1
|
Díaz Fattorini A, Chèze C, López García I, Petrucci C, Bertelli M, Righi Riva F, Prili S, Privitera SMS, Buscema M, Sciuto A, Di Franco S, D’Arrigo G, Longo M, De Simone S, Mussi V, Placidi E, Cyrille MC, Tran NP, Calarco R, Arciprete F. Growth, Electronic and Electrical Characterization of Ge-Rich Ge–Sb–Te Alloy. NANOMATERIALS 2022; 12:nano12081340. [PMID: 35458046 PMCID: PMC9031044 DOI: 10.3390/nano12081340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
In this study, we deposit a Ge-rich Ge–Sb–Te alloy by physical vapor deposition (PVD) in the amorphous phase on silicon substrates. We study in-situ, by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS), the electronic properties and carefully ascertain the alloy composition to be GST 29 20 28. Subsequently, Raman spectroscopy is employed to corroborate the results from the photoemission study. X-ray diffraction is used upon annealing to study the crystallization of such an alloy and identify the effects of phase separation and segregation of crystalline Ge with the formation of grains along the [111] direction, as expected for such Ge-rich Ge–Sb–Te alloys. In addition, we report on the electrical characterization of single memory cells containing the Ge-rich Ge–Sb–Te alloy, including I-V characteristic curves, programming curves, and SET and RESET operation performance, as well as upon annealing temperature. A fair alignment of the electrical parameters with the current state-of-the-art of conventional (GeTe)n-(Sb2Te3)m alloys, deposited by PVD, is found, but with enhanced thermal stability, which allows for data retention up to 230 °C.
Collapse
Affiliation(s)
- Adriano Díaz Fattorini
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (A.D.F.); (C.P.); (M.B.); (M.L.); (S.D.S.); (V.M.)
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (F.R.R.); (S.P.); (E.P.); (F.A.)
| | - Caroline Chèze
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (F.R.R.); (S.P.); (E.P.); (F.A.)
| | - Iñaki López García
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Zona Industriale Ottava Strada 5, 95121 Catania, Italy; (I.L.G.); (S.M.S.P.); (M.B.); (A.S.); (S.D.F.); (G.D.)
| | - Christian Petrucci
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (A.D.F.); (C.P.); (M.B.); (M.L.); (S.D.S.); (V.M.)
| | - Marco Bertelli
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (A.D.F.); (C.P.); (M.B.); (M.L.); (S.D.S.); (V.M.)
| | - Flavia Righi Riva
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (F.R.R.); (S.P.); (E.P.); (F.A.)
| | - Simone Prili
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (F.R.R.); (S.P.); (E.P.); (F.A.)
| | - Stefania M. S. Privitera
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Zona Industriale Ottava Strada 5, 95121 Catania, Italy; (I.L.G.); (S.M.S.P.); (M.B.); (A.S.); (S.D.F.); (G.D.)
| | - Marzia Buscema
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Zona Industriale Ottava Strada 5, 95121 Catania, Italy; (I.L.G.); (S.M.S.P.); (M.B.); (A.S.); (S.D.F.); (G.D.)
| | - Antonella Sciuto
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Zona Industriale Ottava Strada 5, 95121 Catania, Italy; (I.L.G.); (S.M.S.P.); (M.B.); (A.S.); (S.D.F.); (G.D.)
| | - Salvatore Di Franco
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Zona Industriale Ottava Strada 5, 95121 Catania, Italy; (I.L.G.); (S.M.S.P.); (M.B.); (A.S.); (S.D.F.); (G.D.)
| | - Giuseppe D’Arrigo
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Zona Industriale Ottava Strada 5, 95121 Catania, Italy; (I.L.G.); (S.M.S.P.); (M.B.); (A.S.); (S.D.F.); (G.D.)
| | - Massimo Longo
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (A.D.F.); (C.P.); (M.B.); (M.L.); (S.D.S.); (V.M.)
| | - Sara De Simone
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (A.D.F.); (C.P.); (M.B.); (M.L.); (S.D.S.); (V.M.)
| | - Valentina Mussi
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (A.D.F.); (C.P.); (M.B.); (M.L.); (S.D.S.); (V.M.)
| | - Ernesto Placidi
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (F.R.R.); (S.P.); (E.P.); (F.A.)
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marie-Claire Cyrille
- Leti, CEA, University Grenoble Alpes, 38000 Grenoble, France; (M.-C.C.); (N.-P.T.)
| | - Nguyet-Phuong Tran
- Leti, CEA, University Grenoble Alpes, 38000 Grenoble, France; (M.-C.C.); (N.-P.T.)
| | - Raffaella Calarco
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (A.D.F.); (C.P.); (M.B.); (M.L.); (S.D.S.); (V.M.)
- Correspondence:
| | - Fabrizio Arciprete
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (F.R.R.); (S.P.); (E.P.); (F.A.)
| |
Collapse
|
2
|
Chèze C, Righi Riva F, Di Bella G, Placidi E, Prili S, Bertelli M, Diaz Fattorini A, Longo M, Calarco R, Bernasconi M, Abou El Kheir O, Arciprete F. Interface Formation during the Growth of Phase Change Material Heterostructures Based on Ge-Rich Ge-Sb-Te Alloys. NANOMATERIALS 2022; 12:nano12061007. [PMID: 35335820 PMCID: PMC8949867 DOI: 10.3390/nano12061007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023]
Abstract
In this study, we present a full characterization of the electronic properties of phase change material (PCM) double-layered heterostructures deposited on silicon substrates. Thin films of amorphous Ge-rich Ge-Sb-Te (GGST) alloys were grown by physical vapor deposition on Sb2Te3 and on Ge2Sb2Te5 layers. The two heterostructures were characterized in situ by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS) during the formation of the interface between the first and the second layer (top GGST film). The evolution of the composition across the heterostructure interface and information on interdiffusion were obtained. We found that, for both cases, the final composition of the GGST layer was close to Ge2SbTe2 (GST212), which is a thermodynamically favorable off-stoichiometry GeSbTe alloy in the Sb-GeTe pseudobinary of the ternary phase diagram. Density functional theory calculations allowed us to calculate the density of states for the valence band of the amorphous phase of GST212, which was in good agreement with the experimental valence bands measured in situ by UPS. The same heterostructures were characterized by X-ray diffraction as a function of the annealing temperature. Differences in the crystallization process are discussed on the basis of the photoemission results.
Collapse
Affiliation(s)
- Caroline Chèze
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (G.D.B.); (S.P.); (F.A.)
| | - Flavia Righi Riva
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (G.D.B.); (S.P.); (F.A.)
- Correspondence:
| | - Giulia Di Bella
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (G.D.B.); (S.P.); (F.A.)
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Simone Prili
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (G.D.B.); (S.P.); (F.A.)
| | - Marco Bertelli
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (M.B.); (A.D.F.); (M.L.); (R.C.)
| | - Adriano Diaz Fattorini
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (M.B.); (A.D.F.); (M.L.); (R.C.)
| | - Massimo Longo
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (M.B.); (A.D.F.); (M.L.); (R.C.)
| | - Raffaella Calarco
- Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (M.B.); (A.D.F.); (M.L.); (R.C.)
| | - Marco Bernasconi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; (M.B.); (O.A.E.K.)
| | - Omar Abou El Kheir
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; (M.B.); (O.A.E.K.)
| | - Fabrizio Arciprete
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.C.); (G.D.B.); (S.P.); (F.A.)
| |
Collapse
|
3
|
Lee ES, Yoo JE, Yoon DS, Kim SD, Kim Y, Hwang S, Kim D, Jeong HC, Kim WT, Chang HJ, Suh H, Ko DH, Cho C, Choi Y, Kim DH, Cho MH. Quasicrystalline phase-change memory. Sci Rep 2020; 10:13673. [PMID: 32792578 PMCID: PMC7426956 DOI: 10.1038/s41598-020-70662-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Phase-change memory utilizing amorphous-to-crystalline phase-change processes for reset-to-set operation as a nonvolatile memory has been recently commercialized as a storage class memory. Unfortunately, designing new phase-change materials (PCMs) with low phase-change energy and sufficient thermal stability is difficult because phase-change energy and thermal stability decrease simultaneously as the amorphous phase destabilizes. This issue arising from the trade-off relationship between stability and energy consumption can be solved by reducing the entropic loss of phase-change energy as apparent in crystalline-to-crystalline phase-change process of a GeTe/Sb2Te3 superlattice structure. A paradigm shift in atomic crystallography has been recently produced using a quasi-crystal, which is a new type of atomic ordering symmetry without any linear translational symmetry. This paper introduces a novel class of PCMs based on a quasicrystalline-to-approximant crystalline phase-change process, whose phase-change energy and thermal stability are simultaneously enhanced compared to those of the GeTe/Sb2Te3 superlattice structure. This report includes a new concept that reduces entropic loss using a quasicrystalline state and takes the first step in the development of new PCMs with significantly low phase-change energy and considerably high thermal stability.
Collapse
Affiliation(s)
- Eun-Sung Lee
- Material Research Center, SAIT, Samsung Electronics, Suwon, 16678, Republic of Korea.
| | - Joung E Yoo
- Material Research Center, SAIT, Samsung Electronics, Suwon, 16678, Republic of Korea
| | - Du S Yoon
- Material Research Center, SAIT, Samsung Electronics, Suwon, 16678, Republic of Korea
| | - Sung D Kim
- Material Research Center, SAIT, Samsung Electronics, Suwon, 16678, Republic of Korea
| | - Yongjoo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soobin Hwang
- Department of Physics, Yonsei University, Seoul, 03725, Republic of Korea
| | - Dasol Kim
- Department of Physics, Yonsei University, Seoul, 03725, Republic of Korea
| | - Hyeong-Chai Jeong
- Department of Physics and Astronomy, Sejong University, Seoul, 05006, Republic of Korea
| | - Won T Kim
- Department of Optical Engineering, Cheongju University, Cheongju, 28503, Republic of Korea
| | - Hye J Chang
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hoyoung Suh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dae-Hong Ko
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Choonghee Cho
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yongjoon Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Do H Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Mann-Ho Cho
- Department of Physics, Yonsei University, Seoul, 03725, Republic of Korea.
| |
Collapse
|
4
|
Park SH, Chae J, Jeong KS, Kim TH, Choi H, Cho MH, Hwang I, Bae MH, Kang C. Reversible Fermi Level Tuning of a Sb₂Te₃ Topological Insulator by Structural Deformation. NANO LETTERS 2015; 15:3820-3826. [PMID: 26010013 DOI: 10.1021/acs.nanolett.5b00553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For three-dimensional (3D) topological insulators that have a layered structure, strain was used to control critical physical properties. Here, we show that tensile strain decreases bulk carrier density while accentuating transport of topological surface state using temperature-dependent resistance and magneto-resistance measurements, terahertz-time domain spectroscopy and density functional theory calculations. The induced strain was confirmed by transmittance X-ray scattering measurements. The results show the possibility of reversible topological surface state device control using structural deformation.
Collapse
Affiliation(s)
- Sang Han Park
- †Institute of Physics and Applied Physics, Yonsei University, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Jimin Chae
- †Institute of Physics and Applied Physics, Yonsei University, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kwang Sik Jeong
- †Institute of Physics and Applied Physics, Yonsei University, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Tae-Hyeon Kim
- †Institute of Physics and Applied Physics, Yonsei University, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Hyejin Choi
- †Institute of Physics and Applied Physics, Yonsei University, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Mann-Ho Cho
- †Institute of Physics and Applied Physics, Yonsei University, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Inwoong Hwang
- §Department of Physics, Chungnam National University, Daejeon 305-764, Republic of Korea
- ‡Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340, Republic of Korea
| | - Myung-Ho Bae
- ∥Department of Nanoscience, University of Science and Technology, Yuseong, Daejeon 305-350, Republic of Korea
- ‡Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340, Republic of Korea
| | - Chul Kang
- #Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| |
Collapse
|
5
|
Chiang KC, Hsieh TE. Characteristics of AgInSbTe-SiO2 nanocomposite thin film applied to nonvolatile floating gate memory devices. NANOTECHNOLOGY 2010; 21:425204. [PMID: 20858935 DOI: 10.1088/0957-4484/21/42/425204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanocomposite thin films containing AgInSbTe (AIST) particles embedded in an SiO(2) matrix was prepared by sputtering deposition and its feasibility for nonvolatile floating gate memory (NFGM) was investigated. The sample subjected to a 400 °C annealing exhibited a distinct hysteresis memory window (ΔV(FB)) shift = 6.6 V and charge density = 5.2 × 10(12) cm(-2) after ± 8 V gate voltage sweep. Electrical measurement revealed the current transport is via the Schottky emission in low applied field and the space-charge-limited conduction mechanism in high applied field in the samples, regardless of their thermal history. Transmission electron microscopy and x-ray photoelectron spectroscopy indicated that the metallic Sb(2)Te nanocrystals (NCs) with diameters about 5-7 nm dispersed in a nanocomposite layer may serve as the discrete charge-storage traps for nonvolatile memory. Analytical results illustrate the utilization of an AIST-SiO(2) nanocomposite layer as the core structure of NFGM devices is able to simplify the device structure and fabrication process.
Collapse
Affiliation(s)
- Kuo-Chang Chiang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | | |
Collapse
|