1
|
Xie Y, Han M, Wu Y, Xu X, Guo Q. Deciphering the mechanism underlying poor aqueous solubility of extracted quinoa proteins. Int J Biol Macromol 2024; 282:137270. [PMID: 39510487 DOI: 10.1016/j.ijbiomac.2024.137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
This study aimed to decipher the mechanisms underlying poor solubility of quinoa proteins by investigating the form of quinoa proteins dispersed in water and how protein-protein interactions influenced the kinetic stability of proteins in the dispersions. Specifically, the relative solubility and the forms of quinoa proteins in 1-5 w/w% protein dispersions were determined by separating proteins via centrifugation and/or ultrafiltration. The kinetic stability of quinoa proteins in the supernatants over a 3-week storage period was characterized by determining the changes of concentration, composition and physicochemical properties of quinoa proteins and predicting protein-protein interactions. The results showed that quinoa proteins existed mainly as differently-sized protein aggregates in the dispersions, leading to low relative solubility. The coagulation of protein aggregates in the supernatants caused severe precipitation during the first week of storage whereas they were disassociated simultaneously. With further storage, the remaining proteins in the supernatants reached kinetic stability, which was contributed by stronger electrostatic repulsion and lower surface hydrophobicity. Moreover, 11S globulin and 2S albumin were precipitated and solubilized together during storage, which was ascribed to intermolecular interactions driven by multiple sites between 11S globulin and/or 2S albumin. This study lays a foundation for extensive utilization of quinoa proteins.
Collapse
Affiliation(s)
- Yun Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Menghan Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Yanling Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Xiyu Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China.
| |
Collapse
|
2
|
Charbonneau AA, Reicks EJ, Cambria JF, Inman J, Danley D, Shockley EA, Davion R, Salgado I, Norton EG, Corbett LJ, Hanacek LE, Jensen JG, Kibodeaux MA, Kirkpatrick TK, Rausch KM, Roth SR, West B, Wilson KE, Lawrence CM, Cloninger MJ. CUREs for high-level Galectin-3 expression. Protein Expr Purif 2024; 221:106516. [PMID: 38801985 DOI: 10.1016/j.pep.2024.106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds β-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl β-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.
Collapse
Affiliation(s)
| | - Elizabeth J Reicks
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - John F Cambria
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jacob Inman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Daria Danley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Emmie A Shockley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Ravenor Davion
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Isabella Salgado
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Erienne G Norton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Lucy J Corbett
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Lucy E Hanacek
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jordan G Jensen
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Marguerite A Kibodeaux
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Tess K Kirkpatrick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Keilen M Rausch
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Samantha R Roth
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Bernadette West
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Kenai E Wilson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
3
|
Bernhard S, Goodman CK, Norton EG, Alme DG, Lawrence CM, Cloninger MJ. Time-Dependent Fluorescence Spectroscopy to Quantify Complex Binding Interactions. ACS OMEGA 2020; 5:29017-29024. [PMID: 33225133 PMCID: PMC7675582 DOI: 10.1021/acsomega.0c03416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 05/13/2023]
Abstract
Measuring the binding affinity for proteins that can aggregate or undergo complex binding motifs presents a variety of challenges. In this study, fluorescence lifetime measurements using intrinsic tryptophan fluorescence were performed to address these challenges and to quantify the binding of a series of carbohydrates and carbohydrate-functionalized dendrimers to recombinant human galectin-3. Collectively, galectins represent an important target for study; in particular, galectin-3 plays a variety of roles in cancer biology. Galectin-3 binding dissociation constants (K D) were quantified: lactoside (73 ± 4 μM), methyllactoside (54 ± 10 μM), and lactoside-functionalized G(2), G(4), and G(6)-PAMAM dendrimers (120 ± 58 μM, 100 ± 45 μM, and 130 ± 25 μM, respectively). The chosen examples showcase the widespread utility of time-dependent fluorescence spectroscopy for determining binding constants, including interactions for which standard methods have significant limitations.
Collapse
Affiliation(s)
- Samuel
P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Candace K. Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Erienne G. Norton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Daniel G. Alme
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| |
Collapse
|
4
|
Brown S, Gauvin CC, Charbonneau AA, Burman N, Lawrence CM. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA 4. J Biol Chem 2020; 295:14963-14972. [PMID: 32826317 DOI: 10.1074/jbc.ra120.014099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cas10 is the signature gene for type III CRISPR-Cas surveillance complexes. Unlike type I and type II systems, type III systems do not require a protospacer adjacent motif and target nascent RNA associated with transcriptionally active DNA. Further, target RNA recognition activates the cyclase domain of Cas10, resulting in the synthesis of cyclic oligoadenylate second messengers. These second messengers are recognized by ancillary Cas proteins harboring CRISPR-associated Rossmann fold (CARF) domains and regulate the activities of these proteins in response to invading nucleic acid. Csx3 is a distant member of the CARF domain superfamily previously characterized as a Mn2+-dependent deadenylation exoribonuclease. However, its specific role in CRISPR-Cas defense remains to be determined. Here we show that Csx3 is strongly associated with type III systems and that Csx3 binds cyclic tetra-adenylate (cA4) second messenger with high affinity. Further, Csx3 harbors cyclic oligonucleotide phosphodiesterase activity that quickly degrades this cA4 signal. In addition, structural analysis identifies core elements that define the CARF domain fold, and the mechanistic basis for ring nuclease activity is discussed. Overall, the work suggests that Csx3 functions within CRISPR-Cas as a counterbalance to Cas10 to regulate the duration and amplitude of the cA4 signal, providing an off ramp from the programmed cell death pathway in cells that successfully cure viral infection.
Collapse
Affiliation(s)
- Sharidan Brown
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Colin C Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA; Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Alexander A Charbonneau
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA; Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Nathaniel Burman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA; Thermal Biology Institute, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
5
|
Bernhard SP, Fricke MS, Haag R, Cloninger MJ. Protein Aggregation Nucleated by Functionalized Dendritic Polyglycerols. Polym Chem 2020; 11:3849-3862. [PMID: 35222696 PMCID: PMC8881006 DOI: 10.1039/d0py00667j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dendritic polyglycerols (dPGs) are emerging as important polymers for the study of biological processes due to their relatively low toxicity and excellent biocompatibility. The highly branched nature and high density of endgroups make the dPGs particularly attractive frameworks for the study of multivalent interactions such as multivalent protein-carbohydrate interactions. Here, we report the synthesis of a series of lactose functionalized dPGs with different hydrodynamic radii. A series of lactose functionalized dPGs bearing different densities of lactose functional groups was also synthesized. These lactose functionalized dPGs were used to study the templated aggregation of galectin-3, a galactoside binding protein that is overexpressed during many processes involved in cancer progression. Dynamic light scattering measurements revealed a direct correlation between the hydrodynamic radii of the lactose functionalized dPGs and the size of the galectin-3/lactose functionalized dPG aggregates formed upon mixing the lactose functionalized dPGs with galectin-3 in solution. These studies exposed the critical role of galectin-3's N-terminal domain in formation of galectin-3 multimers and also enabled comparisons of polymer templated aggregation using nonspecific interactions versus specific protein-carbohydrate binding interactions.
Collapse
Affiliation(s)
| | | | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Bozeman, MT, 59717, USA
| |
Collapse
|
6
|
Krishnan N, Perumal D, Atchimnaidu S, Harikrishnan KS, Golla M, Kumar NM, Kalathil J, Krishna J, Vijayan DK, Varghese R. Galactose-Grafted 2D Nanosheets from the Self-Assembly of Amphiphilic Janus Dendrimers for the Capture and Agglutination of Escherichia coli. Chemistry 2020; 26:1037-1041. [PMID: 31749263 DOI: 10.1002/chem.201905228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 01/07/2023]
Abstract
High aspect ratio, sugar-decorated 2D nanosheets are ideal candidates for the capture and agglutination of bacteria. Herein, the design and synthesis of two carbohydrate-based Janus amphiphiles that spontaneously self-assemble into high aspect ratio 2D sheets are reported. The unique structural features of the sheets include the extremely high aspect ratio and dense display of galactose on the surface. These structural characteristics allow the sheet to act as a supramolecular 2D platform for the capture and agglutination of E. coli through specific multivalent noncovalent interactions, which significantly reduces the mobility of the bacteria and leads to the inhibition of their proliferation. Our results suggest that the design strategy demonstrated here can be applied as a general approach for the crafting of biomolecule-decorated 2D nanosheets, which can perform as 2D platforms for their interaction with specific targets.
Collapse
Affiliation(s)
- Nithiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Siriki Atchimnaidu
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Kaloor S Harikrishnan
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Murali Golla
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Nilima Manoj Kumar
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Jemshiya Kalathil
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Jithu Krishna
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Dileep K Vijayan
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education, and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| |
Collapse
|
7
|
Karmakar S, Chakraborty S, Gautam S, Chowdhury PK. Exploring the potency of the naturally occurring polyphenol curcumin as a probe for protein aggregation in crowded environments. Int J Biol Macromol 2019; 141:1088-1101. [DOI: 10.1016/j.ijbiomac.2019.09.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/12/2023]
|
8
|
Shcharbin D, Shcharbina N, Dzmitruk V, Pedziwiatr-Werbicka E, Ionov M, Mignani S, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Majoral JP, Bryszewska M. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids Surf B Biointerfaces 2017; 152:414-422. [PMID: 28167455 DOI: 10.1016/j.colsurfb.2017.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus.
| | | | - Volha Dzmitruk
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Serge Mignani
- Université Paris Descartes, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, Paris, France
| | - F Javier de la Mata
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Rafael Gómez
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Maria Angeles Muñoz-Fernández
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain; Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Spanish HIV-HGM BioBank, Madrid, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France; Université de Toulouse, Toulouse, France
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Pawar SK, Vavia P. Efficacy Interactions of PEG-DOX-N-acetyl Glucosamine Prodrug Conjugate for Anticancer Therapy. Eur J Pharm Biopharm 2016; 97:454-63. [PMID: 26614563 DOI: 10.1016/j.ejpb.2015.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022]
Abstract
Present investigation is exploring structure-biocompatibility interaction of tumour targeted polyethylene glycol (PEG) based drug conjugate of doxorubicin using N-acetyl glucosamine as targeting ligand. The synthesized polymer drug conjugate was evaluated for particle size, zeta potential, molecular weight, haemolysis activity, cytotoxicity, protein binding and in vitro receptor (lectin) binding study. The particle size of synthesized conjugate was observed to be around 30 nm with polydispersability index of 0.213 indicating mono-disperse particles. Fluorescence quenching assay addressed relatively lower binding interactions of polymer drug conjugate to bovine serum albumin in comparison with free doxorubicin which may be governed to the hydrophilicity of polyethylene glycol and N-acetyl glucosamine. The cell compatibility and haemolysis study showed that PEG drug conjugate was nontoxic and biocompatible, which recommends the suitability of polymer drug conjugates for delivering biological active agents systemically. In vitro ligand-lectin receptor binding assays of synthesized targeted polymer conjugate suggest the possibility of promising interaction of N-acetyl glucosamine in vivo. Thus, the study indicated the suitability of N-acetyl glucosamine anchored targeted polymer drug conjugate in delivering bio-therapeutics for specifically targeting to tumour tissues.
Collapse
Affiliation(s)
- Smita K Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act 1956, Elite Status and Centre of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Mumbai 400 019, India
| | - Pradeep Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act 1956, Elite Status and Centre of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Mumbai 400 019, India.
| |
Collapse
|
10
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
11
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
12
|
The route to protein aggregate superstructures: Particulates and amyloid-like spherulites. FEBS Lett 2015; 589:2448-63. [DOI: 10.1016/j.febslet.2015.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/15/2022]
|
13
|
Pawar S, Vavia P. Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin. J Drug Target 2015; 24:68-79. [PMID: 26152812 DOI: 10.3109/1061186x.2015.1055572] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Efficacy of an anticancer drug is challenged by severe adverse effects persuaded by the drug itself; hence designing a tumour targeted delivery system is chosen as an objective of this research work. PURPOSE We propose, glucose transporter targeting ligand, i.e. synthesised N-lauryl glucosamine (NLG) anchored doxorubicin (DOX) in niosomal formulation. METHODS Synthesised NLG was incorporated into niosomal formulation of DOX using Span 60 as surfactant, cholesterol as membrane stabilizer and dicetyl phosphate (DCP) as stabilizer. RESULTS The formulation was stable with particle size of 110 ± 5 nm, zeta potential -30 ± 5 mV and entrapment efficiency approximately 95%. DSC and XRD pattern of freeze-dried formulation demonstrated encapsulation of DOX in niosomal formulation. Cytotoxicity of targeted niosomal formulation (IC50 = 0.830 ppm) was higher than non-targeted niosomal formulation (IC50 = 1.369 ppm) against B6F10 melanoma cell lines. In vitro cellular internalization revealed that targeted niosomal formulation was internalised more efficiently with higher cellular retention by cancer cells compared to the non-targeted niosomal formulation and free DOX. In vitro receptor binding and docking study of targeted niosomal formulation had shown the comparative association potential with glucose receptor. CONCLUSION NLG anchored niosomal formulation of DOX with enhanced cytotoxicity, internalization and receptor binding potential has implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Smita Pawar
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Pradeep Vavia
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
14
|
Glycodendrimers and Modified ELISAs: Tools to Elucidate Multivalent Interactions of Galectins 1 and 3. Molecules 2015; 20:7059-96. [PMID: 25903363 PMCID: PMC4513649 DOI: 10.3390/molecules20047059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 01/27/2023] Open
Abstract
Multivalent protein-carbohydrate interactions that are mediated by sugar-binding proteins, i.e., lectins, have been implicated in a myriad of intercellular recognition processes associated with tumor progression such as galectin-mediated cancer cellular migration/metastatic processes. Here, using a modified ELISA, we show that glycodendrimers bearing mixtures of galactosides, lactosides, and N-acetylgalactosaminosides, galectin-3 ligands, multivalently affect galectin-3 functions. We further demonstrate that lactose functionalized glycodendrimers multivalently bind a different member of the galectin family, i.e., galectin-1. In a modified ELISA, galectin-3 recruitment by glycodendrimers was shown to directly depend on the ratio of low to high affinity ligands on the dendrimers, with lactose-functionalized dendrimers having the highest activity and also binding well to galectin-1. The results depicted here indicate that synthetic multivalent systems and upfront assay formats will improve the understanding of the multivalent function of galectins during multivalent protein carbohydrate recognition/interaction.
Collapse
|
15
|
Goodman CK, Wolfenden ML, Nangia-Makker P, Michel AK, Raz A, Cloninger MJ. Multivalent scaffolds induce galectin-3 aggregation into nanoparticles. Beilstein J Org Chem 2014; 10:1570-7. [PMID: 25161713 PMCID: PMC4142985 DOI: 10.3762/bjoc.10.162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/18/2014] [Indexed: 12/01/2022] Open
Abstract
Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer–galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins.
Collapse
Affiliation(s)
- Candace K Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Mark L Wolfenden
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Pratima Nangia-Makker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA ; The Departments of Oncology and Pathology, School of Medicine, Wayne State University, 110 East Warren Avenue, Detroit, Michigan 48201, USA
| | - Anna K Michel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Avraham Raz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA ; The Departments of Oncology and Pathology, School of Medicine, Wayne State University, 110 East Warren Avenue, Detroit, Michigan 48201, USA
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
16
|
Varga N, Sutkeviciute I, Guzzi C, McGeagh J, Petit-Haertlein I, Gugliotta S, Weiser J, Angulo J, Fieschi F, Bernardi A. Selective Targeting of Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin (DC-SIGN) with Mannose-Based Glycomimetics: Synthesis and Interaction Studies of Bis(benzylamide) Derivatives of a Pseudomannobioside. Chemistry 2013; 19:4786-97. [DOI: 10.1002/chem.201202764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2012] [Indexed: 11/09/2022]
|
17
|
Cloninger MJ, Bilgiçer B, Li L, Mangold SL, Phillips ST, Wolfenden ML. Multivalency. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Liu X, Liu J, Luo Y. Facile glycosylation of dendrimers for eliciting specific cell–material interactions. Polym Chem 2012. [DOI: 10.1039/c1py00404b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Benseny-Cases N, Klementieva O, Cladera J. Dendrimers antiamyloidogenic potential in neurodegenerative diseases. NEW J CHEM 2012. [DOI: 10.1039/c1nj20469f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Papp I, Dernedde J, Enders S, Riese SB, Shiao TC, Roy R, Haag R. Multivalent Presentation of Mannose on Hyperbranched Polyglycerol and their Interaction with Concanavalin A Lectin. Chembiochem 2011; 12:1075-83. [DOI: 10.1002/cbic.201000718] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 11/08/2022]
|