1
|
Liu J, Chen X, Wang A, Su D. A mitochondria-targeted nitric oxide probe with large Stokes shift for real-time imaging and evaluation of inflammatory bowel disease in situ. Anal Chim Acta 2024; 1332:343372. [PMID: 39580178 DOI: 10.1016/j.aca.2024.343372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a prevalent inflammatory disorder, and the abnormal expression of nitric oxide (NO) produced by biocatalysis of iNOS enzyme in mitochondria is directly associated with the occurrence and progression of IBD. Activatable fluorescent probes offer promising tools for early diagnosis of IBD, however, inadequate biodistribution and limited targeting properties of these probes in vivo severely impede accurate diagnosis of IBD and real-time evaluation of inflammatory levels in situ. Therefore, it is necessary to design a highly efficient fluorescent probe towards NO to overcome inadequate biodistribution and achieve accurate diagnosis and evaluation of IBD in situ. RESULTS We designed a highly efficient mitochondria-targeted "turn-on" NIR fluorescent probe Cy-OMe which has excellent targeting properties and imaging ability. The response mechanism is probe Cy-OMe rapidly undergoes N-nitrosation reaction resulting in "turn-on" NIR fluorescence signal when exposed to NO. Cy-OMe exhibits high sensitivity and specificity in detecting NO content in vitro, owing to its large Stokes shift. Furthermore, the probe Cy-OMe not only efficiently targets mitochondria but also enables precise assessment of fluctuations in endogenous NO concertation across various cell types. Importantly, by virtue of large Stokes shift and excellent mitochondrial targeting ability, Cy-OMe has the capability to specifically evaluate dynamic fluctuations of NO in lipopolysaccharide (LPS)-stimulated IBD mouse models in situ and Cy-OMe was achieved high-contrast imaging and precision diagnosis of intestinal inflammation diseases. SIGNIFICANCE Cy-OMe can accurately assess fluctuations in NO levels and show high signal fidelity in the diseased intestine region, which has prospects in the non-invasive diagnosis of intestinal inflammation in vivo. At the same time, it is expected to serve as a potential diagnose platform for investigating the physiological processes underlying NO-related inflammatory diseases and promoting understanding of the pathological functions of NO across diverse inflammatory diseases.
Collapse
Affiliation(s)
- Jiatian Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Andong Wang
- Large-scale Instruments and Equipments Sharing Platform, Beijing University of Technology, 100124, Beijing, PR China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China.
| |
Collapse
|
2
|
Mohamed H, Ghith A, Bell SG. The binding of nitrogen-donor ligands to the ferric and ferrous forms of cytochrome P450 enzymes. J Inorg Biochem 2023; 242:112168. [PMID: 36870164 DOI: 10.1016/j.jinorgbio.2023.112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The cytochrome P450 superfamily of heme-thiolate monooxygenase enzymes can catalyse various oxidation reactions. The addition of a substrate or an inhibitor ligand induces changes in the absorption spectrum of these enzymes and UV-visible (UV-vis) absorbance spectroscopy is the most common and readily available technique used to interrogate their heme and active site environment. Nitrogen-containing ligands can inhibit the catalytic cycle of heme enzymes by interacting with the heme. Here we evaluate the binding of imidazole and pyridine-based ligands to the ferric and ferrous forms of a selection of bacterial cytochrome P450 enzymes using UV-visible absorbance spectroscopy. The majority of these ligands interact with the heme as one would expect for type II nitrogen directly coordinated to a ferric heme-thiolate species. However, the spectroscopic changes observed in the ligand-bound ferrous forms indicated differences in the heme environment across these P450 enzyme/ligand combinations. Multiple species were observed in the UV-vis spectra of the ferrous ligand-bound P450s. None of the enzymes gave rise to the isolation of a single species with a Soret band at ∼442-447 nm, indicative of a 6-coordinate ferrous thiolate species with a nitrogen-donor ligand. A ferrous species with Soret band at ∼427 nm coupled with an α-band of increased intensity was observed with the imidazole ligands. With some enzyme-ligand combinations reduction resulted in breaking of the iron‑nitrogen bond yielding a 5-coordinate high-spin ferrous species. In other instances, the ferrous form was readily oxidised back to the ferric form on addition of the ligand.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Amna Ghith
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
3
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
4
|
Nienhaus K, Sharma V, Nienhaus GU, Podust LM. Homodimerization Counteracts the Detrimental Effect of Nitrogenous Heme Ligands on the Enzymatic Activity of Acanthamoeba castellanii CYP51. Biochemistry 2022; 61:1363-1377. [PMID: 35730528 DOI: 10.1021/acs.biochem.2c00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acanthamoeba castellanii is a free-living amoeba that can cause severe eye and brain infections in humans. At present, there is no uniformly effective treatment for any of these infections. However, sterol 14α-demethylases (CYP51s), heme-containing cytochrome P450 enzymes, are known to be validated drug targets in pathogenic fungi and protozoa. The catalytically active P450 form of CYP51 from A. castellanii (AcCYP51) is stabilized against conversion to the inactive P420 form by dimerization. In contrast, Naegleria fowleri CYP51 (NfCYP51) is monomeric in its active P450 and inactive P420 forms. For these two CYP51 enzymes, we have investigated the interplay between the enzyme activity and oligomerization state using steady-state and time-resolved UV-visible absorption spectroscopy. In both enzymes, the P450 → P420 transition is favored under reducing conditions. The transition is accelerated at higher pH, which excludes a protonated thiol as the proximal ligand in P420. Displacement of the proximal thiolate ligand is also promoted by adding exogenous nitrogenous ligands (N-ligands) such as imidazole, isavuconazole, and clotrimazole that bind at the opposite, distal heme side. In AcCYP51, the P450 → P420 transition is faster in the monomer than in the dimer, indicating that the dimeric assembly is critical for stabilizing thiolate coordination to the heme and thus for sustaining AcCYP51 activity. The spectroscopic experiments were complemented with size-exclusion chromatography and X-ray crystallography studies. Collectively, our results indicate that effective inactivation of the AcCYP51 function by azole drugs is due to synergistic interference with AcCYP51 dimerization and promoting irreversible displacement of the proximal heme-thiolate ligand.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76049 Karlsruhe, Germany
| | - Vandna Sharma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76049 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Shimizu T, Hayashi Y, Arai M, McGlynn SE, Masuda T, Masuda S. Repressor Activity of SqrR, a Master Regulator of Persulfide-Responsive Genes, Is Regulated by Heme Coordination. PLANT & CELL PHYSIOLOGY 2021; 62:100-110. [PMID: 33169162 DOI: 10.1093/pcp/pcaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuki Hayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Munehito Arai
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
6
|
Sharma V, Shing B, Hernandez-Alvarez L, Debnath A, Podust LM. Domain-Swap Dimerization of Acanthamoeba castellanii CYP51 and a Unique Mechanism of Inactivation by Isavuconazole. Mol Pharmacol 2020; 98:770-780. [PMID: 33008918 DOI: 10.1124/molpharm.120.000092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cytochromes P450 (P450, CYP) metabolize a wide variety of endogenous and exogenous lipophilic molecules, including most drugs. Sterol 14α-demethylase (CYP51) is a target for antifungal drugs known as conazoles. Using X-ray crystallography, we have discovered a domain-swap homodimerization mode in CYP51 from a human pathogen, Acanthamoeba castellanii CYP51 (AcCYP51). Recombinant AcCYP51 with a truncated transmembrane helix was purified as a heterogeneous mixture corresponding to the dimer and monomer units. Spectral analyses of these two populations have shown that the CO-bound ferrous form of the dimeric protein absorbed at 448 nm (catalytically competent form), whereas the monomeric form absorbed at 420 nm (catalytically incompetent form). AcCYP51 dimerized head-to-head via N-termini swapping, resulting in formation of a nonplanar protein-protein interface exceeding 2000 Å2 with a total solvation energy gain of -35.4 kcal/mol. In the dimer, the protomers faced each other through the F and G α-helices, thus blocking the substrate access channel. In the presence of the drugs clotrimazole and isavuconazole, the AcCYP51 drug complexes crystallized as monomers. Although clotrimazole-bound AcCYP51 adopted a typical CYP monomer structure, isavuconazole-bound AcCYP51 failed to refold 74 N-terminal residues. The failure of AcCYP51 to fully refold upon inhibitor binding in vivo would cause an irreversible loss of a structurally aberrant enzyme through proteolytic degradation. This assumption explains the superior potency of isavuconazole against A. castellanii The dimerization mode observed in this work is compatible with membrane association and may be relevant to other members of the CYP family of biologic, medical, and pharmacological importance. SIGNIFICANCE STATEMENT: We investigated the mechanism of action of antifungal drugs in the human pathogen Acanthamoeba castellanii. We discovered that the enzyme target [Acanthamoeba castellanii sterol 14α-demethylase (AcCYP51)] formed a dimer via an N-termini swap, whereas drug-bound AcCYP51 was monomeric. In the AcCYP51-isavuconazole complex, the protein target failed to refold 74 N-terminal residues, suggesting a fundamentally different mechanism of AcCYP51 inactivation than only blocking the active site. Proteolytic degradation of a structurally aberrant enzyme would explain the superior potency of isavuconazole against A. castellanii.
Collapse
Affiliation(s)
- Vandna Sharma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Brian Shing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Lilian Hernandez-Alvarez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Anjan Debnath
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| |
Collapse
|
7
|
Hunt AP, Samanta S, Dent MR, Milbauer MW, Burstyn JN, Lehnert N. Model Complexes Elucidate the Role of the Proximal Hydrogen-Bonding Network in Cytochrome P450s. Inorg Chem 2020; 59:8034-8043. [DOI: 10.1021/acs.inorgchem.0c00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew P. Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Subhra Samanta
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew R. Dent
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael W. Milbauer
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
8
|
Picciano AL, Crane BR. A nitric oxide synthase-like protein from Synechococcus produces NO/NO 3- from l-arginine and NADPH in a tetrahydrobiopterin- and Ca 2+-dependent manner. J Biol Chem 2019; 294:10708-10719. [PMID: 31113865 PMCID: PMC6615690 DOI: 10.1074/jbc.ra119.008399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide synthases (NOSs) are heme-based monooxygenases that convert l-Arg to l-citrulline and nitric oxide (NO), a key signaling molecule and cytotoxic agent in mammals. Bacteria also contain NOS proteins, but the role of NO production within these organisms, where understood, differs considerably from that of mammals. For example, a NOS protein in the marine cyanobacterium Synechococcus sp. PCC 7335 (syNOS) has recently been proposed to function in nitrogen assimilation from l-Arg. syNOS retains the oxygenase (NOSox) and reductase (NOSred) domains present in mammalian NOS enzymes (mNOSs), but also contains an N-terminal globin domain (NOSg) homologous to bacterial flavohemoglobin proteins. Herein, we show that syNOS functions as a dimer and produces NO from l-Arg and NADPH in a tetrahydrobiopterin (H4B)-dependent manner at levels similar to those produced by other NOSs but does not require Ca2+-calmodulin, which regulates NOSred-mediated NOSox reduction in mNOSs. Unlike other bacterial NOSs, syNOS cannot function with tetrahydrofolate and requires high Ca2+ levels (>200 μm) for its activation. NOSg converts NO to NO3- in the presence of O2 and NADPH; however, NOSg did not protect Escherichia coli strains against nitrosative stress, even in a mutant devoid of NO-protective flavohemoglobin. We also found that syNOS does not have NOS activity in E. coli (which lacks H4B) and that the recombinant protein does not confer growth advantages on l-Arg as a nitrogen source. Our findings indicate that syNOS has both NOS and NO oxygenase activities, requires H4B, and may play a role in Ca2+-mediated signaling.
Collapse
Affiliation(s)
- Angela L Picciano
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Brian R Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
9
|
Horn M, Nienhaus K, Nienhaus GU. Kinetic Study of Ligand Binding and Conformational Changes in Inducible Nitric Oxide Synthase. J Phys Chem B 2018; 122:11048-11057. [PMID: 29965771 DOI: 10.1021/acs.jpcb.8b05137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitric oxide synthases (NOSs) are heme enzymes that generate highly reactive nitric oxide from l-arginine (l-Arg) in a complex mechanism that is still only partially understood. We have studied carbon monoxide (CO) binding to the oxygenase domain of murine inducible NOS (iNOS) by using flash photolysis. The P420 and P450 forms of the enzyme, assigned to a protonated and unprotonated proximal cysteine, through which the heme is anchored to the protein, show markedly different CO rebinding properties. The data suggest that P420 has a widely open distal pocket that admits water. CO rebinding to the P450 form strongly depends on the presence of the substrate l-Arg, the intermediate Nω-hydroxy-l-arginine, and the cofactor tetrahydrobiopterin. After adding these small molecules to the enzyme solution, the CO kinetics change slowly over the hours. This process can be described as a relaxation from a fast rebinding, metastable species to a slowly rebinding, thermodynamically stable species, which we associate with the enzymatically active form. Our results allow us to determine kinetic parameters of l-Arg binding to the ferrous deoxy iNOS protein for the first time and also provide clues regarding the nature of structural differences between the two interconverting species.
Collapse
Affiliation(s)
- Michael Horn
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Str. 1 , D-76131 Karlsruhe , Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Str. 1 , D-76131 Karlsruhe , Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Str. 1 , D-76131 Karlsruhe , Germany.,Institute of Nanotechnology (INT) and Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen , Germany.,Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| |
Collapse
|
10
|
Yadav R, Scott EE. Endogenous insertion of non-native metalloporphyrins into human membrane cytochrome P450 enzymes. J Biol Chem 2018; 293:16623-16634. [PMID: 30217815 PMCID: PMC6204904 DOI: 10.1074/jbc.ra118.005417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/13/2018] [Indexed: 11/06/2022] Open
Abstract
Human cytochrome P450 enzymes are membrane-bound heme-containing monooxygenases. As is the case for many heme-containing enzymes, substitution of the metal in the center of the heme can be useful for mechanistic and structural studies of P450 enzymes. For many heme proteins, the iron protoporphyrin prosthetic group can be extracted and replaced with protoporphyrin containing another metal, but human membrane P450 enzymes are not stable enough for this approach. The method reported herein was developed to endogenously produce human membrane P450 proteins with a nonnative metal in the heme. This approach involved coexpression of the P450 of interest, a heme uptake system, and a chaperone in Escherichia coli growing in iron-depleted minimal medium supplemented with the desired trans-metallated protoporphyrin. Using the steroidogenic P450 enzymes CYP17A1 and CYP21A2 and the drug-metabolizing CYP3A4, we demonstrate that this approach can be used with several human P450 enzymes and several different metals, resulting in fully folded proteins appropriate for mechanistic, functional, and structural studies including solution NMR.
Collapse
Affiliation(s)
- Rahul Yadav
- From the Departments of Medicinal Chemistry and
| | - Emily E Scott
- From the Departments of Medicinal Chemistry and
- Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
11
|
Spectroscopic evidence supporting neutral thiol ligation to ferrous heme iron. J Biol Inorg Chem 2018; 23:1085-1092. [DOI: 10.1007/s00775-018-1611-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
12
|
Olsbu IK, Zoppellaro G, Andersson KK, Boucher JL, Hersleth HP. Importance of Val567 on heme environment and substrate recognition of neuronal nitric oxide synthase. FEBS Open Bio 2018; 8:1553-1566. [PMID: 30186754 PMCID: PMC6120233 DOI: 10.1002/2211-5463.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) produced by mammalian nitric oxide synthases (mNOSs) is an important mediator in a variety of physiological functions. Crystal structures of mNOSs have shown strong conservation of the active‐site residue Val567 (numbering for rat neuronal NOS, nNOS). NOS‐like proteins have been identified in several bacterial pathogens, and these display striking sequence identity to the oxygenase domain of mNOS (NOSoxy), with the exception of a Val to Ile mutation at the active site. Preliminary studies have highlighted the importance of this Val residue in NO‐binding, substrate recognition, and oxidation in mNOSs. To further elucidate the role of this valine in substrate and substrate analogue recognition, we generated five Val567 mutants of the oxygenase domain of the neuronal NOS (nNOSoxy) and used UV‐visible and EPR spectroscopy to investigate the effects of these mutations on the heme distal environment, the stability of the heme‐FeII‐CO complexes, and the binding of a series of substrate analogues. Our results are consistent with Val567 playing an important role in preserving the integrity of the active site for substrate binding, stability of heme‐bound gaseous ligands, and potential NO production.
Collapse
Affiliation(s)
- Inger K Olsbu
- Department of Biosciences Section for Biochemistry and Molecular Biology University of Oslo Norway
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials Department of Physical Chemistry Faculty of Science Palacky University in Olomouc Czech Republic
| | - K Kristoffer Andersson
- Department of Biosciences Section for Biochemistry and Molecular Biology University of Oslo Norway
| | | | - Hans-Petter Hersleth
- Department of Biosciences Section for Biochemistry and Molecular Biology University of Oslo Norway.,Department of Chemistry Section for Chemical Life Sciences University of Oslo Norway
| |
Collapse
|
13
|
Li Y, Zhao C, Lu X, Ai X, Qiu J. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:70-75. [PMID: 29268117 DOI: 10.1016/j.ecoenv.2017.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg-1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms.
Collapse
Affiliation(s)
- Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chun Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxu Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojie Ai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Girvan HM, Bradley JM, Cheesman MR, Kincaid JR, Liu Y, Czarnecki K, Fisher K, Leys D, Rigby SEJ, Munro AW. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex. Biochemistry 2016; 55:5073-83. [DOI: 10.1021/acs.biochem.6b00204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hazel M. Girvan
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Justin M. Bradley
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Myles R. Cheesman
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - James R. Kincaid
- Department
of Chemistry, Marquette University, 535 North 14th Street, Milwaukee, Wisconsin 53233, United States
| | - Yilin Liu
- Department
of Chemistry, Marquette University, 535 North 14th Street, Milwaukee, Wisconsin 53233, United States
| | - Kazimierz Czarnecki
- Department
of Chemistry, Marquette University, 535 North 14th Street, Milwaukee, Wisconsin 53233, United States
| | - Karl Fisher
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - David Leys
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Stephen E. J. Rigby
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Andrew W. Munro
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
15
|
Pardillo AD, Morozov AN, Chatfield DC. Proximal Pocket Hydrogen Bonds Significantly Influence the Mechanism of Chloroperoxidase Compound I Formation. J Phys Chem B 2015; 119:12590-602. [DOI: 10.1021/acs.jpcb.5b06324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Armando D. Pardillo
- Department of Chemistry and
Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| | - Alexander N. Morozov
- Department of Chemistry and
Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| | - David C. Chatfield
- Department of Chemistry and
Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| |
Collapse
|
16
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins. Proc Natl Acad Sci U S A 2014; 111:E306-15. [PMID: 24398520 DOI: 10.1073/pnas.1317173111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys binding studies with the minimalist heme peptide microperoxidase-8, demonstrate that the protein scaffold and solvent interactions play important roles in stabilizing a particular Cys-heme coordination. The increased stability of ferric thiolate compared with ferrous thiol arises mainly from entropic factors. This robust cyt c model system provides access to all four forms of Cys-bound heme, including the ferric thiol. Protein motions control the rates of heme redox reactions, and these effects are amplified at low pH, where the proteins are less stable. Thermodynamic signatures and redox reactivity of the model Cys-bound hemes highlight the critical role of the protein scaffold and its dynamics in modulating redox-linked transitions between thiols and thiolates.
Collapse
|
18
|
Sun Y, Zeng W, Benabbas A, Ye X, Denisov I, Sligar SG, Du J, Dawson JH, Champion PM. Investigations of heme ligation and ligand switching in cytochromes p450 and p420. Biochemistry 2013; 52:5941-51. [PMID: 23905516 DOI: 10.1021/bi400541v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is generally accepted that the inactive P420 form of cytochrome P450 (CYP) involves the protonation of the native cysteine thiolate to form a neutral thiol heme ligand. On the other hand, it has also been suggested that recruitment of a histidine to replace the native cysteine thiolate ligand might underlie the P450 → P420 transition. Here, we discuss resonance Raman investigations of the H93G myoglobin (Mb) mutant in the presence of tetrahydrothiophene (THT) or cyclopentathiol (CPSH), and on pressure-induced cytochrome P420cam (CYP101), that show a histidine becomes the heme ligand upon CO binding. The Raman mode near 220 cm⁻¹, normally associated with the Fe-histidine vibration in heme proteins, is not observed in either reduced P420cam or the reduced H93G Mb samples, indicating that histidine is not the ligand in the reduced state. The absence of a mode near 220 cm⁻¹ is also inconsistent with a generalization of the suggestion that the 221 cm⁻¹ Raman mode, observed in the P420-CO photoproduct of inducible nitric oxide synthase (iNOS), arises from a thiol-bound ferrous heme. This leads us to assign the 218 cm⁻¹ mode observed in the 10 ns P420cam-CO photoproduct Raman spectrum to a Fe-histidine vibration, in analogy to many other histidine-bound heme systems. Additionally, the inverse correlation plots of the νFe-His and νCO frequencies for the CO adducts of P420cam and the H93G analogs provide supporting evidence that histidine is the heme ligand in the P420-CO-bound state. We conclude that, when CO binds to the ferrous P420 state, a histidine ligand is recruited as the heme ligand. The common existence of an HXC-Fe motif in many CYP systems allows the C → H ligand switch to occur with only minor conformational changes. One suggested conformation of P420-CO involves the addition of another turn in the proximal L helix so that, when the protonated Cys ligand is dissociated from the heme, it can become part of the helix, and the heme is ligated by the His residue from the adjoining loop region. In other systems, such as iNOS and CYP3A4 (where the HXC-Fe motif is not found), a somewhat larger conformational change would be necessary to recuit a nearby histidine.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mak PJ, Yang Y, Im S, Waskell LA, Kincaid JR. Experimental Documentation of the Structural Consequences of Hydrogen-Bonding Interactions to the Proximal Cysteine of a Cytochrome P450. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Mak PJ, Yang Y, Im S, Waskell LA, Kincaid JR. Experimental documentation of the structural consequences of hydrogen-bonding interactions to the proximal cysteine of a cytochrome P450. Angew Chem Int Ed Engl 2012; 51:10403-7. [PMID: 22968976 DOI: 10.1002/anie.201205912] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA
| | | | | | | | | |
Collapse
|
21
|
Cytochrome P450 in fluke Opisthorchis felineus: identification and characterization. Mol Biochem Parasitol 2011; 181:190-4. [PMID: 22115821 DOI: 10.1016/j.molbiopara.2011.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 11/23/2022]
Abstract
Infection with the human liver fluke Opisthorchis felineus is a serious public health problem in Russia and other Eastern Europe countries. The aim of this work was to identify and sequence cytochrome P450 mRNA from O. felineus and to analyze its expression at different developmental stages. We found only one cytochrome P450 in O. felineus. It contains a conserved Pfam00067 domain which was typical of the CYP450 II eukaryotic microsomal type, and a putative transmembrane domain. Additionally, we identified a high degree of homology between a 3D model of O. felineus CYP450 and mammalian CYP2 structures. The level of O. felineus CYP mRNA expression in maritae (adult stage in definitive mammal host) is significantly higher than in metacercaria. This fact indicates an important role of this biotransformation enzyme in the biochemistry of the parasite at the maritae stage.
Collapse
|
22
|
Lang J, Santolini J, Couture M. The conserved Trp-Cys hydrogen bond dampens the "push effect" of the heme cysteinate proximal ligand during the first catalytic cycle of nitric oxide synthase. Biochemistry 2011; 50:10069-81. [PMID: 22023145 DOI: 10.1021/bi200965e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Residues surrounding and interacting with the heme proximal ligand are important for efficient catalysis by heme proteins. The nitric oxide synthases (NOSs) are thiolate-coordinated enzymes that catalyze the hydroxylation of l-Arg in the first of the two catalytic cycles needed to synthesize nitric oxide. In NOSs, the indole NH group of a conserved tryptophan [W56 of the bacterial NOS-like protein from Staphylococcus aureus (saNOS)] forms a hydrogen bond with the heme proximal cysteinate ligand. The purpose of this study was to determine the impact of increasing (W56F and W56Y variants) or decreasing (W56H variant) the electron density of the proximal cysteinate ligand on molecular oxygen (O(2)) activation using saNOS as a model. We show that the removal of the indole NH···S(-) bond for W56F and W56Y caused an increase in the electron density of the cysteinate. This was probed by the decrease of the midpoint reduction potential (E(1/2)) along with weakened σ-bonding and strengthened π-backbonding with distal ligands (CO and O(2)). On the other hand, the W56H variant showed stronger Fe-OO and Fe-CO bonds (strengthened σ-bonding) along with an elevated E(1/2), which is consistent with the formation of a strong NH···S(-) hydrogen bond from H56. We also show here that changing the electron density of the proximal thiolate controls its "push effect"; whereas the rates of both O(2) activation and autoxidation of the Fe(II)O(2) complex increase with the stronger push effect created by removing the indole NH···S(-) hydrogen bond (W56F and W56Y variants), the W56H variant showed an increased stability of the complex against autoxidation and a slower rate of O(2) activation. These results are discussed with regard to the roles played by the conserved tryptophan-cysteinate interaction in the first catalytic cycle of NOS.
Collapse
Affiliation(s)
- Jérôme Lang
- Département de biochimie, de microbiologie et de bioinformatique, PROTEO and IBIS, pavillon Charles-Eugène Marchand, room 3163, Université Laval, Québec, Canada G1V 0A6
| | | | | |
Collapse
|
23
|
Galinato MGI, Spolitak T, Ballou DP, Lehnert N. Elucidating the role of the proximal cysteine hydrogen-bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy. Biochemistry 2011; 50:1053-69. [PMID: 21158478 DOI: 10.1021/bi101911y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although extensive research has been performed on various cytochrome P450s, especially Cyt P450cam, there is much to be learned about the mechanism of how its functional unit, a heme b ligated by an axial cysteine, is finely tuned for catalysis by its second coordination sphere. Here we study how the hydrogen-bonding network affects the proximal cysteine and the Fe-S(Cys) bond in ferric Cyt P450cam. This is accomplished using low-temperature magnetic circular dichroism (MCD) spectroscopy on wild-type (wt) Cyt P450cam and on the mutants Q360P (pure ferric high-spin at low temperature) and L358P where the "Cys pocket" has been altered (by removing amino acids involved in the hydrogen-bonding network), and Y96W (pure ferric low-spin). The MCD spectrum of Q360P reveals fourteen electronic transitions between 15200 and 31050 cm(-1). Variable-temperature variable-field (VTVH) saturation curves were used to determine the polarizations of these electronic transitions with respect to in-plane (xy) and out-of-plane (z) polarization relative to the heme. The polarizations, oscillator strengths, and TD-DFT calculations were then used to assign the observed electronic transitions. In the lower energy region, prominent bands at 15909 and 16919 cm(-1) correspond to porphyrin (P) → Fe charge transfer (CT) transitions. The band at 17881 cm(-1) has distinct sulfur S(π) → Fe CT contributions. The Q band is observed as a pseudo A-term (derivative shape) at 18604 and 19539 cm(-1). In the case of the Soret band, the negative component of the expected pseudo A-term is split into two features due to mixing with another π → π* and potentially a P → Fe CT excited state. The resulting three features are observed at 23731, 24859, and 25618 cm(-1). Most importantly, the broad, prominent band at 28570 cm(-1) is assigned to the S(σ) → Fe CT transition, whose intensity is generated through a multitude of CT transitions with strong iron character. For wt, Q360P, and L358P, this band occurs at 28724, 28570, and 28620 cm(-1), respectively. The small shift of this feature upon altering the hydrogen bonds to the proximal cysteine indicates that the role of the Cys pocket is not primarily for electronic fine-tuning of the sulfur donor strength but is more for stabilizing the proximal thiolate against external reactants (NO, O(2), H(3)O(+)), and for properly positioning cysteine to coordinate to the iron center. This aspect is discussed in detail.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
24
|
Theoretical calculations of a model of NOS indazole inhibitors: Interaction of aromatic compounds with Zn-porphyrins. Bioorg Med Chem 2009; 17:8027-31. [DOI: 10.1016/j.bmc.2009.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 11/24/2022]
|
25
|
Talakad JC, Wilderman PR, Davydov DR, Kumar S, Halpert JR. Rational engineering of cytochromes P450 2B6 and 2B11 for enhanced stability: Insights into structural importance of residue 334. Arch Biochem Biophys 2009; 494:151-8. [PMID: 19944064 DOI: 10.1016/j.abb.2009.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022]
Abstract
Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques.
Collapse
Affiliation(s)
- Jyothi C Talakad
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0703, USA.
| | | | | | | | | |
Collapse
|