DNA fluctuate on the millisecond time scale between two ionic current amplitude states when captured atop the α-hemolysin nanopore in an applied field. The lower amplitude state is stabilized by complementary dNTP and thus corresponds to complexes in the post-translocation state. We have demonstrated that in the upper amplitude state, the DNA is displaced by a distance of one nucleotide from the post-translocation state. We propose that the upper amplitude state corresponds to complexes in the pre-translocation state. Force exerted on the template strand biases the complexes toward the pre-translocation state. Based on the results of voltage and dNTP titrations, we concluded through mathematical modeling that complementary dNTP binds only to the post-translocation state, and we estimated the binding affinity. The equilibrium between the two states is influenced by active site-proximal DNA sequences. Consistent with the assignment of the upper amplitude state as the pre-translocation state, a DNA substrate that favors the pre-translocation state in complexes on the nanopore is a superior substrate in bulk phase for pyrophosphorolysis. There is also a correlation between DNA sequences that bias complexes toward the pre-translocation state and the rate of exonucleolysis in bulk phase, suggesting that during DNA synthesis the pathway for transfer of the primer strand from the polymerase to exonuclease active site initiates in the pre-translocation state.
Collapse
Affiliation(s)
- Joseph M Dahl
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat Biotechnol 2012; 30:344-8. [PMID: 22334048 PMCID: PMC3408072 DOI: 10.1038/nbt.2147] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/07/2012] [Indexed: 11/09/2022]
Abstract
Single-molecule techniques have been developed for commercial DNA sequencing1,2. One emerging strategy uses a nanopore to analyze DNA molecules as they are driven electrophoretically in single file order past a sensor3-5. However, uncontrolled DNA strand electrophoresis through nanopores is too fast for accurate base reads6. A proposed solution would employ processive enzymes to deliver DNA through the pore at a slower average rate7. Here, we describe forward and reverse ratcheting of DNA templates through the α–hemolysin (α-HL) nanopore controlled by wild-type phi29 DNA polymerase (phi29 DNAP). DNA strands were examined in single file order at one nucleotide spatial precision in real time. The registry error probability (either an insertion or deletion during one pass along a template strand) ranged from 10% to 24.5% absent optimization. This general strategy facilitates multiple reads of individual template strands and is transferrable to other nanopore devices for implementation of DNA sequence analysis.
Collapse
|
29
|
Winters-Hilt S, Horton-Chao E, Morales E. The NTD Nanoscope: potential applications and implementations. BMC Bioinformatics 2011; 12 Suppl 10:S21. [PMID: 22166072 PMCID: PMC3236844 DOI: 10.1186/1471-2105-12-s10-s21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nanopore transduction detection (NTD) offers prospects for a number of highly sensitive and discriminative applications, including: (i) single nucleotide polymorphism (SNP) detection; (ii) targeted DNA re-sequencing; (iii) protein isoform assaying; and (iv) biosensing via antibody or aptamer coupled molecules. Nanopore event transduction involves single-molecule biophysics, engineered information flows, and nanopore cheminformatics. The NTD Nanoscope has seen limited use in the scientific community, however, due to lack of information about potential applications, and lack of availability for the device itself. Meta Logos Inc. is developing both pre-packaged device platforms and component-level (unassembled) kit platforms (the latter described here). In both cases a lipid bi-layer workstation is first established, then augmentations and operational protocols are provided to have a nanopore transduction detector. In this paper we provide an overview of the NTD Nanoscope applications and implementations. The NTD Nanoscope Kit, in particular, is a component-level reproduction of the standard NTD device used in previous research papers. RESULTS The NTD Nanoscope method is shown to functionalize a single nanopore with a channel current modulator that is designed to transduce events, such as binding to a specific target. To expedite set-up in new lab settings, the calibration and troubleshooting for the NTD Nanoscope kit components and signal processing software, the NTD Nanoscope Kit, is designed to include a set of test buffers and control molecules based on experiments described in previous NTD papers (the model systems briefly described in what follows). The description of the Server-interfacing for advanced signal processing support is also briefly mentioned. CONCLUSIONS SNP assaying, SNP discovery, DNA sequencing and RNA-seq methods are typically limited by the accuracy of the error rate of the enzymes involved, such as methods involving the polymerase chain reaction (PCR) enzyme. The NTD Nanoscope offers a means to obtain higher accuracy as it is a single-molecule method that does not inherently involve use of enzymes, using a functionalized nanopore instead.
Collapse
Affiliation(s)
- Stephen Winters-Hilt
- Dept of Computer Science, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.
| | | | | |
Collapse
|
30
|
Abstract
Nanopores are emerging as powerful tools for the detection and identification of macromolecules in aqueous solution. In this review, we discuss the recent development of active and passive controls over molecular transport through nanopores with emphasis on biosensing applications. We give an overview of the solutions developed to enhance the sensitivity and specificity of the resistive-pulse technique based on biological and solid-state nanopores.
Collapse
Affiliation(s)
- Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
31
|
Garalde DR, Simon CA, Dahl JM, Wang H, Akeson M, Lieberman KR. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection. J Biol Chem 2011; 286:14480-92. [PMID: 21362617 DOI: 10.1074/jbc.m111.218750] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.
Collapse
Affiliation(s)
- Daniel R Garalde
- Department of Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wilson CP, Boglio C, Ma L, Cockroft SL, Webb SJ. Palladium(II)-Mediated Assembly of Biotinylated Ion Channels. Chemistry 2011; 17:3465-73. [DOI: 10.1002/chem.201002031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/12/2010] [Indexed: 11/10/2022]
|
33
|
Lieberman KR, Cherf GM, Doody MJ, Olasagasti F, Kolodji Y, Akeson M. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J Am Chem Soc 2010; 132:17961-72. [PMID: 21121604 DOI: 10.1021/ja1087612] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coupling nucleic acid processing enzymes to nanoscale pores allows controlled movement of individual DNA or RNA strands that is reported as an ionic current/time series. Hundreds of individual enzyme complexes can be examined in single-file order at high bandwidth and spatial resolution. The bacteriophage phi29 DNA polymerase (phi29 DNAP) is an attractive candidate for this technology, due to its remarkable processivity and high affinity for DNA substrates. Here we show that phi29 DNAP-DNA complexes are stable when captured in an electric field across the α-hemolysin nanopore. DNA substrates were activated for replication at the nanopore orifice by exploiting the 3'-5' exonuclease activity of wild-type phi29 DNAP to excise a 3'-H terminal residue, yielding a primer strand 3'-OH. In the presence of deoxynucleoside triphosphates, DNA synthesis was initiated, allowing real-time detection of numerous sequential nucleotide additions that was limited only by DNA template length. Translocation of phi29 DNAP along DNA substrates was observed in real time at Ångstrom-scale precision as the template strand was drawn through the nanopore lumen during replication.
Collapse
Affiliation(s)
- Kate R Lieberman
- Department of Biomolecular Engineering, Baskin School of Engineering, MS SOE2, University of California, Santa Cruz, California 95064, United States
| | | | | | | | | | | |
Collapse
|
34
|
Olasagasti F, Lieberman KR, Benner S, Cherf GM, Dahl JM, Deamer DW, Akeson M. Replication of individual DNA molecules under electronic control using a protein nanopore. NATURE NANOTECHNOLOGY 2010; 5:798-806. [PMID: 20871614 PMCID: PMC3711841 DOI: 10.1038/nnano.2010.177] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/04/2010] [Indexed: 05/20/2023]
Abstract
Nanopores can be used to analyse DNA by monitoring ion currents as individual strands are captured and driven through the pore in single file by an applied voltage. Here, we show that serial replication of individual DNA templates can be achieved by DNA polymerases held at the α-haemolysin nanopore orifice. Replication is blocked in the bulk phase, and is initiated only after the DNA is captured by the nanopore. We used this method, in concert with active voltage control, to observe DNA replication catalysed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF). T7DNAP advanced on a DNA template against an 80-mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond timescale for hundreds of individual DNA molecules in series. Replication by KF was not observed when this enzyme was held on top of the nanopore orifice at an applied potential of 80 mV. Sequential nucleotide additions by KF were observed upon applying controlled voltage reversals.
Collapse
Affiliation(s)
- Felix Olasagasti
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Kate R. Lieberman
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Seico Benner
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Gerald M. Cherf
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Joseph M. Dahl
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - David W. Deamer
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Mark Akeson
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
- Correspondence and requests for materials should be addressed to [MA].
| |
Collapse
|
35
|
Stefureac RI, Madampage CA, Andrievskaia O, Lee JS. Nanopore analysis of the interaction of metal ions with prion proteins and peptides. Biochem Cell Biol 2010; 88:347-58. [PMID: 20453935 DOI: 10.1139/o09-176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nanopore analysis can be used to study conformational changes in individual peptide or protein molecules. Under an applied voltage there is a change in the event parameters of blockade current or time when a molecule bumps into or translocates through the pore. If a molecule undergoes a conformational change upon binding a ligand or metal ion the event parameters will be altered. The objective of this research was to demonstrate that the conformation of the prion protein (PrP) and prion peptides can be modulated by binding divalent metal ions. Peptides from the octarepeat region (Octa2, (PHGGGWGQ)2 and Octa 4, (PHGGGWGQ)4), residues 106-126 (PrP106-126), and the full-length Bovine recombinant prion (BrecPrP) were studied with an alpha-hemolysin pore. Octa2 readily translocated the pore but significant bumping events occurred on addition of Cu(II) and to a lesser extent Zn(II), demonstrating that complex formation was occurring with concomitant conformational changes. The binding of Cu(II) to Octa4 was more pronounced and at high concentrations only a small proportion of the complex could translocate. Addition of Zn(II) also caused significant changes to the event parameters but Mg(II) and Mn(II) were inert. Addition of Cu(II) to PrP106-126 caused the formation of a very tight complex, which could not translocate the pore. Small changes were observed with Zn(II), but not with Mg(II) or Mn(II). Analysis of BrecPrP showed that about 37% were translocation events, but on addition of Cu(II) or Zn(II) these disappeared and only bumping events were recorded. Suprisingly, addition of Mn(II) caused an increase in translocation events to about 64%. Thus, conformational changes to prions upon binding metal ions are readily observed by nanopore analysis.
Collapse
Affiliation(s)
- Radu I Stefureac
- Department of Biochemistry, Health Sciences Building, 107 Wiggins Road, University of Saskatchewan, SK S7N 5E5, Canada
| | | | | | | |
Collapse
|
36
|
Wang HY, Ying YL, Li Y, Long YT. Peering into Biological Nanopore: A Practical Technology to Single-Molecule Analysis. Chem Asian J 2010; 5:1952-61. [DOI: 10.1002/asia.201000279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Abstract
When a voltage is imposed across a thin membrane containing a nanoscopic pore, the electric field generated within the pore captures linear ionized polymers, such as nucleic acids, that are present in the solution bathing the pore. The nucleic acid molecule transiently blocks ionic current as it is translocated through the pore, and modulations of the current provide information about the structure and dynamic motion of the molecule. Altering the imposed voltage allows movement of the DNA molecule in the pore to be controlled. If a DNA-processing enzyme such as an exonuclease or polymerase is present, the enzyme-DNA complex is also drawn to the pore, and further modulations of the ionic current reflect enzyme function at the single-molecule level on millisecond timescales. The combined enzymatic and voltage control of a DNA molecule in the nanopore can be used to sequence the DNA.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA.
| |
Collapse
|
38
|
Timp W, Mirsaidov UM, Wang D, Comer J, Aksimentiev A, Timp G. Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2010; 9:281-294. [PMID: 21572978 PMCID: PMC3092306 DOI: 10.1109/tnano.2010.2044418] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sequencing a single molecule of deoxyribonucleic acid (DNA) using a nanopore is a revolutionary concept because it combines the potential for long read lengths (>5 kbp) with high speed (1 bp/10 ns), while obviating the need for costly amplification procedures due to the exquisite single molecule sensitivity. The prospects for implementing this concept seem bright. The cost savings from the removal of required reagents, coupled with the speed of nanopore sequencing places the $1000 genome within grasp. However, challenges remain: high fidelity reads demand stringent control over both the molecular configuration in the pore and the translocation kinetics. The molecular configuration determines how the ions passing through the pore come into contact with the nucleotides, while the translocation kinetics affect the time interval in which the same nucleotides are held in the constriction as the data is acquired. Proteins like α-hemolysin and its mutants offer exquisitely precise self-assembled nanopores and have demonstrated the facility for discriminating individual nucleotides, but it is currently difficult to design protein structure ab initio, which frustrates tailoring a pore for sequencing genomic DNA. Nanopores in solid-state membranes have been proposed as an alternative because of the flexibility in fabrication and ease of integration into a sequencing platform. Preliminary results have shown that with careful control of the dimensions of the pore and the shape of the electric field, control of DNA translocation through the pore is possible. Furthermore, discrimination between different base pairs of DNA may be feasible. Thus, a nanopore promises inexpensive, reliable, high-throughput sequencing, which could thrust genomic science into personal medicine.
Collapse
Affiliation(s)
- Winston Timp
- Center for Epigenetics, Department of Medicine, Johns Hopkins University, Baltimore, MD21205 USA
| | | | - Deqiang Wang
- University of Notre Dame, South Bend, IN 46556 USA
| | | | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Gregory Timp
- University of Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|
39
|
Affiliation(s)
- Long Ma
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UK
| | | |
Collapse
|
40
|
Efcavitch JW, Thompson JF. Single-molecule DNA analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:109-128. [PMID: 20636036 DOI: 10.1146/annurev.anchem.111808.073558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ability to detect single molecules of DNA or RNA has led to an extremely rich area of exploration of the single most important biomolecule in nature. In cases in which the nucleic acid molecules are tethered to a solid support, confined to a channel, or simply allowed to diffuse into a detection volume, novel techniques have been developed to manipulate the DNA and to examine properties such as structural dynamics and protein-DNA interactions. Beyond the analysis of the properties of nucleic acids themselves, single-molecule detection has enabled dramatic improvements in the throughput of DNA sequencing and holds promise for continuing progress. Both optical and nonoptical detection methods that use surfaces, nanopores, and zero-mode waveguides have been attempted, and one optically based instrument is already commercially available. The breadth of literature related to single-molecule DNA analysis is vast; this review focuses on a survey of efforts in molecular dynamics and nucleic acid sequencing.
Collapse
|
41
|
Madampage CA, Andrievskaia O, Lee JS. Nanopore detection of antibody prion interactions. Anal Biochem 2010; 396:36-41. [DOI: 10.1016/j.ab.2009.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/24/2022]
|
42
|
Abstract
We present a Langevin dynamics simulation study of enzyme-modulated translocation of a single-stranded DNA molecule through a cylindrical nanopore. The toroidal-shaped enzyme placed along the axis of the pore, threads a DNA molecule at a constant rate. As a result of this controlled release process, the length of DNA available for translocation varies with time. We examine the effect of time-dependent conformational entropy of the DNA on the translocation process. In addition, we also examine the effects of both the separation between the exonuclease and the pore, and the rate at which DNA is released by the enzyme. Our results indicate that the separation distance primarily influences the entry of the DNA into the pore. The length of the DNA released by the exonuclease that is most likely to enter the pore is nearly equal to separation distance between the pore and the exonuclease despite the flexibility of the polymer. However, the speed at which the DNA translocates through the nanopore is solely determined by the rate at which the exonuclease releases the DNA. We find that the translocation velocity is directly proportional to the rate of release.
Collapse
Affiliation(s)
- Ajay S. Panwar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - M. Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
43
|
Gyarfas B, Olasagasti F, Benner S, Garalde D, Lieberman KR, Akeson M. Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5 A resolution. ACS NANO 2009; 3:1457-1466. [PMID: 19489560 DOI: 10.1021/nn900303g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA polymerases are molecular motors that catalyze template-dependent DNA replication, advancing along template DNA by one nucleotide with each catalytic cycle. Nanopore-based measurements have emerged as a single molecule technique for the study of these enzymes. Using the alpha-hemolysin nanopore, we determined the position of DNA templates bearing inserts of abasic (1',2'-dideoxy) residues, bound to the Klenow fragment of Escherichia coli DNA polymerase I (KF) or to bacteriophage T7 DNA polymerase. Hundreds of individual polymerase complexes were analyzed at 5 A precision within minutes. We generated a map of current amplitudes for DNA-KF-deoxynucleoside triphosphate (dNTP) ternary complexes, using a series of templates bearing blocks of three abasic residues that were displaced by approximately 5 A in the nanopore lumen. Plotted as a function of the distance of the abasic insert from n = 0 in the active site of the enzyme held atop the pore, this map has a single peak. The map is similar when the primer length, the DNA sequences flanking the abasic insert, and the DNA sequences in the vicinity of the KF active site are varied. Primer extension catalyzed by KF using a three abasic template in the presence of a mixture of dNTPs and 2',3'-dideoxynucleoside triphosphates resulted in a ladder of ternary complexes with discrete amplitudes that closely corresponded to this map. An ionic current map measured in the presence of 0.15 M KCl mirrored the map obtained with 0.3 M KCl, permitting experiments with a broader range of mesophilic DNA and RNA processing enzymes. We used the abasic templates to show that capture of complexes with the KF homologue, T7 DNA polymerase, yields an amplitude map nearly indistinguishable from the KF map.
Collapse
Affiliation(s)
- Brett Gyarfas
- Department of Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wilson NA, Abu-Shumays R, Gyarfas B, Wang H, Lieberman KR, Akeson M, Dunbar WB. Electronic control of DNA polymerase binding and unbinding to single DNA molecules. ACS NANO 2009; 3:995-1003. [PMID: 19338283 PMCID: PMC2708927 DOI: 10.1021/nn9000897] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
DNA polymerases catalyze template-dependent genome replication. The assembly of a high affinity ternary complex between these enzymes, the double strand-single strand junction of their DNA substrate, and the deoxynucleoside triphosphate (dNTP) complementary to the first template base in the polymerase active site is essential to this process. We present a single molecule method for iterative measurements of DNA-polymerase complex assembly with high temporal resolution, using active voltage control of individual DNA substrate molecules tethered noncovalently in an alpha-hemolysin nanopore. DNA binding states of the Klenow fragment of Escherichia coli DNA polymerase I (KF) were diagnosed based upon their ionic current signature, and reacted to with submillisecond precision to execute voltage changes that controlled exposure of the DNA substrate to KF and dNTP. Precise control of exposure times allowed measurements of DNA-KF complex assembly on a time scale that superimposed with the rate of KF binding. Hundreds of measurements were made with a single tethered DNA molecule within seconds, and dozens of molecules can be tethered within a single experiment. This approach allows statistically robust analysis of the assembly of complexes between DNA and RNA processing enzymes and their substrates at the single molecule level.
Collapse
Affiliation(s)
- Noah A. Wilson
- Department of Computer Engineering, University of California, Santa Cruz
| | - Robin Abu-Shumays
- Department of Computer Engineering, University of California, Santa Cruz
| | - Brett Gyarfas
- Department of Computer Engineering, University of California, Santa Cruz
| | - Hongyun Wang
- Department of Applied Mathematics and Statistics, University of California, Santa Cruz
| | - Kate R. Lieberman
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | - Mark Akeson
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | - William B. Dunbar
- Department of Computer Engineering, University of California, Santa Cruz
| |
Collapse
|