1
|
Kocyła AM, Czogalla A, Wessels I, Rink L, Krężel A. A combined biochemical and cellular approach reveals Zn 2+-dependent hetero- and homodimeric CD4 and Lck assemblies in T cells. Structure 2024; 32:292-303.e7. [PMID: 38157858 DOI: 10.1016/j.str.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.
Collapse
Affiliation(s)
- Anna M Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| |
Collapse
|
2
|
Mørch AM, Schneider F, Jenkins E, Santos AM, Fraser SE, Davis SJ, Dustin ML. The kinase occupancy of T cell coreceptors reconsidered. Proc Natl Acad Sci U S A 2022; 119:e2213538119. [PMID: 36454761 PMCID: PMC9894195 DOI: 10.1073/pnas.2213538119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
The sensitivity of the αβ T cell receptor (TCR) is enhanced by the coreceptors CD4 and CD8αβ, which are expressed primarily by cells of the helper and cytotoxic T cell lineages, respectively. The coreceptors bind to major histocompatibility complex (MHC) molecules and associate intracellularly with the Src-family kinase Lck, which catalyzes TCR phosphorylation during receptor triggering. Although coreceptor/kinase occupancy was initially believed to be high, a recent study suggested that most coreceptors exist in an Lck-free state, and that this low occupancy helps to effect TCR antigen discrimination. Here, using the same method, we found instead that the CD4/Lck interaction was stoichiometric (~100%) and that the CD8αβ/Lck interaction was substantial (~60%). We confirmed our findings in live cells using fluorescence cross-correlation spectroscopy (FCCS) to measure coreceptor/Lck codiffusion in situ. After introducing structurally guided mutations into the intracellular domain of CD4, we used FCCS to also show that stoichiometric coupling to Lck required an amphipathic α-helix present in CD4 but not CD8α. In double-positive cells expressing equal numbers of both coreceptors, but limiting amounts of kinase, CD4 outcompeted CD8αβ for Lck. In T cells, TCR signaling induced CD4/Lck oligomerization but did not affect the high levels of CD4/Lck occupancy. These findings help settle the question of kinase occupancy and suggest that the binding advantages that CD4 has over CD8 could be important when Lck levels are limiting.
Collapse
Affiliation(s)
- Alexander M. Mørch
- Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, United Kingdom
- Medical Research Council Human Immunology Unit, and Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, OxfordOX3 9DS, United Kingdom
| | - Falk Schneider
- Translational Imaging Center, University of Southern California, Los Angeles, CA90089
| | - Edward Jenkins
- Medical Research Council Human Immunology Unit, and Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, OxfordOX3 9DS, United Kingdom
| | - Ana Mafalda Santos
- Medical Research Council Human Immunology Unit, and Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, OxfordOX3 9DS, United Kingdom
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA90089
| | - Simon J. Davis
- Medical Research Council Human Immunology Unit, and Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, OxfordOX3 9DS, United Kingdom
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, United Kingdom
| |
Collapse
|
3
|
Padjasek M, Kocyła A, Kluska K, Kerber O, Tran JB, Krężel A. Structural zinc binding sites shaped for greater works: Structure-function relations in classical zinc finger, hook and clasp domains. J Inorg Biochem 2020; 204:110955. [DOI: 10.1016/j.jinorgbio.2019.110955] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
|
4
|
Kocyła A, Krężel A. Zinc clasp-based reversible toolset for selective metal-mediated protein heterodimerization. Chem Commun (Camb) 2018; 54:13539-13542. [DOI: 10.1039/c8cc06301j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc clasp motif derived from natural Zn(ii)-mediated interaction of CD4 co-receptor and Lck protein tyrosine kinase was used for specific and efficient protein heterodimerization. Optimized set of peptide tags forms highly stable complex in the selective heterodimer framework. Utility of obtained toolset demonstrates high specificity, Zn(ii)-dependent reversibility and remarkable kinetic properties.
Collapse
Affiliation(s)
- Anna Kocyła
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- Wrocław
- Poland
| | - Artur Krężel
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- Wrocław
- Poland
| |
Collapse
|
5
|
Kochańczyk T, Nowakowski M, Wojewska D, Kocyła A, Ejchart A, Koźmiński W, Krężel A. Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci Rep 2016; 6:36346. [PMID: 27808280 PMCID: PMC5093744 DOI: 10.1038/srep36346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/14/2016] [Indexed: 01/26/2023] Open
Abstract
The binding of metal ions at the interface of protein complexes presents a unique and poorly understood mechanism of molecular assembly. A remarkable example is the Rad50 zinc hook domain, which is highly conserved and facilitates the Zn2+-mediated homodimerization of Rad50 proteins. Here, we present a detailed analysis of the structural and thermodynamic effects governing the formation and stability (logK12 = 20.74) of this evolutionarily conserved protein assembly. We have dissected the determinants of the stability contributed by the small β-hairpin of the domain surrounding the zinc binding motif and the coiled-coiled regions using peptides of various lengths from 4 to 45 amino acid residues, alanine substitutions and peptide bond-to-ester perturbations. In the studied series of peptides, an >650 000-fold increase of the formation constant of the dimeric complex arises from favorable enthalpy because of the increased acidity of the cysteine thiols in metal-free form and the structural properties of the dimer. The dependence of the enthalpy on the domain fragment length is partially compensated by the entropic penalty of domain folding, indicating enthalpy-entropy compensation. This study facilitates understanding of the metal-mediated protein-protein interactions in which the metal ion is critical for the tight association of protein subunits.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Michał Nowakowski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dominika Wojewska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Anna Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
6
|
Kochańczyk T, Drozd A, Krężel A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins – insights into zinc regulation. Metallomics 2015; 7:244-57. [DOI: 10.1039/c4mt00094c] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relationship between the architecture and stability of zinc proteins.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Laboratory of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław, Poland
| | - Agnieszka Drozd
- Laboratory of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław, Poland
| | - Artur Krężel
- Laboratory of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Baumgart F, Schütz GJ. Detecting protein association at the T cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:791-801. [PMID: 25300585 DOI: 10.1016/j.bbamcr.2014.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Florian Baumgart
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Gerhard J Schütz
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
| |
Collapse
|
8
|
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism. Sci Rep 2013; 3:1295. [PMID: 23416516 PMCID: PMC3575015 DOI: 10.1038/srep01295] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022] Open
Abstract
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.
Collapse
|
9
|
Der BS, Machius M, Miley MJ, Mills JL, Szyperski T, Kuhlman B. Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. J Am Chem Soc 2011; 134:375-85. [PMID: 22092237 DOI: 10.1021/ja208015j] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computationally designing protein-protein interactions with high affinity and desired orientation is a challenging task. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity and specifying the binding mode, thereby improving robustness of designed interactions for use as tools in basic research as well as in applications from biotechnology to medicine. Here we describe a Rosetta-based approach for the rational design of a protein monomer to form a zinc-mediated, symmetric homodimer. Our metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a dissociation constant <30 nM. Without zinc the dissociation constant is 4 μM. The crystal structure of MID1-zinc shows good overall agreement with the computational model, but only three out of four designed histidines coordinate zinc. However, a histidine-to-glutamate point mutation resulted in four-coordination of zinc, and the resulting metal binding site and dimer orientation closely matches the computational model (Cα rmsd = 1.4 Å).
Collapse
Affiliation(s)
- Bryan S Der
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
10
|
Fournier M, Peyrou M, Bourgoin L, Maeder C, Tchou I, Foti M. CD4 dimerization requires two cysteines in the cytoplasmic domain of the molecule and occurs in microdomains distinct from lipid rafts. Mol Immunol 2010; 47:2594-603. [DOI: 10.1016/j.molimm.2010.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 05/06/2010] [Accepted: 06/21/2010] [Indexed: 01/27/2023]
|