1
|
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
3
|
Birrell JA, Pelmenschikov V, Mishra N, Wang H, Yoda Y, Tamasaku K, Rauchfuss TB, Cramer SP, Lubitz W, DeBeer S. Spectroscopic and Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO-Bridged Intermediates. J Am Chem Soc 2019; 142:222-232. [PMID: 31820961 PMCID: PMC6956316 DOI: 10.1021/jacs.9b09745] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
[FeFe] hydrogenases are extremely active H2-converting
enzymes. Their mechanism remains highly controversial, in particular,
the nature of the one-electron and two-electron reduced intermediates
called HredH+ and HsredH+. In one model, the HredH+ and HsredH+ states contain a semibridging CO, while in the other
model, the bridging CO is replaced by a bridging hydride. Using low-temperature
IR spectroscopy and nuclear resonance vibrational spectroscopy, together
with density functional theory calculations, we show that the bridging
CO is retained in the HsredH+ and HredH+ states in the [FeFe] hydrogenases from Chlamydomonas
reinhardtii and Desulfovibrio desulfuricans, respectively. Furthermore, there is no evidence for a bridging
hydride in either state. These results agree with a model of the catalytic
cycle in which the HredH+ and HsredH+ states are integral, catalytically competent components.
We conclude that proton-coupled electron transfer between the two
subclusters is crucial to catalysis and allows these enzymes to operate
in a highly efficient and reversible manner.
Collapse
Affiliation(s)
- James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Vladimir Pelmenschikov
- Institut für Chemie , Technische Universität Berlin , Strasse des 17 Juni 135 , 10623 Berlin , Germany
| | - Nakul Mishra
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Hongxin Wang
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Yoshitaka Yoda
- JASRI Spring-8, 1-1-1 Kouto, Mikazuki-cho , Sayo-gun , Hyogo 679-5198 , Japan
| | - Kenji Tamasaku
- JASRI Spring-8, 1-1-1 Kouto, Mikazuki-cho , Sayo-gun , Hyogo 679-5198 , Japan
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , 600 S. Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Stephen P Cramer
- SETI Institute , Mountain View , California 94043 , United States
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
4
|
Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP, Winkler M, Haumann M. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Inorg Chem 2019; 58:4000-4013. [PMID: 30802044 DOI: 10.1021/acs.inorgchem.9b00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[FeFe]-hydrogenases are efficient biological hydrogen conversion catalysts and blueprints for technological fuel production. The relations between substrate interactions and electron/proton transfer events at their unique six-iron cofactor (H-cluster) need to be elucidated. The H-cluster comprises a four-iron cluster, [4Fe4S], linked to a diiron complex, [FeFe]. We combined 57Fe-specific X-ray nuclear resonance scattering experiments (NFS, nuclear forward scattering; NRVS, nuclear resonance vibrational spectroscopy) with quantum-mechanics/molecular-mechanics computations to study the [FeFe]-hydrogenase HYDA1 from a green alga. Selective 57Fe labeling at only [4Fe4S] or [FeFe], or at both subcomplexes was achieved by protein expression with a 57Fe salt and in vitro maturation with a synthetic diiron site precursor containing 57Fe. H-cluster states were populated under infrared spectroscopy control. NRVS spectral analyses facilitated assignment of the vibrational modes of the cofactor species. This approach revealed the H-cluster structure of the oxidized state (Hox) with a bridging carbon monoxide at [FeFe] and ligand rearrangement in the CO-inhibited state (Hox-CO). Protonation at a cysteine ligand of [4Fe4S] in the oxidized state occurring at low pH (HoxH) was indicated, in contrast to bridging hydride binding at [FeFe] in a one-electron reduced state (Hred). These findings are direct evidence for differential protonation either at the four-iron or diiron subcomplex of the H-cluster. NFS time-traces provided Mössbauer parameters such as the quadrupole splitting energy, which differ among cofactor states, thereby supporting selective protonation at either subcomplex. In combination with data for reduced states showing similar [4Fe4S] protonation as HoxH without (Hred') or with (Hhyd) a terminal hydride at [FeFe], our results imply that coordination geometry dynamics at the diiron site and proton-coupled electron transfer to either the four-iron or the diiron subcomplex discriminate catalytic and regulatory functions of [FeFe]-hydrogenases. We support a reaction cycle avoiding diiron site geometry changes during rapid H2 turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulf-Peter Apfel
- Fraunhofer UMSICHT , Osterfelder Straße 3 , 46047 Oberhausen , Germany
| | | | | |
Collapse
|
5
|
Arrigoni F, Bertini L, Bruschi M, Greco C, De Gioia L, Zampella G. H2
Activation in [FeFe]-Hydrogenase Cofactor Versus Diiron Dithiolate Models: Factors Underlying the Catalytic Success of Nature and Implications for an Improved Biomimicry. Chemistry 2019; 25:1227-1241. [PMID: 30475417 DOI: 10.1002/chem.201804687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Maurizio Bruschi
- Department of Earth and Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
6
|
Unwin DG, Ghosh S, Ridley F, Richmond MG, Holt KB, Hogarth G. Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe2(CO)3(μ-dithiolate)(μ,κ1,κ2-triphos). Dalton Trans 2019; 48:6174-6190. [DOI: 10.1039/c9dt00700h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of Fe2(triphos)(CO)3(μ-dithiolate) complexes have been prepared and studied as models of the diiron centre in [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- David G. Unwin
- Department of Chemistry
- University College London
- London
- UK
| | - Shishir Ghosh
- Department of Chemistry
- University College London
- London
- UK
- Department of Chemistry
| | - Faith Ridley
- Department of Chemistry
- University College London
- London
- UK
| | | | | | | |
Collapse
|
7
|
Abstract
Over the past two decades, the bioinorganic chemistry of hydrogenases has attracted much interest from basic and applied research. Hydrogenases are highly efficient metalloenzymes that catalyze the reversible reduction of protons to molecular hydrogen (H2) in all domains of life. Their iron- and nickel-based cofactors represent promising blueprints for the design of biomimetic, synthetic catalysts. In this Account, we address the molecular proceedings of hydrogen turnover with [FeFe]-hydrogenases. The active site cofactor of [FeFe]-hydrogenases ("H-cluster") comprises a unique diiron complex linked to a [4Fe-4S] cluster via a single cysteine. Since it was discovered that a synthetic analogue of the diiron site can be incorporated into apoprotein in vitro to yield active enzyme, significant progress has been made toward a comprehensive understanding of hydrogenase catalysis. The diiron site carries three to four carbon monoxide (CO) and two cyanide (CN-) ligands that give rise to intense infrared (IR) absorption bands. These bands are sensitive reporters of the electron density across the H-cluster, which can be addressed by infrared spectroscopy to follow redox and protonation changes at the cofactor. Synthetic variation of the metal-bridging dithiolate ligand at the diiron site, as well as site-directed mutagenesis of amino acids, provides access to the proton pathways toward the cofactor. Quantum chemical calculations are employed to specifically assign IR bands to vibrational modes of the diatomic ligands and yield refined H-cluster geometries. Here, we provide an overview of recent research on [FeFe]-hydrogenases with emphasis on experimental and computational IR studies. We describe advances in attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) and protein film electrochemistry, as well as density functional theory (DFT) calculations. Key cofactor species are discussed in terms of molecular geometry, redox state, and protonation. Isotope editing is introduced as a tool to evaluate the cofactor geometry beyond the limits of protein crystallography. In particular, the role of proton-coupled electron transfer (PCET) in the generation of catalytically relevant redox species is addressed. We propose that site-selective protonation of the H-cluster biases surplus electrons either to the [4Fe-4S] cluster or to the diiron site. Protonation of the [4Fe-4S] cluster prevents premature reduction at the diiron site and stabilizes a reactive, terminal hydride. The observed H-cluster species are assigned to rapid H2 conversion or to reactions possibly involved in activity regulation and cellular H2 sensing. In the catalytic cycle of [FeFe]-hydrogenases, an H-cluster geometry is preserved that features a bridging CO ligand. PCET levels the redox potential for two steps of sequential cofactor reduction. The concept of consecutive PCET at a geometrically inert cofactor with tight control of electron and proton localization may inspire the design of a novel generation of biomimetic catalysts for the production of H2 as a fuel.
Collapse
Affiliation(s)
- Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sven T. Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Senger M, Laun K, Wittkamp F, Duan J, Haumann M, Happe T, Winkler M, Apfel UP, Stripp ST. Protonengekoppelte Reduktion des katalytischen [4Fe-4S]-Zentrums in [FeFe]-Hydrogenasen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Moritz Senger
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| | - Konstantin Laun
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| | - Florian Wittkamp
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätstraße 150 44801 Bochum Deutschland
| | - Jifu Duan
- Fakultät für Biologie und Biotechnologie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Michael Haumann
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| | - Thomas Happe
- Fakultät für Biologie und Biotechnologie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Martin Winkler
- Fakultät für Biologie und Biotechnologie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Ulf-Peter Apfel
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätstraße 150 44801 Bochum Deutschland
| | - Sven T. Stripp
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| |
Collapse
|
9
|
Senger M, Laun K, Wittkamp F, Duan J, Haumann M, Happe T, Winkler M, Apfel UP, Stripp ST. Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases. Angew Chem Int Ed Engl 2017; 56:16503-16506. [PMID: 29072356 DOI: 10.1002/anie.201709910] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Indexed: 12/25/2022]
Abstract
In nature, [FeFe]-hydrogenases catalyze the uptake and release of molecular hydrogen (H2 ) at a unique iron-sulfur cofactor. The absence of an electrochemical overpotential in the H2 release reaction makes [FeFe]-hydrogenases a prime example of efficient biocatalysis. However, the molecular details of hydrogen turnover are not yet fully understood. Herein, we characterize the initial one-electron reduction of [FeFe]-hydrogenases by infrared spectroscopy and electrochemistry and present evidence for proton-coupled electron transport during the formation of the reduced state Hred'. Charge compensation stabilizes the excess electron at the [4Fe-4S] cluster and maintains a conservative configuration of the diiron site. The role of Hred' in hydrogen turnover and possible implications on the catalytic mechanism are discussed. We propose that regulation of the electronic properties in the periphery of metal cofactors is key to orchestrating multielectron processes.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| | - Konstantin Laun
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätstrasse 150, 44801, Bochum, Germany
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Martin Winkler
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätstrasse 150, 44801, Bochum, Germany
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| |
Collapse
|
10
|
Arrigoni F, Bertini L, De Gioia L, Cingolani A, Mazzoni R, Zanotti V, Zampella G. Mechanistic Insight into Electrocatalytic H 2 Production by [Fe 2(CN){μ-CN(Me) 2}(μ-CO)(CO)(Cp) 2]: Effects of Dithiolate Replacement in [FeFe] Hydrogenase Models. Inorg Chem 2017; 56:13852-13864. [PMID: 29112805 DOI: 10.1021/acs.inorgchem.7b01954] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DFT has been used to investigate viable mechanisms of the hydrogen evolution reaction (HER) electrocatalyzed by [Fe2(CN){μ-CN(Me)2}(μ-CO)(CO)(Cp)2] (1) in AcOH. Molecular details underlying the proposed ECEC electrochemical sequence have been studied, and the key functionalities of CN- and amino-carbyne ligands have been elucidated. After the first reduction, CN- works as a relay for the first proton from AcOH to the carbyne, with this ligand serving as the main electron acceptor for both reduction steps. After the second reduction, a second protonation occurs at CN- that forms a Fe(CNH) moiety: i.e., the acidic source for the H2 generation. The hydride (formally 2e/H+), necessary to the heterocoupling with H+ is thus provided by the μ-CN(Me)2 ligand and not by Fe centers, as occurs in typical L6Fe2S2 derivatives modeling the hydrogenase active site. It is remarkable, in this regard, that CN- plays a role more subtle than that previously expected (increasing electron density at Fe atoms). In addition, the role of AcOH in shuttling protons from CN- to CN(Me)2 is highlighted. The incompetence for the HER of the related species [Fe2{μ-CN(Me)2}(μ-CO)(CO)2(Cp)2]+ (2+) has been investigated and attributed to the loss of proton responsiveness caused by CN- replacement with CO. In the context of hydrogenase mimicry, an implication of this study is that the dithiolate strap, normally present in all synthetic models, can be removed from the Fe2 core without loss of HER, but the redox and acid-base processes underlying turnover switch from a metal-based to a ligand-based chemistry. The versatile nature of the carbyne, once incorporated in the Fe2 scaffold, could be exploited to develop more active and robust catalysts for the HER.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milan-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Andrea Cingolani
- Department of Chimica Industriale "Toso Montanari", University of Bologna , V. le Risorgimento 4, 40136 Bologna, Italy
| | - Rita Mazzoni
- Department of Chimica Industriale "Toso Montanari", University of Bologna , V. le Risorgimento 4, 40136 Bologna, Italy
| | - Valerio Zanotti
- Department of Chimica Industriale "Toso Montanari", University of Bologna , V. le Risorgimento 4, 40136 Bologna, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milan-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
11
|
Yu X, Tung CH, Wang W, Huynh MT, Gray DL, Hammes-Schiffer S, Rauchfuss TB. Interplay between Terminal and Bridging Diiron Hydrides in Neutral and Oxidized States. Organometallics 2017; 36:2245-2253. [PMID: 28781408 DOI: 10.1021/acs.organomet.7b00297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study describes the structural, spectroscopic, and electrochemical properties of electronically unsymmetrical diiron hydrides. The terminal hydride Cp*Fe(pdt)Fe(dppe)(CO)H ([1(t-H)]0, Cp*- = Me5C5-, pdt2- = CH2(CH2S-)2, dppe = Ph2PC2H4PPh2) was prepared by hydride reduction of [Cp*Fe(pdt)Fe(dppe)(CO)(NCMe)]+. As established by X-ray crystallography, [1(t-H)]0 features a terminal hydride ligand. Unlike previous examples of terminal diiron hydrides, [1(t-H)]0 does not isomerize to the bridging hydride [1(μ-H)]0. Oxidation of [1(t-H)]0 gives [1(t-H)]+, which was also characterized crystallographically as its BF4- salt. Density functional theory (DFT) calculations indicate that [1(t-H)]+ is best described as containing an Cp*FeIII center. In solution, [1(t-H)]+ isomerizes to [1(μ-H)]+, as anticipated by DFT. Reduction of [1(μ-H)]+ by Cp2Co afforded the diferrous bridging hydride [1(μ-H)]0. Electrochemical measurements and DFT calculations indicate that the couples [1(t-H)]+/0 and [1(μ-H)]+/0 differ by 210 mV. Qualitative measurements indicate that [1(t-H)]0 and [1(μ-H)]0 are close in free energy. Protonation of [1(t-H)]0 in MeCN solution affords H2 even with weak acids via hydride transfer. In contrast, protonation of [1(μ-H)]0 yields 0.5 equiv of H2 by a proposed protonation-induced electron transfer process. Isotopic labeling indicates that μ-H/D ligands are inert.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100, People's Republic of China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100, People's Republic of China
| | - Mioy T Huynh
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Danielle L Gray
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Liu C, Liu Y, Tang Y, Liang H, Bi S. Mechanisms and origins of the switchable regioselectivity of FeBr3-catalyzed [1,2]-aryl and [1,2]-alkyl shifts of α-aryl aldehydes. Org Biomol Chem 2016; 14:2522-36. [PMID: 26822257 DOI: 10.1039/c6ob00001k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the aid of DFT calculations, the FeBr3-catalyzed skeletal rearrangements of 2-cyclohexanal,2-p-C6H4OMe-propylaldehyde (1A) and 2-phenyl,2-p-C6H4OMe-propylaldehyde (1B) were investigated theoretically. As compared to mono-FeBr3 as a catalyst, the bis-FeBr3 serving as a catalyst is found to be not only enhancing the catalytic efficiency but also improving the product selectivity. For the reaction starting from 1A, the [1,2]-group shift (first step) is rate-determining, and why the Cy shift is the most favored is rationalized in comparison with the p-C6H4OMe and Me shifts. For the reaction starting from 1B, the [1,2]-H shift (second step) is rate-determining although the [1,2]-p-C6H4OMe shift is favored over the [1,2]-phenyl shift. In contrast to the experimental proposal, the newly established H2O/Br(-) joint-assisted H-shift mechanism explains the partial α-H source of the [1,2]-Cy shift product. In addition, we discussed the inherent mechanism that explains why both the [1,2]-p-C6H4OMe and [1,2]-p-C6H4CF3 shifts are more facile than the [1,2]-phenyl shift although the substituents -OMe and -CF3 have opposite electronic behaviors.
Collapse
Affiliation(s)
- Congcong Liu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Yuxia Liu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Yanan Tang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Haosheng Liang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Siwei Bi
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| |
Collapse
|
14
|
Filippi G, Arrigoni F, Bertini L, De Gioia L, Zampella G. DFT Dissection of the Reduction Step in H2 Catalytic Production by [FeFe]-Hydrogenase-Inspired Models: Can the Bridging Hydride Become More Reactive Than the Terminal Isomer? Inorg Chem 2015; 54:9529-42. [DOI: 10.1021/acs.inorgchem.5b01495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulia Filippi
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
15
|
Goy R, Bertini L, Görls H, De Gioia L, Talarmin J, Zampella G, Schollhammer P, Weigand W. Silicon-Heteroaromatic [FeFe] Hydrogenase Model Complexes: Insight into Protonation, Electrochemical Properties, and Molecular Structures. Chemistry 2015; 21:5061-73. [DOI: 10.1002/chem.201406087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/10/2022]
|
16
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
17
|
De Gioia L, Elleouet C, Munery S, Pétillon FY, Schollhammer P, Talarmin J, Zampella G. Reductive Behavior of [Fe
2
(CO)
4
(κ
2
‐dmpe){μ‐(SCH
2
)
2
NBn}]: Effect of Symmetrization on the Rotated Conformation in Fe
I
‐Fe
I
Models of [2Fe]
H
Subsite of [Fe‐Fe]H
2
ases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano‐Bicocca, 20126 Milan, Italy, http://www.unimib.it
| | - Catherine Elleouet
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Sabrina Munery
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - François Y. Pétillon
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Philippe Schollhammer
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Jean Talarmin
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano‐Bicocca, 20126 Milan, Italy, http://www.unimib.it
| |
Collapse
|
18
|
Wang W, Rauchfuss TB, Zhu L, Zampella G. New reactions of terminal hydrides on a diiron dithiolate. J Am Chem Soc 2014; 136:5773-82. [PMID: 24661238 DOI: 10.1021/ja501366j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mechanisms for biological and bioinspired dihydrogen activation and production often invoke the intermediacy of diiron dithiolato dihydrides. The first example of such a Fe2(SR)2H2 species is provided by the complex [(term-H)(μ-H)Fe2(pdt)(CO)(dppv)2] ([H1H](0)). Spectroscopic and computational studies indicate that [H1H](0) contains both a bridging hydride and a terminal hydride, which, notably, occupies a basal site. The synthesis begins with [(μ-H)Fe2(pdt)(CO)2(dppv)2](+) ([H1(CO)](+)), which undergoes substitution to afford [(μ-H)Fe2(pdt)(CO)(NCMe)(dppv)2](+) ([H1(NCMe)](+)). Upon treatment of [H1(NCMe)](+) with borohydride salts, the MeCN ligand is displaced to afford [H1H](0). DNMR (EXSY, SST) experiments on this complex show that the terminal and bridging hydride ligands interchange intramolecularly at a rate of 1 s(-1) at -40 °C. The compound reacts with D2 to afford [D1D](0), but not mixed isotopomers such as [H1D](0). The dihydride undergoes oxidation with Fc(+) under CO to give [1(CO)](+) and H2. Protonation in MeCN solution gives [H1(NCMe)](+) and H2. Carbonylation converts [H1H](0) into [1(CO)](0).
Collapse
Affiliation(s)
- Wenguang Wang
- School of Chemical Sciences University of Illinois - Urbana , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
19
|
Liu YC, Chu KT, Jhang RL, Lee GH, Chiang MH. [FeFe] hydrogenase active site modeling: a key intermediate bearing a thiolate proton and Fe hydride. Chem Commun (Camb) 2013; 49:4743-5. [PMID: 23505629 DOI: 10.1039/c3cc39008j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first di-protonated [FeFe] hydrogenase model relevant to key intermediates in catalytic hydrogen production is reported. The complex bearing the S-proton and Fe-hydride is structurally and spectroscopically characterized as well as studied by DFT calculations. The results show that the thiolate sulfur can accept protons during the catalytic routes.
Collapse
Affiliation(s)
- Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Bertini L, Fantucci P, De Gioia L, Zampella G. Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution. Inorg Chem 2013; 52:9826-41. [PMID: 23952259 DOI: 10.1021/ic400818t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Density functional theory (DFT) and time-dependent DFT (TDDFT) have been used to investigate how visible light photons can excite an asymmetrically substituted diiron hydride, [Fe2(pdt)(μ-H)(CO)4dppv](+) (1(+), dppv = cis-1,2-C2H2(PPh2)2; pdt = 1,3-propanedithiolate), as well as the symmetric species [Fe2(pdt)(μ-H)(CO)4(PMe3)2](+) (2(+)), which are the first photocatalysts of proton reduction operating without employing sensitizers (Wang, W.; Rauchfuss, T. B.; Bertini, L.; Zampella, G.; J. Am. Chem. Soc., 2012, 134, 4525). Theoretical results illustrate that the peculiar reactivity associated to the excited states of 1(+) and 2(+) is compatible with three different scenarios: (i) it can arise from the movement of the hydride ligand from fully bridging to semibridging/terminal coordination, which is expected to be more reactive toward protons; (ii) reactivity could be related to cleavage of a Fe-S bond, which implies formation of a transient Fe penta-coordinate species that would trigger a facile turnstile hydride isomerization, if lifetime excitation is long enough; (iii) also in line with a Fe-S bond cleavage is the possibility that after excited state decay, a highly basic S center is protonated so that a species simultaneously containing S-H(δ+) and Fe-H(δ-) moieties is formed and, once reduced by a suitable electron donor, it can readily afford H2 plus an unprotonated form of the FeFe complex. This last possibility is consistent with (31)P NMR and IR solution data. All the three possibilities are compatible with the capability of 1(+) and 2(+) to perform photocatalysis of hydrogen evolving reaction (HER) without sensitizer. Moreover, even though it turned out difficult to discriminate among the three scenarios, especially because of the lack of experimental excitation lifetimes, it is worth underscoring that all of the three pathways represent a novelty regarding diiron carbonyl photoreactivity, which is usually associated with CO loss. Results provide also a rationale to the experimental observations which showed that the simultaneous presence of donor ligands (dppv in the case of 1(+)) and a H ligand in the coordination environment of diiron complexes is a key factor to prevent CO photodissociation and catalyze HER. Finally, the comparison of photoexcitation behavior of 1(+) and 2(+) allows a sort of generalization about the functioning of such hydride species.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | |
Collapse
|
21
|
Wang N, Wang M, Chen L, Sun L. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Dalton Trans 2013; 42:12059-71. [PMID: 23846321 DOI: 10.1039/c3dt51371h] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-hydrogenases are enzymes in nature that catalyze the reduction of protons and the oxidation of H2 at neutral pH with remarkably high activities and incredibly low overpotential. Structural and functional biomimicking of the active site of [FeFe]-hydrogenases can provide helpful hints for elucidating the mechanism of H2 evolution and uptake at the [FeFe]-hydrogenase active site and for designing bioinspired catalysts to replace the expensive noble metal catalysts for H2 generation and uptake. This perspective focuses on the recent progress in the formation and reactivity of iron hydrides closely related to the processes of proton reduction and hydrogen oxidation mediated by diiron dithiolate complexes. The second section surveys the bridging and terminal hydride species formed from various diiron complexes as well as the intramolecular proton transfer. The very recent progress in H2 activation by diiron dithiolate models are reviewed in the third section. In the concluding remarks and outlook, the differences in structure and catalytic mechanism between the synthetic models and the native [FeFe]-H2ase active site are compared and analyzed, which may cause the need for a significantly larger driving force and may lead to lower activities of synthetic models than the [FeFe]-H2ases for H2 generation and uptake.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
| | | | | | | |
Collapse
|
22
|
Gao H, Huang J, Chen L, Liu R, Chen J. Synthesis, characterization and computational study of heterobimetallic CoFe complexes for mimicking hydrogenase. RSC Adv 2013. [DOI: 10.1039/c2ra22388k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Zaffaroni R, Rauchfuss TB, Fuller A, De Gioia L, Zampella G. Contrasting Protonation Behavior of Diphosphido vs Dithiolato Diiron(I) Carbonyl Complexes. Organometallics 2012. [DOI: 10.1021/om300997s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Riccardo Zaffaroni
- Department
of Chemistry, University of Illinois, Urbana, Illinois
61801, United States
| | - Thomas B. Rauchfuss
- Department
of Chemistry, University of Illinois, Urbana, Illinois
61801, United States
| | - Amy Fuller
- Department
of Chemistry, University of Illinois, Urbana, Illinois
61801, United States
| | - Luca De Gioia
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, 20126-Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, 20126-Milan, Italy
| |
Collapse
|
24
|
Zaffaroni R, Rauchfuss TB, Gray DL. Terminal vs bridging hydrides of diiron dithiolates: protonation of Fe2(dithiolate)(CO)2(PMe3)4. J Am Chem Soc 2012; 134:19260-9. [PMID: 23095145 PMCID: PMC3518320 DOI: 10.1021/ja3094394] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This investigation examines the protonation of diiron dithiolates, exploiting the new family of exceptionally electron-rich complexes Fe(2)(xdt)(CO)(2)(PMe(3))(4), where xdt is edt (ethanedithiolate, 1), pdt (propanedithiolate, 2), and adt (2-aza-1,3-propanedithiolate, 3), prepared by the photochemical substitution of the corresponding hexacarbonyls. Compounds 1-3 oxidize near -950 mV vs Fc(+/0). Crystallographic analyses confirm that 1 and 2 adopt C(2)-symmetric structures (Fe-Fe = 2.616 and 2.625 Å, respectively). Low-temperature protonation of 1 afforded exclusively [μ-H1](+), establishing the non-intermediacy of the terminal hydride ([t-H1](+)). At higher temperatures, protonation afforded mainly [t-H1](+). The temperature dependence of the ratio [t-H1](+)/[μ-H1](+) indicates that the barriers for the two protonation pathways differ by ∼4 kcal/mol. Low-temperature (31)P{(1)H} NMR measurements indicate that the protonation of 2 proceeds by an intermediate, proposed to be the S-protonated dithiolate [Fe(2)(Hpdt)(CO)(2)(PMe(3))(4)](+) ([S-H2](+)). This intermediate converts to [t-H2](+) and [μ-H2](+) by first-order and second-order processes, respectively. DFT calculations support transient protonation at sulfur and the proposal that the S-protonated species (e.g., [S-H2](+)) rearranges to the terminal hydride intramolecularly via a low-energy pathway. Protonation of 3 affords exclusively terminal hydrides, regardless of the acid or conditions, to give [t-H3](+), which isomerizes to [t-H3'](+), wherein all PMe(3) ligands are basal.
Collapse
Affiliation(s)
| | | | - Danielle L. Gray
- Department of Chemistry, University of Illinois Urbana, IL 61801, USA
| |
Collapse
|
25
|
Long L, Xiao Z, Zampella G, Wei Z, De Gioia L, Liu X. The reactions of pyridinyl thioesters with triiron dodecacarbonyl: their novel diiron carbonyl complexes and mechanistic investigations. Dalton Trans 2012; 41:9482-92. [PMID: 22751866 DOI: 10.1039/c2dt30798g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of Fe(3)(CO)(12) with pyridinyl thioester ligand PyCH(2)SCOCH(3) (L(1), Py = pyridin-2-yl) produced complex, [Fe(2)(κ-COCH(3))(μ-SCH(2)Py)(CO)(5)] (1) (PyCH(2)S = pyridin-2-ylmethanethiolate). When complex 1 reacted with PPh(3), a monosubstituted complex, [Fe(2)(κ-COCH(3))(μ-SCH(2)Py)(CO)(4)PPh(3)] (2), was derived. Reaction of the same precursor with analogous thioester ligand PyCH(2)SCOPy (L(2)) generated three novel diiron complexes, [Fe(2)(κ-Py)(μ-SCH(2)Py)(CO)(5)] (3), [Fe(2)(κ-Py)'(μ-SCH(2)Py)(CO)(5)] (4), and [Fe(2)(κ-Py)(μ-SCH(2)Py)(CO)(6)] (5). Complexes 3 and 4 are structural isomers. Complex 5 could be converted into complex 4 but the conversion from complex 5 to the isomer 3 was not observed. All the five complexes were fully characterised using FTIR, NMR, and other techniques. Their structures were determined using X-ray single crystal diffraction analysis. The oxidative formation of complexes 1, 3, 4, and 5 involved C-S and/or C-C bonds cleavages. To probe possible mechanisms for these cleavages, DFT calculations were performed. From the calculations, viable reaction pathways leading to the formation of all the isolated products were delineated. The results of the theoretic calculations also allowed rationalisation of the experimental observations.
Collapse
Affiliation(s)
- Li Long
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | | | | | | | | | | |
Collapse
|
26
|
Leidel N, Chernev P, Havelius KGV, Schwartz L, Ott S, Haumann M. Electronic Structure of an [FeFe] Hydrogenase Model Complex in Solution Revealed by X-ray Absorption Spectroscopy Using Narrow-Band Emission Detection. J Am Chem Soc 2012; 134:14142-57. [DOI: 10.1021/ja304970p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Petko Chernev
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kajsa G. V. Havelius
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lennart Schwartz
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
27
|
Liu YC, Yen TH, Tseng YJ, Hu CH, Lee GH, Chiang MH. Electron delocalization from the fullerene attachment to the diiron core within the active-site mimics of [FeFe]hydrogenase. Inorg Chem 2012; 51:5997-9. [PMID: 22591027 DOI: 10.1021/ic3007298] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Attachment of the redox-active C(60)(H)PPh(2) group modulates the electronic structure of the Fe(2) core in [(μ-bdt)Fe(2)(CO)(5)(C(60)(H)PPh(2))]. The neutral complex is characterized by X-ray crystallography, IR, NMR spectroscopy, and cyclic voltammetry. When it is reduced by one electron, the spectroscopic and density functional theory results indicate that the Fe(2) core is partially spin-populated. In the doubly reduced species, extensive electron communication occurs between the reduced fullerene unit and the Fe(2) centers as displayed in the spin-density plot. The results suggest that the [4Fe4S] cluster within the H cluster provides an essential role in terms of the electronic factor.
Collapse
Affiliation(s)
- Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Hong G, Cornish AJ, Hegg EL, Pachter R. On understanding proton transfer to the biocatalytic [Fe-Fe](H) sub-cluster in [Fe-Fe]H(2)ases: QM/MM MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:510-7. [PMID: 21296047 DOI: 10.1016/j.bbabio.2011.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
Proton transfer to the [Fe-Fe](H) sub-cluster in the Desulfovibrio desulfuricans (DdH) and Clostridium pasteurianum (CpI) [Fe-Fe] hydrogenases was investigated by a combination of first principles and empirical molecular dynamics simulations. Pathways that can be inferred from the X-ray crystal structures of DdH and CpI, i.e., (Glu159→Ser198→Glu156→water460→Cys178→DTMA([Fe-Fe](H)) and (Glu282→Ser319→Glu279→water612→Cys299), respectively, were considered. Proton transfer from Cys178 to DTMA in the [Fe-Fe](H) sub-cluster in DdH was readily observed in our results, specifically when [Fe-Fe](H) was in the reduced state ([Fe(I)-Fe(I)]) or in the mixed valence state for the protonated distal iron Fe(d) ([Fe(I)-Fe(II)-H(-)](H)). A concerted mechanism is proposed, where proton transfer in DdH from Glu159 to Glu156 via Ser198 and Glu156 to Cys178 via water460 readily occurred, as well as from Glu282 to Glu279 via Ser319 and Glu279 to Cys299 via water612 in CpI. The theoretical prediction of the proton transfer characteristics is consistent with the assumed biocatalytic mechanism of the [Fe-Fe] hydrogenases in which the proton binds at Fe(d), providing confirmation that has not been explored so far. The computational results were qualitatively validated by the agreement with experimental hydrogen production activity data for mutated CpI enzymes, relative to the wild-type protein. Finally, the insight provided by the simulations, combined, in part, with experimental validation, are important for establishing an approach in future exploration of proton transfer to the active site in this class of enzymes, and possibly also for biomimetic analogs.
Collapse
Affiliation(s)
- G Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | | | | | | |
Collapse
|
29
|
Liu C, Peck JNT, Wright JA, Pickett CJ, Hall MB. Density Functional Calculations on Protonation of the [FeFe]-Hydrogenase Model Complex Fe2(μ-pdt)(CO)4(PMe3)2 and Subsequent Isomerization Pathways. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001085] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Liu YC, Tu LK, Yen TH, Lee GH, Chiang MH. Influences on the rotated structure of diiron dithiolate complexes: electronic asymmetry vs. secondary coordination sphere interaction. Dalton Trans 2011; 40:2528-41. [DOI: 10.1039/c0dt01332c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Orain PY, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J, Zampella G, De Gioia L, Roisnel T. Investigation on the Protonation of a Trisubstituted [Fe2(CO)3(PPh3)(κ2-phen)(μ-pdt)] Complex: Rotated versus Unrotated Intermediate Pathways. Inorg Chem 2010; 49:5003-8. [PMID: 20443563 DOI: 10.1021/ic100108h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Thierry Roisnel
- Centre de Diffractométrie X, UMR CNRS 6226, Université de Rennes 1, 35042 Rennes Cedex, France
| |
Collapse
|
32
|
Charreteur K, Kdider M, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J. Effect of Electron-Withdrawing Dithiolate Bridge on the Electron-Transfer Steps in Diiron Molecules Related to [2Fe]H Subsite of the [FeFe]-Hydrogenases. Inorg Chem 2010; 49:2496-501. [DOI: 10.1021/ic902401k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kévin Charreteur
- Université Européenne de Bretagne; Université de Brest; CNRS UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”; ISSTB; CS 93837, 29238 Brest, France
| | - Mohamed Kdider
- Université Européenne de Bretagne; Université de Brest; CNRS UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”; ISSTB; CS 93837, 29238 Brest, France
| | - Jean-François Capon
- Université Européenne de Bretagne; Université de Brest; CNRS UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”; ISSTB; CS 93837, 29238 Brest, France
| | - Frédéric Gloaguen
- Université Européenne de Bretagne; Université de Brest; CNRS UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”; ISSTB; CS 93837, 29238 Brest, France
| | - François Y. Pétillon
- Université Européenne de Bretagne; Université de Brest; CNRS UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”; ISSTB; CS 93837, 29238 Brest, France
| | - Philippe Schollhammer
- Université Européenne de Bretagne; Université de Brest; CNRS UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”; ISSTB; CS 93837, 29238 Brest, France
| | - Jean Talarmin
- Université Européenne de Bretagne; Université de Brest; CNRS UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”; ISSTB; CS 93837, 29238 Brest, France
| |
Collapse
|