1
|
Houwman JA, Westphal AH, Visser AJWG, Borst JW, van Mierlo CPM. Concurrent presence of on- and off-pathway folding intermediates of apoflavodoxin at physiological ionic strength. Phys Chem Chem Phys 2018; 20:7059-7072. [PMID: 29473921 DOI: 10.1039/c7cp07922b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavodoxins have a protein topology that can be traced back to the universal ancestor of the three kingdoms of life. Proteins with this type of architecture tend to temporarily misfold during unassisted folding to their native state and form intermediates. Several of these intermediate species are molten globules (MGs), which are characterized by a substantial amount of secondary structure, yet without the tertiary side-chain packing of natively folded proteins. An off-pathway MG is formed at physiological ionic strength in the case of the F44Y variant of Azotobacter vinelandii apoflavodoxin (i.e., flavodoxin without flavin mononucleotide (FMN)). Here, we show that at this condition actually two folding species of this apoprotein co-exist at equilibrium. These species were detected by using a combination of FMN fluorescence quenching upon cofactor binding to the apoprotein and of polarized time-resolved tryptophan fluorescence spectroscopy. Besides the off-pathway MG, we observe the simultaneous presence of an on-pathway folding intermediate, which is native-like. Presence of concurrent intermediates at physiological ionic strength enables future exploration of how aspects of the cellular environment, like for example involvement of chaperones, affect these species.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
2
|
Houwman JA, van Mierlo CPM. Folding of proteins with a flavodoxin-like architecture. FEBS J 2017; 284:3145-3167. [PMID: 28380286 DOI: 10.1111/febs.14077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
The flavodoxin-like fold is a protein architecture that can be traced back to the universal ancestor of the three kingdoms of life. Many proteins share this α-β parallel topology and hence it is highly relevant to illuminate how they fold. Here, we review experiments and simulations concerning the folding of flavodoxins and CheY-like proteins, which share the flavodoxin-like fold. These polypeptides tend to temporarily misfold during unassisted folding to their functionally active forms. This susceptibility to frustration is caused by the more rapid formation of an α-helix compared to a β-sheet, particularly when a parallel β-sheet is involved. As a result, flavodoxin-like proteins form intermediates that are off-pathway to native protein and several of these species are molten globules (MGs). Experiments suggest that the off-pathway species are of helical nature and that flavodoxin-like proteins have a nonconserved transition state that determines the rate of productive folding. Folding of flavodoxin from Azotobacter vinelandii has been investigated extensively, enabling a schematic construction of its folding energy landscape. It is the only flavodoxin-like protein of which cotranslational folding has been probed. New insights that emphasize differences between in vivo and in vitro folding energy landscapes are emerging: the ribosome modulates MG formation in nascent apoflavodoxin and forces this polypeptide toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University and Research, The Netherlands
| | | |
Collapse
|
3
|
Houwman JA, André E, Westphal AH, van Berkel WJH, van Mierlo CPM. The Ribosome Restrains Molten Globule Formation in Stalled Nascent Flavodoxin. J Biol Chem 2016; 291:25911-25920. [PMID: 27784783 PMCID: PMC5207065 DOI: 10.1074/jbc.m116.756205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of proteins usually involves intermediates, of which an important type is the molten globule (MG). MGs are ensembles of interconverting conformers that contain (non-)native secondary structure and lack the tightly packed tertiary structure of natively folded globular proteins. Whereas MGs of various purified proteins have been probed to date, no data are available on their presence and/or effect during protein synthesis. To study whether MGs arise during translation, we use ribosome-nascent chain (RNC) complexes of the electron transfer protein flavodoxin. Full-length isolated flavodoxin, which contains a non-covalently bound flavin mononucleotide (FMN) as cofactor, acquires its native α/β parallel topology via a folding mechanism that contains an off-pathway intermediate with molten globular characteristics. Extensive population of this MG state occurs at physiological ionic strength for apoflavodoxin variant F44Y, in which a phenylalanine at position 44 is changed to a tyrosine. Here, we show for the first time that ascertaining the binding rate of FMN as a function of ionic strength can be used as a tool to determine the presence of the off-pathway MG on the ribosome. Application of this methodology to F44Y apoflavodoxin RNCs shows that at physiological ionic strength the ribosome influences formation of the off-pathway MG and forces the nascent chain toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Estelle André
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
4
|
Hamdane D, Velours C, Cornu D, Nicaise M, Lombard M, Fontecave M. A chemical chaperone induces inhomogeneous conformational changes in flexible proteins. Phys Chem Chem Phys 2016; 18:20410-21. [DOI: 10.1039/c6cp03635j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Organic osmolytes are major cellular compounds that favor protein's compaction and stabilization of the native state. Here, we have examined the chaperone effect of the naturally occurring trimethylamine N-oxide (TMAO) osmolyte on a flexible protein.
Collapse
Affiliation(s)
- Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques
- CNRS-UMR 8229
- Collège De France
- 75231 Paris Cedex 05
- France
| | - Christophe Velours
- Macromolecular Interaction Platform of I2BC
- UMR 9198
- Centre de Recherche de Gif
- Centre National de la Recherche Scientifique
- 91191 Gif Sur Yvette
| | - David Cornu
- CNRS
- Centre de Recherche de Gif
- SICaPS
- F-91198 Gif-sur-Yvette Cedex
- France
| | - Magali Nicaise
- Macromolecular Interaction Platform of I2BC
- UMR 9198
- Centre de Recherche de Gif
- Centre National de la Recherche Scientifique
- 91191 Gif Sur Yvette
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques
- CNRS-UMR 8229
- Collège De France
- 75231 Paris Cedex 05
- France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques
- CNRS-UMR 8229
- Collège De France
- 75231 Paris Cedex 05
- France
| |
Collapse
|
5
|
van Son M, Lindhoud S, van der Wild M, van Mierlo CPM, Huber M. Double Electron-Electron Spin Resonance Tracks Flavodoxin Folding. J Phys Chem B 2015; 119:13507-14. [PMID: 26101942 DOI: 10.1021/acs.jpcb.5b00856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein folding is one of the important challenges in biochemistry. Understanding the folding process requires mapping of protein structure as it folds. Here we test the potential of distance determination between paramagnetic spin-labels by a pulsed electron paramagnetic resonance method. We use double electron-electron spin resonance (DEER) to study the denaturant-dependent equilibrium folding of flavodoxin. This flavoprotein is spin-labeled with MTSL ((1-oxy-,2,2,5,5-tetramethyl-d-pyrroline-3-methyl)-methanethiosulfonate) at positions 69 and 131. We find that nativelike spin-label separation dominates the distance distributions up to 0.8 M guanidine hydrochloride. At 2.3 M denaturant, the distance distributions show an additional component, which we attribute to a folding intermediate. Upon further increase of denaturant concentration, the protein expands and evidence for a larger number of conformations than in the native state is found. We thus demonstrate that DEER is a versatile technique to expand the arsenal of methods for investigating how proteins fold.
Collapse
Affiliation(s)
- Martin van Son
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University , 6700 ET Wageningen, The Netherlands
| | - Matthijs van der Wild
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University , 6700 ET Wageningen, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Lindhoud S, Pirchi M, Westphal AH, Haran G, van Mierlo CPM. Gradual Folding of an Off-Pathway Molten Globule Detected at the Single-Molecule Level. J Mol Biol 2015; 427:3148-57. [PMID: 26163276 DOI: 10.1016/j.jmb.2015.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Molten globules (MGs) are compact, partially folded intermediates that are transiently present during folding of many proteins. These intermediates reside on or off the folding pathway to native protein. Conformational evolution during folding of off-pathway MGs is largely unexplored. Here, we characterize the denaturant-dependent structure of apoflavodoxin's off-pathway MG. Using single-molecule fluorescence resonance energy transfer (smFRET), we follow conversion of unfolded species into MG down to denaturant concentrations that favor formation of native protein. Under strongly denaturing conditions, fluorescence resonance energy transfer histograms show a single peak, arising from unfolded protein. The smFRET efficiency distribution shifts to higher value upon decreasing denaturant concentration because the MG folds. Strikingly, upon approaching native conditions, the fluorescence resonance energy transfer efficiency of the MG rises above that of native protein. Thus, smFRET exposes the misfolded nature of apoflavodoxin's off-pathway MG. We show that conversion of unfolded into MG protein is a gradual, second-order-like process that simultaneously involves separate regions within the polypeptide.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Menahem Pirchi
- Chemical Physics Department, Weizmann Institute of Science, Herzl St 234, Rehovot 76100, Israel
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, Herzl St 234, Rehovot 76100, Israel.
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
7
|
Houwman JA, Westphal AH, van Berkel WJH, van Mierlo CPM. Stalled flavodoxin binds its cofactor while fully exposed outside the ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1317-24. [PMID: 26073784 DOI: 10.1016/j.bbapap.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/26/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
Correct folding of proteins is crucial for cellular homeostasis. More than thirty percent of proteins contain one or more cofactors, but the impact of these cofactors on co-translational folding remains largely unknown. Here, we address the binding of flavin mononucleotide (FMN) to nascent flavodoxin, by generating ribosome-arrested nascent chains that expose either the entire protein or C-terminally truncated segments thereof. The native α/β parallel fold of flavodoxin is among the most ancestral and widely distributed folds in nature and exploring its co-translational folding is thus highly relevant. In Escherichia coli (strain BL21(DE3) Δtig::kan) FMN turns out to be limiting for saturation of this flavoprotein on time-scales vastly exceeding those of flavodoxin synthesis. Because the ribosome affects protein folding, apoflavodoxin cannot bind FMN during its translation. As a result, binding of cofactor to released protein is the last step in production of this flavoprotein in the cell. We show that once apoflavodoxin is entirely synthesized and exposed outside the ribosome to which it is stalled by an artificial linker containing the SecM sequence, the protein is natively folded and capable of binding FMN.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
8
|
Lindhoud S, Westphal AH, van Mierlo CPM, Visser AJWG, Borst JW. Rise-time of FRET-acceptor fluorescence tracks protein folding. Int J Mol Sci 2014; 15:23836-50. [PMID: 25535076 PMCID: PMC4284793 DOI: 10.3390/ijms151223836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 01/15/2023] Open
Abstract
Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Antonie J W G Visser
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6703HA, The Netherlands.
| |
Collapse
|
9
|
Bhattacharyya S, Varadarajan R. Packing in molten globules and native states. Curr Opin Struct Biol 2012; 23:11-21. [PMID: 23270864 DOI: 10.1016/j.sbi.2012.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
Close packing of hydrophobic residues in the protein interior is an important determinant of protein stability. Cavities introduced by large to small substitutions are known to destabilize proteins. Conversely, native states of proteins and protein fragments can be stabilized by filling in existing cavities. Molten globules (MGs) were initially used to describe a state of protein which has well-defined secondary structure but little or no tertiary packing. Subsequent studies have shown that MGs do have some degree of native-like topology and specific packing. Wet molten globules (WMGs) with hydrated cores and considerably decreased packing relative to the native state have been studied extensively. Recently there has been renewed interest in identification and characterization of dry molten globules (DMGs). These are slightly expanded forms of the native state which show increased conformational flexibility, native-like main-chain hydrogen bonding and dry interiors. The generality of occurrence of DMGs during protein unfolding and the extent and nature of packing in DMGs remain to be elucidated. Packing interactions in native proteins and MGs can be probed through mutations. Next generation sequencing technologies make it possible to determine relative populations of mutants in a large pool. When this is coupled to phenotypic screens or cell-surface display, it becomes possible to rapidly examine large panels of single-site or multi-site mutants. From such studies, residue specific contributions to protein stability and function can be estimated in a highly parallelized fashion. This complements conventional biophysical methods for characterization of packing in native states and molten globules.
Collapse
|
10
|
Aan den Toorn M, Huijbers MME, de Vries SC, van Mierlo CPM. The Arabidopsis thaliana SERK1 kinase domain spontaneously refolds to an active state in vitro. PLoS One 2012; 7:e50907. [PMID: 23236403 PMCID: PMC3517577 DOI: 10.1371/journal.pone.0050907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Auto-phosphorylating kinase activity of plant leucine-rich-repeat receptor-like kinases (LRR-RLK's) needs to be under tight negative control to avoid unscheduled activation. One way to achieve this would be to keep these kinase domains as intrinsically disordered protein (IDP) during synthesis and transport to its final location. Subsequent folding, which may depend on chaperone activity or presence of interaction partners, is then required for full activation of the kinase domain. Bacterially produced SERK1 kinase domain was previously shown to be an active Ser/Thr kinase. SERK1 is predicted to contain a disordered region in kinase domains X and XI. Here, we show that loss of structure of the SERK1 kinase domain during unfolding is intimately linked to loss of activity. Phosphorylation of the SERK1 kinase domain neither changes its structure nor its stability. Unfolded SERK1 kinase has no autophosphorylation activity and upon removal of denaturant about one half of the protein population spontaneously refolds to an active protein in vitro. Thus, neither chaperones nor interaction partners are required during folding of this protein to its catalytically active state.
Collapse
|
11
|
Lindhoud S, Westphal AH, Visser AJWG, Borst JW, van Mierlo CPM. Fluorescence of Alexa fluor dye tracks protein folding. PLoS One 2012; 7:e46838. [PMID: 23056480 PMCID: PMC3466183 DOI: 10.1371/journal.pone.0046838] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET) are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488), which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Antonie J. W. G. Visser
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
12
|
Lindhoud S, Westphal AH, Borst JW, van Mierlo CPM. Illuminating the off-pathway nature of the molten globule folding intermediate of an α-β parallel protein. PLoS One 2012; 7:e45746. [PMID: 23029219 PMCID: PMC3448718 DOI: 10.1371/journal.pone.0045746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
Partially folded protein species transiently form during folding of most proteins. Often, these species are molten globules, which may be on- or off-pathway to the native state. Molten globules are ensembles of interconverting protein conformers that have a substantial amount of secondary structure, but lack virtually all tertiary side-chain packing characteristics of natively folded proteins. Due to solvent-exposed hydrophobic groups, molten globules are prone to aggregation, which can have detrimental effects on organisms. The molten globule observed during folding of the 179-residue apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can form. Here, we study folding of apoflavodoxin and characterize its molten globule using fluorescence spectroscopy and Förster Resonance Energy Transfer (FRET). Apoflavodoxin is site-specifically labeled with fluorescent donor and acceptor dyes, utilizing dye-inaccessibility of Cys69 in cofactor-bound protein. Donor (i.e., Alexa Fluor 488) is covalently attached to Cys69 in all apoflavodoxin variants used. Acceptor (i.e., Alexa Fluor 568) is coupled to Cys1, Cys131 and Cys178, respectively. Our FRET data show that apoflavodoxin's molten globule forms in a non-cooperative manner and that its N-terminal 69 residues fold last. In addition, striking conformational differences between molten globule and native protein are revealed, because the inter-label distances sampled in the 111-residue C-terminal segment of the molten globule are shorter than observed for native apoflavodoxin. Thus, FRET sheds light on the off-pathway nature of the molten globule during folding of an α-β parallel protein.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
13
|
Nabuurs SM, van Mierlo CPM. Interrupted hydrogen/deuterium exchange reveals the stable core of the remarkably helical molten globule of alpha-beta parallel protein flavodoxin. J Biol Chem 2009; 285:4165-4172. [PMID: 19959481 DOI: 10.1074/jbc.m109.087932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic intermediates that appear early during protein folding often resemble the relatively stable molten globule intermediates formed by several proteins under mildly denaturing conditions. Molten globules have a substantial amount of secondary structure but lack virtually all tertiary side-chain packing characteristics of natively folded proteins. Due to exposed hydrophobic groups, molten globules are prone to aggregation, which can have detrimental effects on organisms. The molten globule that is observed during folding of alpha-beta parallel flavodoxin from Azotobacter vinelandii is a remarkably non-native species. This folding intermediate is helical and contains no beta-sheet and is kinetically off-pathway to the native state. It can be trapped under native-like conditions by substituting residue Phe(44) for Tyr(44). To characterize this species at the residue level, in this study, use is made of interrupted hydrogen/deuterium exchange detected by NMR spectroscopy. In the molten globule of flavodoxin, the helical region comprising residues Leu(110)-Val(125) is shown to be better protected against exchange than the other ordered parts of the folding intermediate. This helical region is better buried than the other helices, causing its context-dependent stabilization against unfolding. Residues Leu(110)-Val(125) thus form the stable core of the helical molten globule of alpha-beta parallel flavodoxin, which is almost entirely structured. Non-native docking of helices in the molten globule of flavodoxin prevents formation of the parallel beta-sheet of native flavodoxin. Hence, to produce native alpha-beta parallel protein molecules, the off-pathway species needs to unfold.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- From the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| |
Collapse
|
14
|
Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:689-98. [PMID: 19894043 PMCID: PMC2841281 DOI: 10.1007/s00249-009-0556-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/30/2009] [Accepted: 10/09/2009] [Indexed: 11/15/2022]
Abstract
Transient structures in unfolded proteins are important in elucidating the molecular details of initiation of protein folding. Recently, native and non-native secondary structure have been discovered in unfolded A. vinelandii flavodoxin. These structured elements transiently interact and subsequently form the ordered core of an off-pathway folding intermediate, which is extensively formed during folding of this α–β parallel protein. Here, site-directed spin-labelling and paramagnetic relaxation enhancement are used to investigate long-range interactions in unfolded apoflavodoxin. For this purpose, glutamine-48, which resides in a non-native α-helix of unfolded apoflavodoxin, is replaced by cysteine. This replacement enables covalent attachment of nitroxide spin-labels MTSL and CMTSL. Substitution of Gln-48 by Cys-48 destabilises native apoflavodoxin and reduces flexibility of the ordered regions in unfolded apoflavodoxin in 3.4 M GuHCl, because of increased hydrophobic interactions in the unfolded protein. Here, we report that in the study of the conformational and dynamic properties of unfolded proteins interpretation of spin-label data can be complicated. The covalently attached spin-label to Cys-48 (or Cys-69 of wild-type apoflavodoxin) perturbs the unfolded protein, because hydrophobic interactions occur between the label and hydrophobic patches of unfolded apoflavodoxin. Concomitant hydrophobic free energy changes of the unfolded protein (and possibly of the off-pathway intermediate) reduce the stability of native spin-labelled protein against unfolding. In addition, attachment of MTSL or CMTSL to Cys-48 induces the presence of distinct states in unfolded apoflavodoxin. Despite these difficulties, the spin-label data obtained here show that non-native contacts exist between transiently ordered structured elements in unfolded apoflavodoxin.
Collapse
|