1
|
Li M, Mitchell AA, Zhang T, Patrick BO, Fryzuk MD, Gates DP. Enantiopure P-Chiral Secondary Phosphines (P*HRR') from the Catalytic Asymmetric Hydrogenation of P═C Bonds. J Am Chem Soc 2024; 146:25912-25917. [PMID: 39270209 DOI: 10.1021/jacs.4c09501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We report the first bottleable enantiopure P-chiral secondary phosphines from the rhodium-catalyzed asymmetric hydrogenation of phosphaalkenes. Catalytic asymmetric hydrogenation, a reaction of broad academic and industrial importance for C═C, N═C, and O═C bonds, has not previously been reported for the P═C bond. The hydrogenation of ArP═CR2 (Ar = Mes, m-Xyl and TMOP; R = Ph, 4-C6H4F) affords four unprecedented P-stereogenic secondary phosphines in 76%-90% isolated yields with 91%-97% enantiomeric excess (ee). These isolable P-chiral secondary phosphines are configurationally stable indefinitely in the solid state and show only modest loss in ee when kept in solution for over a month at room temperature.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Aaron A Mitchell
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Tian Zhang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Michael D Fryzuk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Derek P Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|
2
|
Cui R, Zhang Y, Huang Z, Yuwen L, Xu Y, Zhang QW. N-Heterocyclic Carbene Enabled Copper Catalyzed Asymmetric Synthesis of Pyrimidinyl Phosphine with both Axial and P-Stereogenicity. Angew Chem Int Ed Engl 2024:e202412064. [PMID: 39136318 DOI: 10.1002/anie.202412064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 10/17/2024]
Abstract
P-stereogenic phosphines, renowned for their utility as ligands and catalysts, have been instrumental in the field of asymmetric catalysis. However, the catalytic asymmetric synthesis of chiral ligands possessing both axial and phosphine chirality remains a significant challenge. Here, we present the successful demonstration of a Cu-catalyzed asymmetric C-P construction using in situ generated secondary phosphine and heteroaryl chloride. By introducing a chiral NHC ligand and an achiral diphosphine auxiliary ligand, we effectively alleviated the poisoning effect caused by phosphine(III) compounds and suppressed the nonenantioselective background reaction. The reaction exhibited excellent enantioselectivity, with up to 96 % ee, and good diastereoselectivity, with up to 14 : 1 dr, when employing less sterically hindered secondary phosphines. This particular substrate poses a significant challenge due to its strong poisoning effect in copper catalysis.
Collapse
Affiliation(s)
- Ranran Cui
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Yuxiang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Zhuo Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Liyan Yuwen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Yuming Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
3
|
Sun J, Yan Y, Chen X, Huang Z, Huang Y. Palladium-catalyzed regio- and stereo-selective phosphination of cyclic biarylsulfonium salts to access atropoisomeric phosphines. Chem Sci 2024; 15:6943-6948. [PMID: 38725501 PMCID: PMC11077574 DOI: 10.1039/d4sc00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
A palladium-catalyzed regio- and stereo-selective phosphination of cyclic biarylsulfonium salts (racemic) with HPAr3Ar4 for straightforward synthesis of atropoisomeric phosphines (P,S-ligands) bearing a stereogenic axis or both a stereogenic axis and a P-stereogenic center is reported. The high reactivity and regio- and stereo-selectivity originate from the torsional strain release and palladium catalysis, and the construction of a P-stereogenic center is enabled by an efficient dynamic kinetic resolution. The high performance of the nascent P,S-ligands has been demonstrated in palladium-catalyzed asymmetric allylic substitutions, indicating the great potential of the present methodology.
Collapse
Affiliation(s)
- Jinghui Sun
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Yifei Yan
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Xuanxuan Chen
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Zhiwei Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
4
|
Sun H, Wang J, Du Z, Zhang K, Hu J, Jing S. Direct Synthesis of Tertiary Phosphines via Alkoxide-Mediated Deborylative Phosphination of Organoboronates. Org Lett 2024; 26:1618-1622. [PMID: 38367253 DOI: 10.1021/acs.orglett.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The direct transformation of alkylboron has emerged as a versatile and powerful methodology for creating carbon-carbon and carbon-heteroatom bonds. However, its potential application in the formation of carbon and phosphorus remains unexplored. In this study, we present an alkoxide base-promoted reaction system that enables deborylative phosphination of benzylic organoboronates and geminal bis(boronates) via selective C-B bond cleavage. This approach allows for the synthesis of valuable tertiary phosphines in good yields under mild conditions. The practicality and industrial potential of this approach are underscored by the operational simplicity, broad substrate scope, and easy scalability.
Collapse
Affiliation(s)
- Huaxing Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Zihang Du
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Kun Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| |
Collapse
|
5
|
Chen ZJ, Fan LJ, Xie PP, Qian PF, Hu X, Zhou T, Shi BF. Pd(II)-Catalyzed enantioselective C-H olefination toward the synthesis of P-stereogenic phosphinamides. Chem Commun (Camb) 2024; 60:1623-1626. [PMID: 38230709 DOI: 10.1039/d3cc05052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
P-Stereogenic phosphorus compounds are important structural elements in chiral ligands or organocatalysts. Herein, we report a Pd(II)-catalyzed enantioselective C-H olefination toward the synthesis of P-stereogenic phosphinamides using cheap commercially available L-pGlu-OH as a chiral ligand. A broad range of P-stereogenic phosphinamides were gained in good yields with high enantioselectivities (33 examples, up to 77% yield, 99% ee) via desymmetrization and kinetic resolution.
Collapse
Affiliation(s)
- Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Ling-Jie Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
6
|
Wang C, Yang Q, Dai YH, Xiong J, Zheng Y, Duan WL. Nickel-Catalyzed Asymmetric Synthesis of P-Stereogenic Phosphanyl Hydrazine Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202313112. [PMID: 37770407 DOI: 10.1002/anie.202313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Catalytic asymmetric methods for the synthesis of synthetically versatile P-stereogenic building blocks offer an efficient and practical approach for the diversity-oriented preparation of P-chiral phosphorus compounds. Herein, we report the first nickel-catalyzed synthesis of P-stereogenic secondary aminophosphine-boranes by the asymmetric addition of primary phosphines to azo compounds. We further demonstrate that the P-H and P-N bonds on these phosphanyl hydrazine building blocks can be reacted sequentially and stereospecifically to access various P-stereogenic compounds with structural diversity.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Qingliang Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Yuan-Hao Dai
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Jianqi Xiong
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| |
Collapse
|
7
|
Daniels BS, Hou X, Corio SA, Weissman LM, Dong VM, Hirschi JS, Nie S. Copper-Phosphido Catalysis: Enantioselective Addition of Phosphines to Cyclopropenes. Angew Chem Int Ed Engl 2023; 62:e202306511. [PMID: 37332088 PMCID: PMC11365472 DOI: 10.1002/anie.202306511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
We describe a copper catalyst that promotes the addition of phosphines to cyclopropenes at ambient temperature. A range of cyclopropylphosphines bearing different steric and electronic properties can now be accessed in high yields and enantioselectivities. Enrichment of phosphorus stereocenters is also demonstrated via a Dynamic Kinetic Asymmetric Transformation (DyKAT) process. A combined experimental and theoretical mechanistic study supports an elementary step featuring insertion of a CuI -phosphido into a carbon-carbon double bond. Density functional theory calculations reveal migratory insertion as the rate- and stereo-determining step, followed by a syn-protodemetalation.
Collapse
Affiliation(s)
- Brian S Daniels
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Lindsey M Weissman
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry, GSK, 1250 S. Collegeville Rd, 19426, Collegeville, PA, USA
| |
Collapse
|
8
|
Franco M, Silva RC, Rosa GHS, Flores LM, de Oliveira KT, de Assis FF. Synthesis of the Brivaracetam Employing Asymmetric Photocatalysis and Continuous Flow Conditions. ACS OMEGA 2023; 8:23008-23016. [PMID: 37396260 PMCID: PMC10308561 DOI: 10.1021/acsomega.3c02134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
An original total synthesis of the antiepileptic drug brivaracetam (BRV) is reported. The key step in the synthesis consists of an enantioselective photochemical Giese addition, promoted by visible-light and the chiral bifunctional photocatalyst Δ-RhS. Continuous flow conditions were employed to improve the efficiency and allow an easy scale-up of the enantioselective photochemical reaction step. The intermediate obtained from the photochemical step was converted into BRV by two different pathways, followed by one alkylation and amidation, thus giving the desired active pharmaceutical ingredients (API) in 44% overall yield, 9:1 diastereoisomeric ratio (dr) and >99:1 enantiomeric ratio (er).
Collapse
Affiliation(s)
- Marcelo
S. Franco
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Rodrigo C. Silva
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Gabriel H. S. Rosa
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Lara M. Flores
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Kleber T. de Oliveira
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Francisco F. de Assis
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
9
|
Liu B, Liu P, Wang X, Feng F, Wang Z, Yang W. Copper-Catalyzed Dynamic Kinetic Resolution of Secondary Phosphine Oxides. Org Lett 2023; 25:2178-2183. [PMID: 36763811 DOI: 10.1021/acs.orglett.3c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Copper-catalyzed dynamic kinetic resolution of secondary phosphine oxides has been successfully developed, providing a general method for the gram-scale enantioselective synthesis of P-stereogenic cyclic phosphine oxides with high yields and high enantioselectivities. The products could be easily reduced to the corresponding useful P(III)-stereogenic cyclic phosphines. A mechanism of the dynamic kinetic resolution involving the unusual rapid racemization of SPOs has been proposed.
Collapse
Affiliation(s)
- Baixue Liu
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China
| | - Peng Liu
- Guangzhou Institutes of Biomedicine and Health (GIBH), China Academy of Science, Guangzhou, Guangdong 510530, PR China
| | - Xue Wang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China
| | - Feng Feng
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China
| | - Zhen Wang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China
| | - Wenqiang Yang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China
| |
Collapse
|
10
|
Zhang B, Zhou WQ, Liu XT, Sun Y, Zhang QW. A Ni-catalyzed asymmetric C(sp)-P cross-coupling reaction for the synthesis of P-stereogenic alkynylphosphines. Chem Sci 2023; 14:1286-1290. [PMID: 36756330 PMCID: PMC9891383 DOI: 10.1039/d2sc05841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
Due to the high reactivity of the triple bond, P-stereogenic alkynylphosphines could be easily derivatized, serving as universal building blocks for structurally diverse phosphine compounds. However, the synthesis of alkynylphosphines via direct P-C bond formation was unprecedented. Here, we report an efficient method for the synthesis of P-stereogenic alkynylphosphines with high enantioselectivity via a Ni-catalyzed asymmetric cross-coupling reaction. The reaction could tolerate a variety of functional groups, affording products that can be converted into useful phosphine derivatives.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Wen-Qing Zhou
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Xu-Teng Liu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Yingying Sun
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
11
|
Huber T, Espinosa‐Jalapa NA, Bauer JO. Access to Enantiomerically Pure P-Stereogenic Primary Aminophosphine Sulfides under Reductive Conditions. Chemistry 2022; 28:e202202608. [PMID: 36161736 PMCID: PMC10092265 DOI: 10.1002/chem.202202608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 12/29/2022]
Abstract
Stereochemically pure phosphines with phosphorus-heteroatom bonds and P-centered chirality are a promising class of functional building blocks for the design of chiral ligands and organocatalysts. A route to enantiomerically pure primary aminophosphine sulfides was opened through stereospecific reductive C-N bond cleavage of phosphorus(V) precursors by lithium in liquid ammonia. The chemoselectivity of the reaction as a function of reaction time, substrate pattern, and chiral auxiliary was investigated. In the presence of exclusively aliphatic groups bound to the phosphorus atom, all competing reductive side reactions are totally prevented. The absolute configurations of all P-stereogenic compounds were determined by single-crystal X-ray diffraction analysis. Their use as synthetic building blocks was demonstrated. The lithium salt of (R)-BINOL-dithiophosphoric acid proved to be a useful stereochemical probe to determine the enantiomeric purity. Insights into the coordination mode of the lithium-based chiral complex formed in solution was provided by NMR spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Tanja Huber
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Noel Angel Espinosa‐Jalapa
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Jonathan O. Bauer
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
12
|
Wu ZH, Wang HY, Yang HL, Wei LH, Hayashi T, Duan WL. Secondary Phosphine Sulfide-Enabled Iridium-Catalyzed Asymmetric Allylic Substitution. Angew Chem Int Ed Engl 2022; 61:e202213904. [PMID: 36305853 DOI: 10.1002/anie.202213904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/07/2022]
Abstract
An iridium-catalyzed asymmetric synthesis of branched allylic phosphine compounds under mild conditions is reported. Products bearing various functional groups can be synthesized with excellent stereoselectivity (up to 99.9 % ee) and regioselectivity. The employment of phosphine sulfides with relatively low deactivation capacity against metal catalysts is crucial for the success of this reaction.
Collapse
Affiliation(s)
- Zeng-Hua Wu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Huai-Yu Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Huai-Lan Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Li-Hua Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Liang Duan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| |
Collapse
|
13
|
Wei R, Ju S, Liu LL. Free Metallophosphines: Extremely Electron‐Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angew Chem Int Ed Engl 2022; 61:e202205618. [DOI: 10.1002/anie.202205618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Wei
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shaoying Ju
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
14
|
Gallant SK, Tipker RM, Glueck DS. Copper-Catalyzed Asymmetric Alkylation of Secondary Phosphines via Rapid Pyramidal Inversion in P-Stereogenic Cu–Phosphido Intermediates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah K. Gallant
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ryan M. Tipker
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - David S. Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
15
|
Zhang Y, Yuan J, Huang G, Yu H, Liu J, Chen J, Meng S, Zhong JJ, Dang L, Yu GA, Che CM. Direct visible-light-induced synthesis of P-stereogenic phosphine oxides under air conditions. Chem Sci 2022; 13:6519-6524. [PMID: 35756532 PMCID: PMC9172294 DOI: 10.1039/d2sc00036a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, visible-light-induced transformations have been regarded as being among the most environmentally benign and powerful strategies for constructing complex molecules and diverse synthetic building blocks in organic synthesis. However, the development of efficient photochemical processes for assembling enantiomerically pure molecules remains a significant challenge. Herein, we describe a simple and efficient visible-light-induced C-P bond forming reaction for the synthesis of P-chiral heteroaryl phosphine oxides in moderate to high yields with excellent ee values (97-99% ee). Even in the absence of transition metal or photoredox catalysts, a variety of P-chiral heteroaryl phosphine oxides, including chiral diphosphine oxide 41, have been directly obtained under air conditions. Density functional theory (DFT) calculations have shown that the reaction involves intersystem crossing and single electron transfer to give a diradical intermediate under visible light irradiation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jia Yuan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Hong Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jinpeng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Sixuan Meng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Guang-Ao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| |
Collapse
|
16
|
Wei R, Ju S, Liu LL. Free Metallophosphines: Extremely Electron‐Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Wei
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shaoying Ju
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
17
|
Zhai DH, Yan BX, Li ZC, Lin Z, Li Q, Wang YL, Zheng HX, Zhao CQ. The stereoselective conversion of epimerized alkoxyl phosphine-borane to P,C, axial-stereogenic tertiary phosphine via cleavage of P-O bond. Org Biomol Chem 2022; 20:2615-2620. [PMID: 35297934 DOI: 10.1039/d2ob00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The P-O bond of epimerized alkoxyl phosphine-borane was cleaved by naphthalene-lithium, to form two diastereomers of P-anions in a ratio of 86 : 14, which was then converted to secondary phosphine-borane via acidification, and to tertiary phosphines with alkyl halides with enhanced 96 : 4 dr. The isolated tertiary phosphine containing hydroxyl (in >99 : 1 dr) was converted to multi-stereogenic tertiary phosphines via O-alkylation with alkylene dihalides.
Collapse
Affiliation(s)
- De-Hua Zhai
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Bing-Xia Yan
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Zhan-Cai Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Zhu Lin
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Qiang Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yan-Lan Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Hong-Xing Zheng
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
18
|
Cai WQ, Wei Q, Zhang QW. Ni-Catalyzed Enantioselective Benzylation of Secondary Phosphine Oxide. Org Lett 2022; 24:1258-1262. [PMID: 35107018 DOI: 10.1021/acs.orglett.2c00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A nickel-catalyzed benzylic substitution of secondary phosphine oxide was described, affording the dialkylated P-stereogenic tertiary phosphine oxides with high to excellent enantioselectivities. The reaction was performed under mild conditions with commercially available benzyl chlorides and bench stable secondary phosphine oxides, exhibiting broad functional group tolerance. It represented a practical example for the preparation of P-stereogenic phosphine compounds.
Collapse
Affiliation(s)
- Wen-Qiang Cai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi Wei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Li H, Yin L. Research Progress on Catalytic Asymmetric Synthesis of P-Chiral Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Geer AM, Tejel C. Organo-phosphanide and -phosphinidene complexes of Groups 8–11. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Wu ZH, Cheng AQ, Yuan M, Zhao YX, Yang HL, Wei LH, Wang HY, Wang T, Zhang Z, Duan WL. Cobalt-Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of P-Stereogenic Compounds. Angew Chem Int Ed Engl 2021; 60:27241-27246. [PMID: 34739169 DOI: 10.1002/anie.202111137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Indexed: 01/01/2023]
Abstract
The catalytic asymmetric synthesis of P-chiral phosphorus compounds is an important way to construct P-chiral ligands. Herein, we report a new strategy that adopts the pyridinyl moiety as the coordinating group in the cobalt-catalysed asymmetric nucleophilic addition/alkylation of secondary phosphine oxides. A series of tertiary phosphine oxides were generated with up to 99 % yield and 99.5 % ee, and with broad functional-group tolerance. Mechanistic studies reveal that (R)-secondary phosphine oxides preferentially interact with the cobalt catalysts to produce P-stereogenic compounds.
Collapse
Affiliation(s)
- Zeng-Hua Wu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - An-Qi Cheng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Meng Yuan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Ya-Xuan Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Huai-Lan Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Li-Hua Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Huai-Yu Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Zunting Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Wei-Liang Duan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China.,College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
22
|
Wu Z, Cheng A, Yuan M, Zhao Y, Yang H, Wei L, Wang H, Wang T, Zhang Z, Duan W. Cobalt‐Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of
P
‐Stereogenic Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zeng‐Hua Wu
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - An‐Qi Cheng
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Meng Yuan
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Ya‐Xuan Zhao
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Huai‐Lan Yang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Li‐Hua Wei
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Huai‐Yu Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Tao Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Zunting Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Wei‐Liang Duan
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
- College of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 225002 China
| |
Collapse
|
23
|
Zhang CW, Hu XQ, Dai YH, Yin P, Wang C, Duan WL. Asymmetric C–H Activation for the Synthesis of P- and Axially Chiral Biaryl Phosphine Oxides by an Achiral Cp*Ir Catalyst with Chiral Carboxylic Amide. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chao-Wei Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Xian-Qi Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Yuan-Hao Dai
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Peng Yin
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi’an 710119, People’s Republic of China
| |
Collapse
|
24
|
Dai Q, Liu L, Zhang J. Palladium/Xiao‐Phos‐Catalyzed Kinetic Resolution of
sec
‐Phosphine Oxides by
P
‐Benzylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Dai
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200241 P. R. China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
25
|
Zhang QW, Liu XT, Wu Y. Nickel-Catalyzed Asymmetric Synthesis of P-Stereogenic Vinyl Phosphines. Synlett 2021. [DOI: 10.1055/a-1695-4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAddition reaction to alkynes is an efficient strategy for constructing valuable alkenyl compounds. However, the elusive regioselectivity has been a persistent challenge. In the context of hydrophosphination reaction which could afford valuable P-stereogenic phosphines, the control of enantioselectivity as well as regioselectivity were especially tricky. Here, we highlighted our recent work on the nickel-catalyzed regio- and enantioselective hydrophosphination of unactivated alkynes with in situ generated secondary phosphines.1 Introduction2 Hydrophosphination of Alkynes3 Derivatization Reactions4 Mechanism Research5 Summary and Outlook
Collapse
|
26
|
Fortrie R, Gatineau D, Hérault D, Béal A, Naubron JV, Giordano L, Buono G. Racemization mechanism of lithium tert-butylphenylphosphido-borane: A kinetic insight. Chirality 2021; 34:27-33. [PMID: 34734430 DOI: 10.1002/chir.23383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
The racemization mechanism of tert-butylphenylphosphido-borane is investigated experimentally and theoretically. Based on this converging approach, it is shown, first, that several phosphido-borane molecular species coexist at the time of the reaction and, second, that one particular of both initially assumed reactive routes most significantly contribute to the overall racemization process. From our converging modeling and experimental measurement, it comes out that the most probable species to be here encountered is a phosphido-borane-Li (THF)2 neutral solvate, whose P-stereogenic center monomolecular inversion through a Y-shaped transition structure (Δr G°≠ : 81 kJ mol-1 ) brings the largest contribution to the racemization process.
Collapse
Affiliation(s)
- Rémy Fortrie
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - David Gatineau
- Univ Grenoble Alpes, CNRS, DCM UMR5250, Grenoble Cedex 9, France
| | - Damien Hérault
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Aurélie Béal
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Univ, CNRS, Centrale Marseille, Spectropole-FR1739, Marseille, France
| | - Laurent Giordano
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Gérard Buono
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
27
|
Dai Q, Liu L, Zhang J. Palladium/Xiao-Phos-Catalyzed Kinetic Resolution of sec-Phosphine Oxides by P-Benzylation. Angew Chem Int Ed Engl 2021; 60:27247-27252. [PMID: 34672416 DOI: 10.1002/anie.202111957] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Indexed: 02/06/2023]
Abstract
P-stereogenic tert- and sec-phosphines have wide applications in asymmetric catalysis, materials, and pharmaceutical chemistry, however, their practical synthesis still constitutes a significant challenge. Herein, a successful kinetic resolution of rac-secondary phosphine oxides via the enantioselective P-benzylation process catalyzed by the palladium/Xiao-Phos was designed. Both tert- and sec-phosphine oxides were delivered in good yield and excellent enantiopurity (selectivity factor up to 226.1). The appealing synthetic utilities are further demonstrated by the facile preparation of several valuable P-chiral compounds, precursors of bidentate ligands, as well as transition metal complexes.
Collapse
Affiliation(s)
- Qiang Dai
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
28
|
Song SY, Li Y, Ke Z, Xu S. Iridium-Catalyzed Enantioselective C–H Borylation of Diarylphosphinates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-Yong Song
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
29
|
Rusmore TA, Behlen MJ, John A, Glatzhofer DT, Nicholas KM. Oxidative kinetic resolution of P-chiral phosphines catalyzed by chiral (salen)dioxomolybdenum complexes. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Liu XT, Han XY, Wu Y, Sun YY, Gao L, Huang Z, Zhang QW. Ni-Catalyzed Asymmetric Hydrophosphination of Unactivated Alkynes. J Am Chem Soc 2021; 143:11309-11316. [PMID: 34283592 DOI: 10.1021/jacs.1c05649] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The practical synthesis of P-stereogenic tertiary phosphines, which have wide applications in asymmetric catalysis, materials, and pharmaceutical chemistry, represents a significant challenge. A regio- and enantioselective hydrophosphination using cheap and ubiquitous alkynes catalyzed by a nickel complex was designed, in which the toxic and air-sensitive secondary phosphines were prepared in situ from bench-stable secondary phosphine oxides. This methodology has been demonstrated with unprecedented substrate scope and functional group compatibility to afford electronically and structurally diversified P(III) compounds. The products could be easily converted into various precursors of bidentate ligands and organocatalysts, as well as a variety of transition-metal complexes containing both P- and metal-stereogenic centers.
Collapse
Affiliation(s)
- Xu-Teng Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xue-Yu Han
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yue Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ying-Ying Sun
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Li Gao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhuo Huang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
31
|
Zhang S, Xiao JZ, Li YB, Shi CY, Yin L. Copper(I)-Catalyzed Asymmetric Alkylation of Unsymmetrical Secondary Phosphines. J Am Chem Soc 2021; 143:9912-9921. [PMID: 34160199 DOI: 10.1021/jacs.1c04112] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper(I)-catalyzed asymmetric alkylation of HPAr1Ar2 with alkyl halides is uncovered, which provides an array of P-stereogenic phosphines in generally high yield and enantioselectivity. The electrophilic alkyl halides enjoy a broad substrate scope, including allyl bromides, propargyl bromide, benzyl bromides, and alkyl iodides. Moreover, 11 unsymmetrical diarylphosphines (HPAr1Ar2) serve as competent pronucleophiles. The present methodology is also successfully applied to catalytic asymmetric double and triple alkylation, and the corresponding products were obtained in moderate diastereo- and excellent enantioselectivities. Some 31P NMR experiments indicate that bulky HPPhMes exhibits weak competitively coordinating ability to the Cu(I)-bisphosphine complex, and thus the presence of stoichiometric HPAr1Ar2 does not affect the enantioselectivity significantly. Therefore, the high enantioselectivity in this reaction is attributed to the high performance of the unique Cu(I)-(R,RP)-TANIAPHOS complex in asymmetric induction. Finally, one monophosphine and two bisphosphines prepared by the present reaction are employed as efficient chiral ligands to afford three structurally diversified Cu(I) complexes, which demonstrates the synthetic utility of the present methodology.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chang-Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
32
|
Wang C, Huang K, Ye J, Duan WL. Asymmetric Synthesis of P-Stereogenic Secondary Phosphine-Boranes by an Unsymmetric Bisphosphine Pincer-Nickel Complex. J Am Chem Soc 2021; 143:5685-5690. [PMID: 33835786 DOI: 10.1021/jacs.1c02772] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first highly enantioselective catalytic synthesis of P-stereogenic secondary phosphine-boranes was realized by the asymmetric addition of primary phosphine to electron-deficient alkenes with a newly developed unsymmetric bisphosphine (PCP') pincer-nickel complex. Various P-stereogenic secondary phosphine-boranes were obtained in 57-92% yields with up to 99% ee and >20:1 dr. The follow-up alkylation upon P-C bond formation with alkyl halides provided a practical way to access P-chiral compounds with diverse functional groups.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Kesheng Huang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Jie Ye
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| |
Collapse
|
33
|
Tewari T, Kumar R, Chandanshive AC, Chikkali SH. Phosphorus Ligands in Hydroformylation and Hydrogenation: A Personal Account. CHEM REC 2021; 21:1182-1198. [PMID: 33734560 DOI: 10.1002/tcr.202100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/10/2023]
Abstract
Metal-catalyzed hydroformylation and hydrogenation heavily rely on ligands, among which phosphorous ligands play a pivotal role. This personal account presents a selection of three distinct classes of phosphorous ligands, namely, monodentate meta-substituted phosphinites, bis-phosphites, and P-chiral supramolecular phosphines, developed in our group. The synthesis of these ligands, isolation, characterization, and their performance in transition metal-catalyzed hydroformylation, isomerizing hydroformylation, and asymmetric hydrogenation of olefins is summarized. The state of the art development in iron-catalyzed hydroformylation of alkenes and our contributions to the field is discussed. Use of phosphines enabled iron-catalyzed hydroformylation of alkenes under mild conditions. Thus, this account demonstrates the central role of phosphorus ligands in industrially relevant transformations such as hydrogenation and hydroformylation. The seemingly matured field of ligand discovery still holds significant potential and will steer the field of homogeneous catalysis.
Collapse
Affiliation(s)
- Tanuja Tewari
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Rohit Kumar
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Amol C Chandanshive
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Samir H Chikkali
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| |
Collapse
|
34
|
Ye X, Peng L, Bao X, Tan CH, Wang H. Recent developments in highly efficient construction of P-stereogenic centers. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Paraja M, Gini A, Sakai N, Matile S. Pnictogen‐Bonding Catalysis: An Interactive Tool to Uncover Unorthodox Mechanisms in Polyether Cascade Cyclizations. Chemistry 2020; 26:15471-15476. [DOI: 10.1002/chem.202003426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Andrea Gini
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
36
|
Qiu H, Dai Q, He J, Li W, Zhang J. Access to P-chiral sec- and tert-phosphine oxides enabled by Le-Phos-catalyzed asymmetric kinetic resolution. Chem Sci 2020; 11:9983-9988. [PMID: 34094261 PMCID: PMC8162192 DOI: 10.1039/d0sc04041j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The synthesis of P-stereogenic building blocks is extremely difficult. Herein we report an efficient kinetic resolution of secondary phosphine oxides via a Le-Phos-catalyzed asymmetric allylation reaction with Morita-Baylis-Hillman carbonates. This method provides facile access to enantioenriched secondary and tertiary P-chiral phosphine oxides with broad substrate scope, both of which could serve as P-stereogenic synthons, and can be rapidly incorporated into a given scaffold bearing a P-stereocenter. The highly desirable late stage modifications demonstrate the practicability of our method and can be a critical contribution to obtaining optimal P-chiral catalysts and ligands.
Collapse
Affiliation(s)
- Haile Qiu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Jiafeng He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai P. R. China .,Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| |
Collapse
|
37
|
Zhang M, Ma Z, Du H, Wang Z. Palladium-catalyzed C(sp3)–P(III) bond formation reaction with acylphosphines as phosphorus source. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Lemouzy S, Giordano L, Hérault D, Buono G. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-Stereogenic Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000406] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sébastien Lemouzy
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Laurent Giordano
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Damien Hérault
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Gérard Buono
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| |
Collapse
|
39
|
Qian Y, Dai Q, Li Z, Liu Y, Zhang J. O-Phosphination of Aldehydes/Ketones toward Phosphoric Esters: Experimental and Mechanistic Studies. Org Lett 2020; 22:4742-4748. [PMID: 32484695 DOI: 10.1021/acs.orglett.0c01537] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanyan Qian
- College of Chemistry and Life Science, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, 2055 Yan’an Street, Changchun 130012, P.R. China
| | - Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Yu Liu
- College of Chemistry and Life Science, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, 2055 Yan’an Street, Changchun 130012, P.R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, P.R. China
| |
Collapse
|
40
|
Qiu MR, Zheng HX, Ye JJ, Yan BX, Zhao CQ, Li Q. Stereoselective preparation of P,axial-stereogenic allenyl bisphosphine oxides via chirality-transfer. Org Biomol Chem 2020; 18:3017-3021. [PMID: 32236276 DOI: 10.1039/d0ob00390e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
P,C-Stereogenic propargyl alcohols RC-3/SC-3' were prepared by the addition of (L)-menthyl-derived SPOs to propynals, which were converted to P,axial-stereogenic allenyl bisphosphine oxides. The chirality transfer was controlled by α-carbon via syn [2,3]-sigmatropic rearrangement. For SC-3' linking weak WDG on the alkynyl moiety, the chirality on the axis depended on stereogenic phosphorus.
Collapse
Affiliation(s)
- Mao-Ran Qiu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hong-Xing Zheng
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Jing-Jing Ye
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Bing-Xia Yan
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qiang Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
41
|
Kolodiazhnyi OI. Stereochemistry, mechanisms and applications of electrophilic reactions of organophosphorus compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Teo RHX, Chen HJ, Li Y, Pullarkat SA, Leung P. Asymmetric Catalytic 1,2‐Dihydrophosphination of Secondary 1,2‐Diphosphines – Direct Access to Free
P
*‐ and
P
*,
C
*‐Diphosphines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ronald Hong Xiang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Houguang Jeremy Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Sumod A. Pullarkat
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Pak‐Hing Leung
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
43
|
Yan B, Zheng H, Ye J, Qiu M, Zhang Y, Zhao C, Li Q. Stereoselective Thermal Addition of
R
P
and/or
S
P
‐Menthyl‐Deriving Secondary Phosphine Oxides to Active Alkynes, the Mechanism, Stereochemistry and Generation of
P,C‐
Chirogenic Bis‐Phosphine Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bing‐Xia Yan
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng Shandong 252059 China
| | - Hong‐Xing Zheng
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng Shandong 252059 China
| | - Jing‐Jing Ye
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng Shandong 252059 China
| | - Mao‐Ran Qiu
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng Shandong 252059 China
| | - Yu Zhang
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng Shandong 252059 China
| | - Chang‐Qiu Zhao
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng Shandong 252059 China
| | - Qiang Li
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng Shandong 252059 China
| |
Collapse
|
44
|
Zhu RY, Chen L, Hu XS, Zhou F, Zhou J. Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(i)-catalyzed azide-alkyne cycloaddition. Chem Sci 2020; 11:97-106. [PMID: 32110361 PMCID: PMC7012078 DOI: 10.1039/c9sc04938j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
We report the highly enantioselective synthesis of P-chiral tertiary phosphine oxides featuring an ethynyl group via Cu(i)-catalyzed azide-alkyne cycloaddition. Newly developed chiral pyridinebisoxazolines (PYBOX) bearing a bulky C4 shielding group play an important role in achieving excellent enantioselectivity while suppressing side bis-triazoles formation in desymmetrizing prochiral diethynylphosphine oxides. Notably, by tuning the size of the C4 shielding group, it is possible to achieve excellent remote enantiofacial control in desymmetrizing phosphole oxide-diynes with the prochiral P-center farther from the ethynyl group by four covalent bonds. Time-dependent enantioselectivity is observed for these desymmetric CuAAC reactions, suggesting a synergic combination of a desymmetrization and a kinetic resolution, and our ligands prove to be better than unmodified PYBOX in both steps. This finding contributes to a highly enantioselective kinetic resolution of racemic ethynylphosphine oxides. The resulting chiral ethynylphosphine oxides are versatile P-chiral synthons, which can undergo a number of diversifying reactions to enrich structural diversity.
Collapse
Affiliation(s)
- Ren-Yi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Long Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
- Shanghai Key Laboratory of Green Chemistry and Chemical Process , East China Normal University , Shanghai 200062 , China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
- Shanghai Key Laboratory of Green Chemistry and Chemical Process , East China Normal University , Shanghai 200062 , China
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 200032 , China
| |
Collapse
|
45
|
Abstract
This review is devoted to the theoretic and synthetic aspects of asymmetric electrophilic substitution reactions at the stereogenic phosphorus center. The stereochemistry and mechanisms of electrophilic reactions are discussed—the substitution, addition and addition-elimination of many important reactions. The reactions of bimolecular electrophilic substitution SE2(P) proceed stereospecifically with the retention of absolute configuration at the phosphorus center, in contrast to the reactions of bimolecular nucleophilic substitution SN2(P), proceeding with inversion of absolute configuration. This conclusion was made based on stereochemical analysis of a wide range of trivalent phosphorus reactions with typical electrophiles and investigation of examples of a sizeable number of diverse compounds. The combination of stereospecific electrophilic reactions and stereoselective nucleophilic reactions is useful and promising for the further development of organophosphorus chemistry. The study of phosphoryl group transfer reactions is important for biological and molecular chemistry, as well as in studying mechanisms of chemical processes involving organophosphorus compounds. New versions of asymmetric electrophilic reactions applicable for the synthesis of enantiopure P-chiral secondary and tertiary phosphines are discussed.
Collapse
|
46
|
Wang C, Yue CD, Yuan J, Zheng JL, Zhang Y, Yu H, Chen J, Meng S, Yu Y, Yu GA, Che CM. Synthesis of P-chiral phosphine compounds by palladium-catalyzed C–P coupling reactions. Chem Commun (Camb) 2020; 56:11775-11778. [DOI: 10.1039/d0cc05340f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient C–P coupling reactions of enantiopure tert-butylmethylphosphine-boranes with aryl and heteroaryl halides is developed by using Pd(OAc)2/dppf as a catalyst, affording a series of P-chiral phosphines (up to 99% ee).
Collapse
Affiliation(s)
- Cuiying Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Chang-Duo Yue
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Jia Yuan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Jia-Lian Zheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Ying Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Hong Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Jian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Sixuan Meng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Yang Yu
- Department of Chemistry, Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Guang-Ao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong
- Hong Kong
- China
| |
Collapse
|
47
|
Dai Q, Li W, Li Z, Zhang J. P-Chiral Phosphines Enabled by Palladium/Xiao-Phos-Catalyzed Asymmetric P–C Cross-Coupling of Secondary Phosphine Oxides and Aryl Bromides. J Am Chem Soc 2019; 141:20556-20564. [DOI: 10.1021/jacs.9b11938] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
48
|
Liu XT, Zhang YQ, Han XY, Sun SP, Zhang QW. Ni-Catalyzed Asymmetric Allylation of Secondary Phosphine Oxides. J Am Chem Soc 2019; 141:16584-16589. [DOI: 10.1021/jacs.9b08734] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xu-Teng Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ya-Qian Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xue-Yu Han
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Ping Sun
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
49
|
Trost BM, Spohr SM, Rolka AB, Kalnmals CA. Desymmetrization of Phosphinic Acids via Pd-Catalyzed Asymmetric Allylic Alkylation: Rapid Access to P-Chiral Phosphinates. J Am Chem Soc 2019; 141:14098-14103. [DOI: 10.1021/jacs.9b07340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Simon M. Spohr
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alessa B. Rolka
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
50
|
Zhang Y, Nie SZ, Ye JJ, Wang JP, Zhou MM, Zhao CQ, Li Q. Functional Phosphine Derivatives Having Stationary and Flexible Chiralities: Their Preparation and Chirality Controlling. J Org Chem 2019; 84:8423-8439. [PMID: 31136177 DOI: 10.1021/acs.joc.9b00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Various functional secondary and tertiary phosphines, or their derivatives, containing stationary chiral phosphorus and flexible chiral axis were prepared, which could be further modified to afford diversely chelating ligands. The flexible axial chirality was fixed by stereogenic phosphorus via a cyclic linkage of chemical bonds or coordination with a metallic ion.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng , Shandong 252059 , China
| | - Shao-Zhen Nie
- College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng , Shandong 252059 , China
| | - Jing-Jing Ye
- College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng , Shandong 252059 , China
| | - Ji-Ping Wang
- College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng , Shandong 252059 , China
| | - Meng-Meng Zhou
- College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng , Shandong 252059 , China
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng , Shandong 252059 , China
| | - Qiang Li
- College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng , Shandong 252059 , China
| |
Collapse
|