1
|
Abramchuk D, Voskresenskaya A, Kuzmichev I, Erofeev A, Gorelkin P, Abakumov M, Beloglazkina E, Krasnovskaya O. BODIPY in Alzheimer's disease diagnostics: A review. Eur J Med Chem 2024; 276:116682. [PMID: 39053190 DOI: 10.1016/j.ejmech.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Timely diagnosis and therapy of Alzheimer's disease remains one of the greatest questions in medicinal chemistry of neurodegenerative disease. The lack of low-cost sensors capable of reliable detection of structural changes in AD-related proteins is the driving factor for the development of novel molecules with affinity for AD hallmarks. The development of cheap, safe diagnostic methods is a highly sought-after area of research. Optical fluorescent probes are of great interest due to their non-radioactivity, low cost, and ability of the real-time visualization of AD hallmarks. Boron dipyrromethene (BODIPY)-based fluorophore is one promising fluorescent unit for in vivo labeling due to its high photostability, easy modification, low toxicity, and cell-permeability. In recent years, many fluorescent BODIPY-based probes capable of Aβ plaque, Aβ soluble oligomers, neurofibrillary tangles (NFT) optical detection, as well as probes with copper ion chelating units and viscosity sensors have been developed. In this review, we summarized BODIPY derivatives as fluorescent sensors capable of detecting pathological features of Alzheimer's disease, published from 2009 to 2023, as well as their design strategies, optical properties, and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Daniil Abramchuk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Alevtina Voskresenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Ilia Kuzmichev
- V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinsky per. 23, 119034, Moscow, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Maxim Abakumov
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia; Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova str., 1, 6, 117997, Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia.
| |
Collapse
|
2
|
Zhou C, Zeng F, Yang H, Liang Z, Xu G, Li X, Liu X, Yang J. Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:2953-2969. [PMID: 38502215 DOI: 10.1007/s00259-024-06690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD. METHODS We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed. RESULTS NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD. CONCLUSIONS Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.
Collapse
Affiliation(s)
- Can Zhou
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fantian Zeng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Haijun Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zeying Liang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guanyu Xu
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Xingdang Liu
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Jian Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Teppang KL, Zhao Q, Yang J. Development of fluorophores for the detection of oligomeric aggregates of amyloidogenic proteins found in neurodegenerative diseases. Front Chem 2023; 11:1343118. [PMID: 38188930 PMCID: PMC10766704 DOI: 10.3389/fchem.2023.1343118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease are the two most common neurodegenerative diseases globally. These neurodegenerative diseases have characteristic late-stage symptoms allowing for differential diagnosis; however, they both share the presence of misfolded protein aggregates which appear years before clinical manifestation. Historically, research has focused on the detection of higher-ordered aggregates (or amyloids); however, recent evidence has shown that the oligomeric state of these protein aggregates plays a greater role in disease pathology, resulting in increased efforts to detect oligomers to aid in disease diagnosis. In this review, we summarize some of the exciting new developments towards the development of fluorescent probes that can detect oligomeric aggregates of amyloidogenic proteins present in Alzheimer's and Parkinson's disease patients.
Collapse
Affiliation(s)
| | | | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Mei X, Luo W, Li H, Pu S. Synthesis and photophysical investigation of Schiff base as a Mg 2+ and Zn 2+ fluorescent chemosensor and its application. LUMINESCENCE 2023; 38:250-259. [PMID: 36649122 DOI: 10.1002/bio.4443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
In view of the fluorescent switching properties and anti-fatigue properties of diarylethene, a diarylethene fluorescent chemosensor for the immediate detection of zinc ion (Zn2+ ) and magnesium ion (Mg2+ ) in acetonitrile was synthesized in this article. The structure of 1o was determined by performing spectroscopy and elemental analysis. The presence of Zn2+ or Mg2+ made the chemosensor 1o show an obvious "turn-on" fluorescent signal (bright yellow-green for Mg2+ and bright cyan for Zn2+ ). The fluorescent change caused by the 1:1 binding of 1o and Zn2+ or Mg2+ might be due to hindering the excited-state intramolecular proton transfer (ESIPT) process, which were bolstered by Benesi-Hildebrand analysis, Job's plot curves, proton nuclear magnetic resonance (1 H-NMR) titration and mass spectrometry. The limits of detection were acquired from the standard curve plots for Mg2+ at 44.6 nM and for Zn2+ at 14 nM. Based on the fluorescent behaviors, a logic gate was constructed with the emission intensity at 528/518 nm as output signal, the ultraviolet-visible (UV-vis) lights, Mg2+ /Zn2+ and EDTA as input signals. Exogenous Zn2+ and Mg2+ fluorescent bioimaging were performed on Hela cells with 1o, indicating its potential application in biodiagnostic analysis. In particular, 1o was manufactured into test paper, and Zn2+ or Mg2+ can be conveniently, efficiently and qualitatively identified by the fluorescent color variation of the test strips.
Collapse
Affiliation(s)
- Xin Mei
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China
| | - Wentao Luo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China
| | - Hui Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China.,Department of Ecology and Environment, Yuzhang Normal University, Nanchang, P. R. China
| |
Collapse
|
5
|
Coordination of Distal Carboxylate Anion Alters Metal Ion Specific Binding in Imidazo[1,2-a]pyridine Congeners. J Fluoresc 2023:10.1007/s10895-022-03122-x. [PMID: 36705793 DOI: 10.1007/s10895-022-03122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2023]
Abstract
Imidazo[1,2-a]pyridine derivatives have excellent potential for chelation with transition metal ions. Two new imidazo[1,2-a]pyridine-8-carboxylates were synthesized and characterized by 1H NMR, 13C NMR, HRMS, and single crystal-XRD techniques. Methyl carboxylate (probe 1) turns on fluorescence upon coordination with Zn2+, while sodium carboxylate (probe 2) turns off its fluorescence upon coordination with Co2+ or Cu2+ ions present in aqueous acetonitrile medium. 13C NMR study revealed that the change in metal ion specific binding was due to the involvement of carboxylate anion in complex formation with Co2+ or Cu2+ ions. The carboxylate anion at 8-position also enhanced the sensitivity of detection of probe 2 by an order of magnitude (detection limits: 3.804 × 10-7 M, probe 1/Zn2+; 0.420 × 10-7 M, probe 2/Co2+ and 0.304 × 10-7 M, probe 2/Cu2+). The detection limits of probes 1 and 2 comply well with the World Health Organization (WHO) and US Environmental Protection Agency (US-EPA) guidelines for detection of heavy metal ions present in drinking water and ground water. Both the probes form a 1:1 complex with Zn2+, Co2+ or Cu2+, and the stoichiometry was verified by Job plot and ESI-mass analysis. The sensing mechanism is explained using 13C NMR experiments, ESI-mass analytical data and theoretical DFT calculations. The suitability of probes 1 and 2 for on-site detection and quantitative determination of Zn2+, Co2+ and Cu2+ ions present in biological, environmental and industrial samples is demonstrated. In addition, both 1 and 2 are used for detection of intracellular contamination of Zn2+, Co2+ or Cu2+ ions in onion epidermal cells.
Collapse
|
6
|
Mandal D, Hussain Z, Luo YA, Wu Y, Stephan DW. Transient hydroboration and hydroalumination of activated azo-species: avenues to NBO and NAlO-heterobicycles. Chem Commun (Camb) 2023; 59:780-783. [PMID: 36562320 DOI: 10.1039/d2cc06207k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactions of the boranes, BH(C6F5)2 or 9-BBN, with azodicarboxylates or an azodicarbonylamide provide facile access to NBO heterocyclic compounds. The products [(C6F5)2BOC(X)N]2 X = OEt 1, OiPr 2, OCH2CCl33, OCH2Ph 4, NC5H105) and [(9-BBN)OC(X)N]2 (X = OEt 6, OiPr 7, NC5H108) and [Ph2B)OC(OtBu)N]29 were prepared. In another variation, (nacnac)AlH2 (nacnac = (C6H3iPr2NC(Me))2CH) afforded the Al-heterobicycle [(nacnac)Al(H)OC(OEt)N]210. The mechanism for the formation of these products is proposed to involve transient hydroboration or hydroalumination of the NN double bond.
Collapse
Affiliation(s)
- Dipendu Mandal
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China. .,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Zahid Hussain
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China.
| | - Yong-An Luo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China.
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China. .,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
7
|
Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. J Inorg Biochem 2023; 238:112027. [PMID: 36345068 DOI: 10.1016/j.jinorgbio.2022.112027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases.
Collapse
|
8
|
Xie T, Li Y, Tian C, Yuan C, Dai B, Wang S, Zhou K, Liu J, Tan H, Liang Y, Dai J, Chen B, Cui M. Fused Cycloheptatriene–BODIPY Is a High-Performance Near-Infrared Probe to Image Tau Tangles. J Med Chem 2022; 65:14527-14538. [DOI: 10.1021/acs.jmedchem.2c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianxin Xie
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chuan Tian
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Yuan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bin Dai
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Shubo Wang
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, China
| | - Kaixiang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiaqi Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Baian Chen
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
9
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
10
|
Mallesh R, Khan J, Pradhan K, Roy R, Jana NR, Jaisankar P, Ghosh S. Design and Development of Benzothiazole-Based Fluorescent Probes for Selective Detection of Aβ Aggregates in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2503-2516. [PMID: 35926183 DOI: 10.1021/acschemneuro.2c00361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The formation and accumulation of amyloid beta (Aβ) peptide are considered the crucial events that are responsible for the progression of Alzheimer's disease (AD). Herein, we have designed and synthesized a series of fluorescent probes by using electron acceptor-donor end groups interacting with a π-conjugating system for the detection of Aβ aggregates. The chemical structure of these probes denoted as RMs, having a conjugated π-system (C═C), showed a maximum emission in PBS (>600 nm), which is the best range for a fluorescent imaging probe. Among all these probes, RM-28 showed an excellent fluorescence property with an emission maximum of >598 nm upon binding to Aβ aggregates. RM-28 also showed high sensitivity (7.5-fold) and high affinities toward Aβ aggregates (Kd = 175.69 ± 4.8 nM; Ka = 0.5 × 107 M-1). It can cross the blood-brain barrier of mice efficiently. The affinity of RM-28 toward Aβ aggregates was observed in 3xTg-AD brain sections of the hippocampus and cortex region using a fluorescent imaging technique, as well as an in vitro fluorescence-based binding assay with Aβ aggregates. Moreover, RM-28 is highly specific to Aβ aggregates and does not bind with intracellular proteins like bovine serum albumin (BSA) and α-synuclein (α-Syn) aggregates. The results indicate that the probe RM-28 emerges as an efficient and veritable highly specific fluorescent probe for the detection of Aβ aggregates in both in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Rathnam Mallesh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Krishnangsu Pradhan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Nihar Ranjan Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Parasuraman Jaisankar
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
11
|
Kuang Q, Hu X, Li Y, Shang S, Huang X, Liao S, Song Y, Ma W, Li S, Liu A, Liu X, Zhang X, Yuan J. A rapid construction of new boron heterocycles and evaluation of photophysical properties of iminoboronates. Org Biomol Chem 2022; 20:6413-6417. [PMID: 35876433 DOI: 10.1039/d2ob01083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and efficient method for the synthesis of oxadiazaborole, dioxazaborinine, and oxadiazaborinine from the reactions of phenylboronic acid with amidoxime, α-hydroxyl oxime and α-hydroxyl hydrazone, respectively, is described. The reactions were performed under catalyst-free and mild conditions. All products can be rapidly purified by filtration and washing. In addition, a set of iminoboronates were prepared following a one-pot multicomponent reaction procedure using α-hydroxyl hydrazone, salicylaldehyde and boronic acid derivatives as starting materials and their photophysical properties were assessed. Then, cross-coupling reactions can be carried out smoothly on some target compounds, which may help develop new boron masking strategies.
Collapse
Affiliation(s)
- Qiulin Kuang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xueyuan Hu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yanwu Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Suqin Shang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xin Huang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Siwei Liao
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yibo Song
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Wanqian Ma
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Suzhen Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Aqin Liu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xiaoling Liu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xiuyu Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Rai H, Gupta S, Kumar S, Yang J, Singh SK, Ran C, Modi G. Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease. J Med Chem 2022; 65:8550-8595. [PMID: 35759679 DOI: 10.1021/acs.jmedchem.1c01619] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A person suspected of having Alzheimer's disease (AD) is clinically diagnosed for the presence of principal biomarkers, especially misfolded amyloid-beta (Aβ) and tau proteins in the brain regions. Existing radiotracer diagnostic tools, such as PET imaging, are expensive and have limited availability for primary patient screening and pre-clinical animal studies. To change the status quo, small-molecular near-infrared (NIR) probes have been rapidly developed, which may serve as an inexpensive, handy imaging tool to comprehend the dynamics of pathogenic progression in AD and assess therapeutic efficacy in vivo. This Perspective summarizes the biochemistry of Aβ and tau proteins and then focuses on structurally diverse NIR probes with coverages of their spectroscopic properties, binding affinity toward Aβ and tau species, and theranostic effectiveness. With the summarized information and perspective discussions, we hope that this paper may serve as a guiding tool for designing novel in vivo imaging fluoroprobes with theranostic capabilities in the future.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sushil K Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| |
Collapse
|
13
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
14
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
15
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Nakamura T. Development of Artificial Receptors Based on Assembly of Metal Complex Units and Desymmetrization of Molecular Components. CHEM LETT 2021. [DOI: 10.1246/cl.210418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
17
|
A highly selective turn-on fluorescent chemosensor for detecting zinc ions in living cells using symmetrical pyrene system. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Elbatrawy AA, Hyeon SJ, Yue N, Osman EEA, Choi SH, Lim S, Kim YK, Ryu H, Cui M, Nam G. "Turn-On" Quinoline-Based Fluorescent Probe for Selective Imaging of Tau Aggregates in Alzheimer's Disease: Rational Design, Synthesis, and Molecular Docking. ACS Sens 2021; 6:2281-2289. [PMID: 34115933 DOI: 10.1021/acssensors.1c00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tau aggregation is believed to have a strong association with the level of cognitive deficits in Alzheimer's disease (AD). Thus, optical brain imaging of tau aggregates has recently gained substantial attention as a promising tool for the early diagnosis of AD. However, selective imaging of tau aggregates is a major challenge due to sharing similar β-sheet structures with homologous Aβ fibrils. Herein, four quinoline-based fluorescent probes (Q-tau) were judiciously designed using the donor-acceptor architecture for selective imaging of tau aggregates. In particular, probe Q-tau 4 exhibited a strong intramolecular charge transfer and favorable photophysical profile, such as a large Stokes' shift and fluorescence emission wavelength of 630 nm in the presence of tau aggregates. The probe also displayed a "turn-on" fluorescence behavior toward tau fibrils with a 3.5-fold selectivity versus Aβ fibrils. In addition, Q-tau 4 exhibited nanomolar binding affinity to tau aggregates (Kd = 16.6 nM), which was 1.4 times higher than that for Aβ fibrils. The mechanism of "turn-on" fluorescence was proposed to be an environment-sensitive molecular rotor-like response. Moreover, ex vivo labeling of human AD brain sections demonstrated favorable colocalization of Q-tau 4 and the phosphorylated tau antibody, while comparable limited staining was observed with Aβ fibrils. Molecular docking was conducted to obtain insights into the tau-binding mode of the probe. Collectively, Q-tau 4 has successfully been used as a tau-specific fluorescent imaging agent with lower background interference.
Collapse
Affiliation(s)
- Ahmed A. Elbatrawy
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seung Jae Hyeon
- Brain Gene Regulation and Epigenetics (BINGRE) Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nan Yue
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Essam Eldin A. Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-kasr Elaini Street, Cairo 11562, Egypt
| | - Seung Hyeo Choi
- Brain Gene Regulation and Epigenetics (BINGRE) Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sungsu Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yun Kyung Kim
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Ryu
- Brain Gene Regulation and Epigenetics (BINGRE) Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Boston University Alzheimer’s Disease Research Center (BUADRC), Boston University School of Medicine, Boston 02118, United States
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ghilsoo Nam
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
19
|
Cabral AD, Radu TB, de Araujo ED, Gunning PT. Optical chemosensors for the detection of proximally phosphorylated peptides and proteins. RSC Chem Biol 2021; 2:815-829. [PMID: 34458812 PMCID: PMC8341930 DOI: 10.1039/d1cb00055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Proximal multi-site phosphorylation is a critical post-translational modification in protein biology. The additive effects of multiple phosphosite clusters in close spatial proximity triggers integrative and cooperative effects on protein conformation and activity. Proximal phosphorylation has been shown to modulate signal transduction pathways and gene expression, and as a result, is implicated in a broad range of disease states through altered protein function and/or localization including enzyme overactivation or protein aggregation. The role of proximal multi-phosphorylation events is becoming increasingly recognized as mechanistically important, although breakthroughs are limited due to a lack of detection technologies. To date, there is a limited selection of facile and robust sensing tools for proximal phosphorylation. Nonetheless, there have been considerable efforts in developing optical chemosensors for the detection of proximal phosphorylation motifs on peptides and proteins in recent years. This review provides a comprehensive overview of optical chemosensors for proximal phosphorylation, with the majority of work being reported in the past two decades. Optical sensors, in the form of fluorescent and luminescent chemosensors, hybrid biosensors, and inorganic nanoparticles, are described. Emphasis is placed on the rationale behind sensor scaffolds, relevant protein motifs, and applications in protein biology.
Collapse
Affiliation(s)
- Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
20
|
Wu S, Ma X, Wang Y, Zhou J, Li X, Wang X. A novel fluorescent BODIPY-based probe for detection of Cu 2+ and H 2S based on displacement approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119330. [PMID: 33378736 DOI: 10.1016/j.saa.2020.119330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
A new BODIPY-based fluorescent probe (BC-DPA) was prepared by a simple method for Cu2+ detection in aqueous media and living cells. BC-DPA displayed excellent selectivity toward Cu2+via fluorescence "turn-off" mode when a mononuclear Cu(Ⅱ) complex is formed. The corresponding BC-DPA-Cu(Ⅱ) complex, whose structure was characterized by X-ray crystallography, has Cu(Ⅱ) in a distorted octahedral geometry. On the basis of the displacement approach, the fluorescence of BC-DPA-Cu2+ was recovered in the presence of S2-, which allowed the system to act as a sensitive "turn-on" sensor for hydrogen sulfide. Furthermore, BC-DPA exhibited noticeable permeability and low cytotoxicity, making it a useful tool to detect Cu2+ in biosystems.
Collapse
Affiliation(s)
- Shasha Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xiaoyan Ma
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China
| | - Yujing Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Jie Zhou
- Large Instruments Sharing Service Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Xianghua Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xiaobo Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
21
|
Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213553] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Nakamura T, Feng RY, Nabeshima T. A Sandwich‐Shaped Hexanuclear Silver Complex with a Giant Cavity Constructed from a Macrocycle with Inward Chelating Units. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305–8571 Japan
| | - Rui Yun Feng
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305–8571 Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305–8571 Japan
| |
Collapse
|
23
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
24
|
Dzyuba SV. BODIPY Dyes as Probes and Sensors to Study Amyloid-β-Related Processes. BIOSENSORS 2020; 10:E192. [PMID: 33260945 PMCID: PMC7760207 DOI: 10.3390/bios10120192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Amyloid formation plays a major role in a number of neurodegenerative diseases, including Alzheimer's disease. Amyloid-β peptides (Aβ) are one of the primary markers associated with this pathology. Aβ aggregates exhibit a diverse range of morphologies with distinct pathological activities. Recognition of the Aβ aggregates by using small molecule-based probes and sensors should not only enhance understanding of the underlying mechanisms of amyloid formation, but also facilitate the development of therapeutic strategies to interfere with amyloid neurotoxicity. BODIPY (boron dipyrrin) dyes are among the most versatile small molecule fluorophores. BODIPY scaffolds could be functionalized to tune their photophysical properties to the desired ranges as well as to adapt these dyes to various types of conditions and environments. Thus, BODIPY dyes could be viewed as unique platforms for the design of probes and sensors that are capable of detecting and tracking structural changes of various Aβ aggregates. This review summarizes currently available examples of BODIPY dyes that have been used to investigate conformational changes of Aβ peptides, self-assembly processes of Aβ, as well as Aβ interactions with various molecules.
Collapse
Affiliation(s)
- Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|
25
|
Klenner MA, Pascali G, Massi M, Fraser BH. Fluorine‐18 Radiolabelling and Photophysical Characteristics of Multimodal PET–Fluorescence Molecular Probes. Chemistry 2020; 27:861-876. [DOI: 10.1002/chem.202001402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Mitchell A. Klenner
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Giancarlo Pascali
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- Prince of Wales Hospital Barker St Randwick NSW 2031 Australia
- University of New South Wales Sydney (UNSW) Kensington NSW 2052 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Benjamin H. Fraser
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
| |
Collapse
|
26
|
Jiao SY, Kong LM, Liu GQ, Jia X, Tian J, Liu YG, Zhang LX, Zhang WX, Li YH, Huang Z. A simple and an easy-to-synthesize turn-on fluorescent probe for rapid detection of Zn2+ and its application in bioimaging. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Farinone M, Urbańska K, Pawlicki M. BODIPY- and Porphyrin-Based Sensors for Recognition of Amino Acids and Their Derivatives. Molecules 2020; 25:E4523. [PMID: 33023164 PMCID: PMC7583766 DOI: 10.3390/molecules25194523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular recognition is a specific non-covalent and frequently reversible interaction between two or more systems based on synthetically predefined character of the receptor. This phenomenon has been extensively studied over past few decades, being of particular interest to researchers due to its widespread occurrence in biological systems. In fact, a straightforward inspiration by biological systems present in living matter and based on, e.g., hydrogen bonding is easily noticeable in construction of molecular probes. A separate aspect also incorporated into the molecular recognition relies on the direct interaction between host and guest with a covalent bonding. To date, various artificial systems exhibiting molecular recognition and based on both types of interactions have been reported. Owing to their rich optoelectronic properties, chromophores constitute a broad and powerful class of receptors for a diverse range of substrates. This review focuses on BODIPY and porphyrin chromophores as probes for molecular recognition and chiral discrimination of amino acids and their derivatives.
Collapse
Affiliation(s)
| | | | - Miłosz Pawlicki
- Wydział Chemii, Uniwersytet Wrocławski, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.F.); (K.U.)
| |
Collapse
|
28
|
Musib D, Devi LR, Raza MK, Chanu SB, Roy M. A New Thiophene-based Aggregation-induced Emission Chemosensor for Selective Detection of Zn2+ Ions and Its Turn Off. CHEM LETT 2020. [DOI: 10.1246/cl.200001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dulal Musib
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - L. Reena Devi
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, Karnataka, India
| | - S. Binita Chanu
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| |
Collapse
|
29
|
Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular Tools to Detect Alloforms of Aβ and Tau: Implications for Multiplexing and Multimodal Diagnosis of Alzheimer’s Disease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshit Arora
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
- VNIR Biotechnologies Pvt. Ltd., Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
30
|
Gyasi YI, Pang YP, Li XR, Gu JX, Cheng XJ, Liu J, Xu T, Liu Y. Biological applications of near infrared fluorescence dye probes in monitoring Alzheimer’s disease. Eur J Med Chem 2020; 187:111982. [DOI: 10.1016/j.ejmech.2019.111982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023]
|
31
|
Cho HJ, Kim T, Kim H, Song C. Solid-State Emissive Metallo-Supramolecular Assemblies of Quinoline-Based Acyl Hydrazone. SENSORS (BASEL, SWITZERLAND) 2020; 20:E600. [PMID: 31973170 PMCID: PMC7037554 DOI: 10.3390/s20030600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Development of fluorescence-based sensory materials for metal elements is currently in the mainstream of research due to the simplicity and usability of fluorescence as a method of detection. Herein, we report a novel "bis"-quinoline-based acyl hydrazone-named bQH that could be synthesized by a facile, low-cost method through simple condensation of hydrazide with an aldehyde. This acyl hydrazone showed emissive properties through Zn selective binding, especially in its solid-state, as shown by experiments such as UV-Vis, photoluminescence (PL), nuclear magnetic resonance (NMR), and inductively-coupled plasma-optical emission spectroscopies (ICP-OES), and energy-dispersive X-ray spectroscopy (EDS) mapping. The binding modes in which bQH coordinates to Zn2+ was proved to consist of two modes, 1:1 and 1:2 (bQH:Zn2+), where the binding mode was controlled by the Zn2+ ion content. Under the 1:1 binding mode, bQH-Zn2+ complexes formed a polymeric array through the metallo-supramolecular assembly. The resulting bQH-Zn2+ complex maintained its fluorescence in solid-state and exhibited excellent fluorescence intensity as compared to the previously reported quinoline-based acyl hydrazone derivative (mQH).
Collapse
Affiliation(s)
| | | | | | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (H.J.C.); (T.K.); (H.K.)
| |
Collapse
|
32
|
Chen H, Yang P, Li Y, Zhang L, Ding F, He X, Shen J. Insight into triphenylamine and coumarin serving as copper (II) sensors with "OFF" strategy and for bio-imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117384. [PMID: 31336321 DOI: 10.1016/j.saa.2019.117384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Chemosensing is one of the widest and powerful techniques for response to anions and cations in living systems serving as bio-probes. Meanwhile, copper(II) (Cu(II)) widely exists in the environment and the human body as a common trace element, which plays an necessary role in most physiological processes. Thus, it is extremely urgent to explore means for effective, rapid and convenient detection of Cu(II) in living cells. Herein, we introduce a novel strategy for designing triphenylamine (TS) and coumarin-based (CS) functional sensors for Cu(II) detection with fluorescence "OFF" switching mechanism by blocking intramolecular charge transfer (ICT). Based on this design strategy, we have demonstrated two kinds of fluorophores sensors with aunique new fluorescent dye and excellent photophysical properties, which have shown rapid recognition of Cu(II) via a stoichiometric ratio of 2:1 and the proposed binding mode was confirmed by the single-crystal structure of CS-Cu(II) complex. In addition, we have carried out density functional theory (DFT) calculation with the B3LYP exchange functional employing RB3LYP/6-31G basis sets to get insight into the mechanism of Cu(II)-sensors alongside their optical properties. Furthermore, the sensors were capable of bio-imaging Cu(II) in living cancer cells (HepG2, A549 and Hela) with low cytotoxicity and good biocompatibility shown. Taken together, We expect that this novel strategy would provide new insight into the development of Cu(II) detection techniques and could be used more for biomedical applications.
Collapse
Affiliation(s)
- Hong Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Ping Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
33
|
Mateus P, Delgado R. Zinc(ii) and copper(ii) complexes as tools to monitor/inhibit protein phosphorylation events. Dalton Trans 2020; 49:17076-17092. [DOI: 10.1039/d0dt03503c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A perspective on the advance of copper(ii) and zinc(ii) complexes of varied ligand architectures as binders of phosphorylated peptides/proteins and as sensors of phosphorylation reactions is presented.
Collapse
Affiliation(s)
- Pedro Mateus
- Laboratorio Associado para a Química Verde (LAQV)
- Rede de Química e Tecnologia (REQUIMTE)
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa (ITQB NOVA)
- 2780-157 Oeiras
- Portugal
| |
Collapse
|
34
|
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020; 8:6179-6196. [DOI: 10.1039/d0tb00344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ as biomarker in Alzheimer’s disease (AD) drives the significant research efforts for developing different biosensors with different sensing strategies, materials, and mechanisms for Aβ detection.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Baiping Ren
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Dong Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Yonglan Liu
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Mingzhen Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Chao Zhao
- Department of Chemical and Biomolecular Engineering
- The University of Alabama
- USA
| | - Jie Zheng
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| |
Collapse
|
35
|
Singhal D, Althagafi I, Kumar A, Yadav S, Prasad AK, Pratap R. Thieno[3,2-c]pyran: an ESIPT based fluorescence “turn-on” molecular chemosensor with AIE properties for the selective recognition of Zn2+ ion. NEW J CHEM 2020. [DOI: 10.1039/d0nj02236e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thieno[3,2-c]pyran was synthesized as a fluorescent turn-on chemosensor for the selective recognition of Zn2+ ions with a low detection limit (0.67 μM), and it also exhibited AIE properties.
Collapse
Affiliation(s)
- Divya Singhal
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | | | - Ashish Kumar
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | - Saroj Yadav
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | - Ashok K. Prasad
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | - Ramendra Pratap
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| |
Collapse
|
36
|
Ojha B, Kumar A, Thorat KG, Ravikanth M. Synthesis and studies of crowned dipyrromethenes based macrocycles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Orts J, Aulikki Wälti M, Ghosh D, Campioni S, Saupe SJ, Riek R. Rational Structure-Based Design of Fluorescent Probes for Amyloid Folds. Chembiochem 2019; 20:1161-1166. [PMID: 30548150 DOI: 10.1002/cbic.201800664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 11/09/2022]
Abstract
Amyloid fibrils are pathological hallmarks of various human diseases, including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis (ALS or motor neurone disease), and prion diseases. Treatment of the amyloid diseases are hindered, among other factors, by timely detection and therefore, early detection of the amyloid fibrils would be beneficial for treatment against these disorders. Here, a small molecular fluorescent probe is reported that selectively recognize the fibrillar form of amyloid beta(1-42), α-synuclein, and HET-s(218-289) protein over their monomeric conformation. The rational design of the reporters relies on the well-known cross-β-sheet repetition motif, the key structural feature of amyloids.
Collapse
Affiliation(s)
- Julien Orts
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Marielle Aulikki Wälti
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Silvia Campioni
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.,Present address: Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Sven J Saupe
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, Université de Bordeaux, 1, rue Camille Saint Saëns, 33077, Bordeaux, France
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
38
|
Jun YW, Cho SW, Jung J, Huh Y, Kim Y, Kim D, Ahn KH. Frontiers in Probing Alzheimer's Disease Biomarkers with Fluorescent Small Molecules. ACS CENTRAL SCIENCE 2019; 5:209-217. [PMID: 30834309 PMCID: PMC6396189 DOI: 10.1021/acscentsci.8b00951] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 05/13/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The pathogenesis of the disease is associated with aggregated amyloid-β, hyperphosphorylated tau, a high level of metal ions, abnormal enzyme activities, and reactive astrocytes. This outlook gives an overview of fluorescent small molecules targeting AD biomarkers for ex vivo and in vivo imaging. These chemical imaging probes are categorized based on the potential biomarkers, and their pros and cons are discussed. Guidelines for designing new sensing strategies as well as the desirable properties to be pursued for AD fluorescence imaging are also provided.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic
of Korea
| | - Seo Won Cho
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic
of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology,
College of Medicine, Center for Converging
Humanities, and Biomedical Science Institute, Kyung Hee
University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Youngbuhm Huh
- Department of Anatomy and Neurobiology,
College of Medicine, Center for Converging
Humanities, and Biomedical Science Institute, Kyung Hee
University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - YoungSoo Kim
- Integrated
Science and Engineering Division, Department of Pharmacy, and Yonsei
Institute of Pharmaceutical Sciences, Yonsei
University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- (Y.K.)
E-mail:
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology,
College of Medicine, Center for Converging
Humanities, and Biomedical Science Institute, Kyung Hee
University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- (D.K.) E-mail:
| | - Kyo Han Ahn
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic
of Korea
- (K.H.A.) E-mail:
| |
Collapse
|
39
|
Ge L, Tian Y. Fluorescence Lifetime Imaging of p-tau Protein in Single Neuron with a Highly Selective Fluorescent Probe. Anal Chem 2019; 91:3294-3301. [DOI: 10.1021/acs.analchem.8b03992] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lihong Ge
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
40
|
Nakamura T, Yonemura S, Nabeshima T. Synthesis of per(5-N-carboxamide-5-dehydroxylmethyl)-β-cyclodextrins and their selective recognition ability utilizing multiple hydrogen bonds. Chem Commun (Camb) 2019; 55:3872-3875. [DOI: 10.1039/c9cc00517j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An amide cyclodextrin with anion recognition ability exhibits unique binding mode in which unsymmetrically arranged functional groups play distinctive roles.
Collapse
Affiliation(s)
- Takashi Nakamura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| | - Sota Yonemura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| | - Tatsuya Nabeshima
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
41
|
Khanvilkar AN, Bedekar AV. Optically pure 2-(quinolin-8-yloxy)cyclohexan-1-ol as a practical agent for molecular recognition by NMR and fluorescence spectroscopy. Chem Commun (Camb) 2018; 54:11037-11040. [PMID: 30215642 DOI: 10.1039/c8cc06245e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Optically pure 2-(quinolin-8-yloxy)cyclohexan-1-ol 1, obtained via simple chemical and bio-catalytic steps, was used as a chiral solvating agent for molecular recognition of the enantiomers of acids. The discrimination of isomers was detected by NMR or fluorescence spectroscopy. Isomers of α-substituted carboxylic acids, phosphoric acids, unprotected amino acids and dipeptides were efficiently detected, while the method can be used for quantitative determination for practical applications. Analysis of the crystal of (R,R)-1 (R)-mandelic acid established a three point supramolecular interaction.
Collapse
Affiliation(s)
- Aditya N Khanvilkar
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.
| | | |
Collapse
|
42
|
Zhang Y, Li Y, Su C, Barboiu M. Dynameric Frameworks with Aggregation-Induced Emission for Selective Detection of Adenosine Triphosphate. Chempluschem 2018; 83:506-513. [PMID: 31950657 DOI: 10.1002/cplu.201800173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/05/2018] [Indexed: 01/04/2023]
Abstract
Luminogenic materials with aggregation-induced emission (AIE) have attracted considerable interest for applications. If these systems aggregate, the free rotation of their scaffold is restricted, and as a consequence the photoluminescence increases. Herein, the first experimental observation of a "dynameric effect" on AIE is described. A comparison is made of the AIE of molecular and dynameric sensors that exhibit non-linear turn-on switching of fluorescence upon their interaction with adenosine triphosphate (ATP). Confirmation was obtained from the enhanced ATP detection with multivalent dynameric networks compared with a molecular sensor. The dynamic, reversible behaviour of the imine linkages is critical to produce this enhancement, as a static, imine-reduced, polymeric sensor showed decreased AIE activity. The dynameric frameworks showed selectivity for ATP over adenosine diphosphate, and adenosine monophosphate over guanosine triphosphate or cytidine triphosphate. Together, these results will accelerate the systematic discovery of efficient adaptive biomimetic sensors.
Collapse
Affiliation(s)
- Yan Zhang
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France.,School of Pharmaceutical Sciences, Jiangnan University, Lihu Road 1800, Wuxi, 214122, P. R. China
| | - Yuhao Li
- Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chengyong Su
- Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| |
Collapse
|
43
|
Lei ZY, Lee GH, Lai CK. Luminescent mesogenic borondifluoride complexes with the Schiff bases containing salicylideneamines and β-enaminoketones core systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
El-Sewify IM, Shenashen MA, Shahat A, Selim MM, Khalil MM, El-Safty SA. Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP. Molecules 2018. [PMID: 29534528 PMCID: PMC6017074 DOI: 10.3390/molecules23030635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The construction of supramolecular recognition systems based on specific host–guest interactions has been studied in order to design selective chemical sensors. In this study, guest-responsive receptors for ATP have been designed with cyclodextrins (CyDs) as a basic prototype of the turn-on type fluorescent indicator. We synthesized dipicolylamine (DPA)-modified CyD–Cu2+ complexes (Cu·1α, Cu·1β, and Cu·1γ), and evaluated their recognition capabilities toward phosphoric acid derivatives in water. The UV-Vis absorption and fluorescence spectra revealed that Cu·1β selectively recognized ATP over other organic and inorganic phosphates, and that β-CyD had the most suitable cavity size for complexation with ATP. The 1D and 2D NMR analyses suggested that the ATP recognition was based on the host–guest interaction between the adenine moiety of ATP and the CyD cavity, as well as the recognition of phosphoric moieties by the Cu2+–DPA complex site. The specific interactions between the CyD cavity and the nucleobases enabled us to distinguish ATP from other nucleoside triphosphates, such as guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). This study clarified the basic mechanisms of molecular recognition by modified CyDs, and suggested the potential for further application of CyDs in the design of highly selective supramolecular recognition systems for certain molecular targets in water.
Collapse
|
46
|
Delsuc N, Uchinomiya S, Ojida A, Hamachi I. A host-guest system based on collagen-like triple-helix hybridization. Chem Commun (Camb) 2018; 53:6856-6859. [PMID: 28604910 DOI: 10.1039/c7cc03055j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A strategy inspired by tweezer receptors has been employed to develop a new host-guest system. The hybridization into a collagen-like triple helix is the driving force for the recognition that occurs with high affinity and selectivity. Several systems have been screened to find the best host-guest pair and this strategy may be implemented for tag fused protein recognition.
Collapse
Affiliation(s)
- N Delsuc
- Laboratoire des Biomolécules, Département de Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | |
Collapse
|
47
|
Mesquita LM, Mateus P, Fernandes RDV, Iranzo O, André V, Tiago de Oliveira F, Platas-Iglesias C, Delgado R. Recognition of phosphopeptides by a dinuclear copper(ii) macrocyclic complex in a water : methanol 50 : 50 v/v solution. Dalton Trans 2018; 46:9549-9564. [PMID: 28702582 DOI: 10.1039/c7dt01724c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new triethylbenzene-derived tetraazamacrocycle containing pyridyl spacers, L, was prepared and its dinuclear copper(ii) complex was used as a receptor for the recognition of phosphorylated peptides in aqueous solution. A detailed study of the acid-base behaviour of L and its copper(ii) complexation properties as well as of the cascade species with phosphorylated anions including two peptidic substrates was carried out in a H2O/MeOH (50 : 50 v/v) solution using different techniques, such as potentiometry, X-band EPR and DFT calculations. The association constants of the dinuclear receptor with the phosphorylated peptides and other anionic species revealed a clear preference towards phenylic phosphorylated substrates, with values ranging 3.96-5.35 log units. Single-crystal X-ray diffraction determination of the dicopper(ii) complex of L showed the copper centres at a distance of 5.812(1) Å from one another, with the phosphate group of the PhPO42- substrate well accommodated between them. X-band EPR studies indicated a similar structure for this cascade complex and for the other cascade complexes with the phosphorylated anions studied. DFT studies of the [Cu2L(μ-OH)]3+ complex revealed a different conformation of the ligand that brings the two copper centres at a very short distance of 3.94 Å aided by the presence of a bridging hydroxide anion that provides a CuOCu angle of 167.3°. This complex is EPR silent, in line with the singlet ground state obtained using CASSCF(2,2) calculations and DFT calculations with the broken-symmetry approach. This species coexists in solution with a complex in a different conformation, and having a CuCu distance of 6.63 Å, in lower percentage.
Collapse
Affiliation(s)
- Lígia M Mesquita
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Pedro Mateus
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Rui D V Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Olga Iranzo
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipe Tiago de Oliveira
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte de Caparica, 2829-516 Caparica, Portugal
| | - Carlos Platas-Iglesias
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
48
|
Park KS, Yoo K, Kim MK, Jung W, Choi YK, Chong Y. A Novel Probe with a Chlorinated α-Cyanoacetophenone Acceptor Moiety Shows Near-Infrared Fluorescence Specific for Tau Fibrils. Chem Pharm Bull (Tokyo) 2018; 65:1113-1116. [PMID: 29199217 DOI: 10.1248/cpb.c17-00559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Development of a novel, tau-selective near-infrared fluorescence (NIRF) probe was attempted by combining the 3,5-dimethoxy-N,N-dimethylaniline-4-yl moiety with an α-cyanoacetophenone via hexatrienyl π-linker. In particular, for structure-activity relationship study of the α-cyanoacetophenones, a chlorine substituent was introduced to the aromatic ring to give a series of compounds (2a-2d). Among those, compound 2c with meta-chloro aryl substituent was identified as a tau-selective NIRF probe: selectivity for tau over amyloid β (Aβ) and bovine serum albumin (BSA) was estimated to be 10.3 and 19.5 fold, respectively. The mechanism for tau-selectivity of 2c was found to be based on the specific recognition of the microenviroment of tau fibrils, which was endowed by its molecular rotor-like properties. The tau-selective NIRF probe 2c was also able to stain tau fibrils in tau-green fluorescent protein (GFP)-transgenic human neuroblastoma cells (SH-SY5Y cells).
Collapse
Affiliation(s)
- Kwang-Su Park
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| | - Kyungha Yoo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| | - Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| | - Woong Jung
- Department of Emergency Medicine, Kyung Hee University Hospital at Gangdong
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| |
Collapse
|
49
|
Verwilst P, Kim HS, Kim S, Kang C, Kim JS. Shedding light on tau protein aggregation: the progress in developing highly selective fluorophores. Chem Soc Rev 2018; 47:2249-2265. [DOI: 10.1039/c7cs00706j] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of highly selective fluorophores for tau protein aggregates, a key feature of Alzheimer's disease, is highlighted.
Collapse
Affiliation(s)
| | | | - Soobin Kim
- Department of Chemistry
- Korea University
- Seoul 02841
- Korea
| | - Chulhun Kang
- The School of East-West Medical Science
- Kyung Hee University
- Yongin 17104
- Korea
| | | |
Collapse
|
50
|
Park KS, Kim MK, Seo Y, Ha T, Yoo K, Hyeon SJ, Hwang YJ, Lee J, Ryu H, Choo H, Chong Y. A Difluoroboron β-Diketonate Probe Shows "Turn-on" Near-Infrared Fluorescence Specific for Tau Fibrils. ACS Chem Neurosci 2017; 8:2124-2131. [PMID: 28737890 DOI: 10.1021/acschemneuro.7b00224] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tau aggregation in neuronal cells has recently received significant attention as a robust predictor of the progression of Alzheimer's disease (AD) because of its proven correlation with the degree of cognitive impairment in AD patients. Accordingly, noninvasive imaging of tau aggregates has been highlighted as a promising diagnostic tool for AD. We have previously identified a tau-specific "turn-on" near-infrared fluorescent (NIRF) probe (1), and, in this study, structural modification was performed to optimize its physicochemical as well as fluorescence properties. Thus, a series of fluorescent dyes (2a-2j) composed of a variously substituted difluoroboron β-diketonate and an N,N-dimethylaniline moiety linked by a length-extendable π-bridge were prepared. Among those, isobutyl-substituted difluoroboron β-ketonate with a π-conjugated 1,4-butadienyl linker (2e) showed the most promising properties as a tau-specific NIRF probe. Compared with 1, the "turn-on" fluorescence of 2e was more specific to tau fibrils, and it showed 8.8- and 6.2-times higher tau-over-Aβ and tau-over-BSA specificity, respectively. Also, the fluorescence intensity of 2e upon binding to tau fibrils was substantially higher (∼2.9 times) than that observed from 1. The mechanism for tau-specificity of 2e was investigated, which suggested that the molecular rotor-like property of 2e enables specific recognition of the microenvironment of tau aggregates to emit strong fluorescence. In transgenic cell lines stably expressing GFP-tagged tau proteins, 2e showed good colocalization with tau-GFP. Moreover, the fluorescence from 2e exhibited almost complete overlap with p-Tau antibody staining in the human AD brain tissue section. Collectively, these observations demonstrate the potential of 2e as a tau-specific fluorescent dye in both in vitro and ex vivo settings.
Collapse
Affiliation(s)
- Kwang-su Park
- Department
of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu,
Seoul 143-701, Korea
| | - Mi Kyoung Kim
- Department
of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu,
Seoul 143-701, Korea
| | - Yujin Seo
- Department
of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu,
Seoul 143-701, Korea
| | - Taewoong Ha
- Department
of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu,
Seoul 143-701, Korea
| | - Kyeongha Yoo
- Department
of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu,
Seoul 143-701, Korea
| | - Seung Jae Hyeon
- Center
for Neuro-Medicine, Korea Institute of Science and Technology, 39-1
Hawolgok-dong, Seoungbuk-gu, Seoul 136-791, Korea
| | - Yu Jin Hwang
- Center
for Neuro-Medicine, Korea Institute of Science and Technology, 39-1
Hawolgok-dong, Seoungbuk-gu, Seoul 136-791, Korea
| | - Junghee Lee
- Veteran’s Affairs Boston Healthcare System, Boston, Massachusetts 02130, United States
- Boston
University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Hoon Ryu
- Center
for Neuro-Medicine, Korea Institute of Science and Technology, 39-1
Hawolgok-dong, Seoungbuk-gu, Seoul 136-791, Korea
- Veteran’s Affairs Boston Healthcare System, Boston, Massachusetts 02130, United States
- Boston
University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Hyunah Choo
- Center
for Neuro-Medicine, Korea Institute of Science and Technology, 39-1
Hawolgok-dong, Seoungbuk-gu, Seoul 136-791, Korea
- Department
of Biological Chemistry, Korea University of Science and Technology, Youseong-gu, Daejeon 305-350, Korea
| | - Youhoon Chong
- Department
of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu,
Seoul 143-701, Korea
| |
Collapse
|