1
|
Ni HQ, Alturaifi TM, Rodphon W, Scherschel NF, Yang S, Wang F, McAlpine IJ, Piercey DG, Liu P, Engle KM. Anti-selective Cyclopropanation of Nonconjugated Alkenes with Diverse Pronucleophiles via Directed Nucleopalladation. J Am Chem Soc 2024; 146:24503-24514. [PMID: 39172733 DOI: 10.1021/jacs.4c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A facile approach to obtaining densely functionalized cyclopropanes is described. The reaction proceeds under mild conditions via the directed nucleopalladation of nonconjugated alkenes with readily available pronucleophiles and gives excellent yields and good anti-selectivity using I2 and TBHP as oxidants. Pronucleophiles bearing a diverse collection of electron-withdrawing groups, including -CN, -CO2R, -COR, -SO2Ph, -CONHR, and -NO2, are well tolerated. Internal alkenes, which are generally challenging substrates in other cyclopropanation methods, provide excellent yields and good diastereoselectivity in this methodology, allowing for controlled access to cyclopropanes substituted at all three C atoms. DFT calculations and mechanistic experiments reveal that the major mechanistic pathway involves the initial α-iodination of the nucleophile, followed by anti-carbopalladation and intramolecular C(sp3)-I oxidative addition. Strain-release-promoted C(sp3)-C(sp3) reductive elimination then furnishes the cyclopropanated product.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Warabhorn Rodphon
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas F Scherschel
- Department of Materials Engineering and Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
- Genesis Therapeutics, 11568 Sorrento Valley Rd. Suite 8, San Diego, California 92121, United States
| | - Davin G Piercey
- Department of Materials Engineering and Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Hayashi N, Ujihara T, Anada M. Origin of the Conformational Stability of Dirhodium(II) Tetrakis[ N-phthaloyl-( S)- tert-leucinate] and Its Halogenated Derivatives. J Phys Chem A 2024; 128:3051-3061. [PMID: 38626323 DOI: 10.1021/acs.jpca.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
In order to elucidate the origins of the stable structures of dirhodium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate] and the four derivatives with halogenated aromatic rings, the conformational stability and intramolecular interactions were investigated by DFT calculations. In all of these complexes, the conformation in which all ligands face in the same direction is the most stable. When adjacent ligands are in the same orientation, destabilization due to exchange repulsion is larger than that when they are in opposite orientations. However, this destabilizing effect is reversed by the sum of the stabilizing effects of the electronic and charge transfer interactions. The imide carbonyl group plays an important role in these stabilizing interactions. The negatively charged site and bond orbitals in the imide carbonyl group interact with the positively charged sites and bond orbitals in the aromatic ring, the carboxylate group, and the α-position of the carboxylate group in the adjacent ligands. In addition, the lone-pair orbitals of the halogen atoms contribute to conformational stabilization by interacting with the vacant orbitals in the adjacent ligands. However, the combinations of these charged sites or bond orbitals, which effectively contribute to the stabilization, are different for each complex.
Collapse
Affiliation(s)
- Nobuyuki Hayashi
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Tomomi Ujihara
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
3
|
Souza L, Miller BR, Cammarota RC, Lo A, Lopez I, Shiue YS, Bergstrom BD, Dishman SN, Fettinger JC, Sigman MS, Shaw JT. Deconvoluting Nonlinear Catalyst-Substrate Effects in the Intramolecular Dirhodium-Catalyzed C-H Insertion of Donor/Donor Carbenes Using Data Science Tools. ACS Catal 2024; 14:104-115. [PMID: 38205021 PMCID: PMC10775150 DOI: 10.1021/acscatal.3c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/12/2024]
Abstract
Interactions between catalysts and substrates can be highly complex and dynamic, often complicating the development of models to either predict or understand such processes. A dirhodium(II)-catalyzed C-H insertion of donor/donor carbenes into 2-alkoxybenzophenone substrates to form benzodihydrofurans was selected as a model system to explore nonlinear methods to achieve a mechanistic understanding. We found that the application of traditional methods of multivariate linear regression (MLR) correlating DFT-derived descriptors of catalysts and substrates leads to poorly performing models. This inspired the introduction of nonlinear descriptor relationships into modeling by applying the sure independence screening and sparsifying operator (SISSO) algorithm. Based on SISSO-generated descriptors, a high-performing MLR model was identified that predicts external validation points well. Mechanistic interpretation was aided by the deconstruction of feature relationships using chemical space maps, decision trees, and linear descriptors. Substrates were found to have a strong dependence on steric effects for determining their innate cyclization selectivity preferences. Catalyst reactive site features can then be matched to product features to tune or override the resultant diastereoselectivity within the substrate-dictated ranges. This case study presents a method for understanding complex interactions often encountered in catalysis by using nonlinear modeling methods and linear deconvolution by pattern recognition.
Collapse
Affiliation(s)
- Lucas
W. Souza
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Beck R. Miller
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan C. Cammarota
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Anna Lo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ixchel Lopez
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Yuan-Shin Shiue
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Benjamin D. Bergstrom
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Sarah N. Dishman
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - James C. Fettinger
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jared T. Shaw
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Hu J, Tang M, Wang J, Wu Z, Friedrich A, Marder TB. Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent. Angew Chem Int Ed Engl 2023; 62:e202305175. [PMID: 37527975 DOI: 10.1002/anie.202305175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane skeletons play a prominent role in the development of organic synthesis and pharmaceutical chemistry. Herein, we report the design and synthesis of a stable, multifunctional (diborylmethyl)iodide reagent (CHI(Bpin)2 ) for the photoinduced cyclopropanation of alkenes, providing an array of 1,2-substituted cyclopropylboronates in good yields. This α-haloboronic ester can be readily synthesized on a multigram scale from commercially available starting materials. Furthermore, the protocol displays high chemo- and diastereoselectivity, excellent functional-group tolerance, and allows for late-stage borylcyclopropanation of complex molecules. Mechanistic studies reveal that the borylcyclopropanation proceeds through a radical addition/polar cyclization pathway mediated by the photocatalyst fac-Ir(ppy)3 and visible light.
Collapse
Affiliation(s)
- Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
5
|
Sailer J, Sharland JC, Bacsa J, Harris CF, Berry JF, Musaev DG, Davies HML. Diruthenium Tetracarboxylate-Catalyzed Enantioselective Cyclopropanation with Aryldiazoacetates. Organometallics 2023; 42:2122-2133. [PMID: 37592951 PMCID: PMC10428512 DOI: 10.1021/acs.organomet.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/19/2023]
Abstract
A series of chiral bowl-shaped diruthenium(II,III) tetracarboxylate catalysts were prepared and evaluated in asymmetric cyclopropanations with donor/acceptor carbenes derived from aryldiazoacetates. The diruthenium catalysts self-assembled to generate C4-symmetric bowl-shaped structures in an analogous manner to their dirhodium counterparts. The optimum catalyst was found to be Ru2(S-TPPTTL)4·BArF [S-TPPTTL = (S)-2-(1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate, BArF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate], which resulted in the cyclopropanation of a range of substrates in up to 94% ee. Synthesis and evaluation of first-row transition-metal congeners [Cu(II/II) and Co(II/II)] invariably resulted in catalysts that afforded little to no asymmetric induction. Computational studies indicate that the carbene complexes of these dicopper and dicobalt complexes, unlike the dirhodium and diruthenium systems, are prone to the loss of carboxylate ligands, which would destroy the bowl-shaped structure critical for asymmetric induction.
Collapse
Affiliation(s)
- Joshua
K. Sailer
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Caleb F. Harris
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F. Berry
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Djamaladdin G. Musaev
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Cherry
L. Emerson Center for Scientific Computation, Emory University, 1521
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
van den Heuvel N, Mason SM, Mercado BQ, Miller SJ. Aspartyl β-Turn-Based Dirhodium(II) Metallopeptides for Benzylic C(sp 3)-H Amination: Enantioselectivity and X-ray Structural Analysis. J Am Chem Soc 2023; 145:12377-12385. [PMID: 37216431 PMCID: PMC10330621 DOI: 10.1021/jacs.3c03587] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Amination of C(sp3)-H bonds is a powerful tool to introduce nitrogen into complex organic frameworks in a direct manner. Despite significant advances in catalyst design, full site- and enantiocontrol in complex molecular regimes remain elusive using established catalyst systems. To address these challenges, we herein describe a new class of peptide-based dirhodium(II) complexes derived from aspartic acid-containing β-turn-forming tetramers. This highly modular system can serve as a platform for the rapid generation of new chiral dirhodium(II) catalyst libraries, as illustrated by the facile synthesis of a series of 38 catalysts. Critically, we present the first crystal structure of a dirhodium(II) tetra-aspartate complex, which unveils retention of the β-turn conformation of the peptidyl ligand; a well-defined hydrogen-bonding network is evident, along with a near-C4 symmetry that renders the rhodium centers inequivalent. The utility of this catalyst platform is illustrated by the enantioselective amination of benzylic C(sp3)-H bonds, in which state-of-the-art levels of enantioselectivity up to 95.5:4.5 er are obtained, even for substrates that present challenges with previously reported catalyst systems. Additionally, we found these complexes to be competent catalysts for the intermolecular amination of N-alkylamides via insertion into the C(sp3)-H bond α to the amide nitrogen, yielding differentially protected 1,1-diamines. Of note, this type of insertion was also observed to occur on the amide functionalities of the catalyst itself in the absence of the substrate but did not appear to be detrimental to reaction outcomes when the substrate was present.
Collapse
Affiliation(s)
- Naudin van den Heuvel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Savannah M. Mason
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Wu K, Zhang X, Wu LL, Huang JS, Che CM. A Convergent, Modular Approach to Trifluoromethyl-Bearing 5-Membered Rings via Catalytic C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2023; 62:e202215891. [PMID: 36596721 DOI: 10.1002/anie.202215891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3 )-H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3 -α-alkyl carbene insertion into C(sp3 )-H bonds of a broad range of substrates to access 7 types of CF3 -bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C-H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3 -α-alkyl carbene complexes underwent stoichiometric reactions to give C-H insertion products, lending evidence for the involvement of metal α-CF3 -α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C-H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C-H insertion reactions.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuyang Zhang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| |
Collapse
|
8
|
Computational Exploration of Dirhodium Complex-Catalyzed Selective Intermolecular Amination of Tertiary vs. Benzylic C-H Bonds. Molecules 2023; 28:molecules28041928. [PMID: 36838915 PMCID: PMC9959850 DOI: 10.3390/molecules28041928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The mechanism and origins of site-selectivity of Rh2(S-tfpttl)4-catalyzed C(sp3)-H bond aminations were studied using density functional theory (DFT) calculations. The synergistic combination of the dirhodium complex Rh2(S-tfpttl)4 with tert-butylphenol sulfamate TBPhsNH2 composes a pocket that can access both tertiary and benzylic C-H bonds. The nonactivated tertiary C-H bond was selectively aminated in the presence of an electronically activated benzylic C-H bond. Both singlet and triplet energy surfaces were investigated in this study. The computational results suggest that the triplet stepwise pathway is more favorable than the singlet concerted pathway. In the hydrogen atom abstraction by Rh-nitrene species, which is the rate- and site-selectivity-determining step, there is an attractive π-π stacking interaction between the phenyl group of the substrate and the phthalimido group of the ligand in the tertiary C-H activation transition structure. By contrast, such attractive interaction is absent in the benzylic C-H amination transition structure. Therefore, the DFT computational results clearly demonstrate how the synergistic combination of the dirhodium complex with sulfamate overrides the intrinsic preference for benzylic C-H amination to achieve the amination of the nonactivated tertiary C-H bond.
Collapse
|
9
|
Boquet V, Nasrallah A, Dana AL, Brunard E, Di Chenna PH, Duran FJ, Retailleau P, Darses B, Sircoglou M, Dauban P. Rhodium(II)-Catalyzed Enantioselective Intermolecular Aziridination of Alkenes. J Am Chem Soc 2022; 144:17156-17164. [PMID: 36094904 DOI: 10.1021/jacs.2c07337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C4-Symmetrical dirhodium(II) tetracarboxylates are highly efficient catalysts for the asymmetric intermolecular aziridination of substituted alkenes with sulfamates. The reaction proceeds with high levels of efficiency and chemoselectivity to afford aziridines with excellent yields of up to 95% and enantiomeric excesses of up to 99%. The scope of the alkene aziridination includes mono-, di-, and trisubstituted olefins as well as the late-stage functionalization of complex substrates. The reaction can be performed on a gram-scale with a catalyst loading of 0.1 mol %. Our DFT study led us to propose a two-spin-state mechanism, involving a triplet Rh-nitrene species as key intermediate to drive the stereocontrolled approach and activation of the substrate.
Collapse
Affiliation(s)
- Vincent Boquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Ali Nasrallah
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Alejandro L Dana
- CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires C1428EGA, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Erwan Brunard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Pablo H Di Chenna
- CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires C1428EGA, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando J Duran
- CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires C1428EGA, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | | | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - Philippe Dauban
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Garlets ZJ, Boni YT, Sharland JC, Kirby RP, Fu J, Bacsa J, Davies HML. Design, Synthesis, and Evaluation of Extended C 4–Symmetric Dirhodium Tetracarboxylate Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zachary J. Garlets
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yannick T. Boni
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Randall P. Kirby
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jiantao Fu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Sugiarto S, Minato T, Sakiyama H, Sadakane M. Anion‐directed conformation switching and trigonal distortion in hexakis(methylamine)nickel(II) cations. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sugiarto Sugiarto
- Hiroshima University Applied Chemistry 1-4-1 Kagamiyama 7398527 Higashi-Hiroshima JAPAN
| | - Takuo Minato
- Hiroshima University: Hiroshima Daigaku Department of Applied Chemistry JAPAN
| | - Hiroshi Sakiyama
- Yamagata University: Yamagata Daigaku Department of Science, Faculty of Science JAPAN
| | - Masahiro Sadakane
- Hiroshima University: Hiroshima Daigaku Department of Applied Chemistry JAPAN
| |
Collapse
|
12
|
Cammarota RC, Liu W, Bacsa J, Davies HML, Sigman MS. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. J Am Chem Soc 2022; 144:1881-1898. [DOI: 10.1021/jacs.1c12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ryan C. Cammarota
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Wenbin Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Liu K, Cheng SJ, Luo G, Ye ZS. Synthesis of 1-Substituted Cyclopropylamines via Formal Tertiary C sp3-H Amination of Cyclopropanes. Org Lett 2021; 23:9309-9314. [PMID: 34779210 DOI: 10.1021/acs.orglett.1c03687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel and facile approach to synthesis of 1-substituted cyclopropylamines via phosphine-catalyzed formal tertiary Csp3-H amination of cyclopropanes was described. The indoles, pyrroles, imidazoles, uracils, 2-pyridone, pyrimidin-4(3H)-one, and phthalimide had been proven as good aminating partners. The present protocol features transition-metal-free, excellent regioselectivity, high-atom-economy, and mild reaction conditions and a broad range of substrates. The practicability of this protocol can also be demonstrated with late-stage modification of bioactive molecules, scaled up reaction, and divergent derivatization. Notably, the method has been used in the formal synthesis of the hormone-sensitive lipase (HSL) inhibitor. The mechanistic aspects were elucidated by both experimental and computational studies.
Collapse
Affiliation(s)
- Kui Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Shao-Jie Cheng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Zhi-Shi Ye
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
14
|
Abshire A, Moore D, Courtney J, Darko A. Heteroleptic dirhodium(II,II) paddlewheel complexes as carbene transfer catalysts. Org Biomol Chem 2021; 19:8886-8905. [PMID: 34611688 DOI: 10.1039/d1ob01414e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the applications of dirhodium(II,II) paddlewheel complexes with a heteroleptic scaffold. Dirhodium(II,II) paddlewheel complexes are well known as highly efficient and selective carbene transfer catalysts. While the majority of described complexes are homoleptic, comparatively fewer studies have concerned heteroleptic complexes. Here, we emphasise the use of heteroleptic complexes in order to highlight their benefits as carbene transfer catalysts and spur future research. Methods to synthesise heteroleptic dirhodium(II,II) paddlewheel complexes are discussed as well as a categorical review of their types of heteroleptic complexes and the carbene reactions in which they have been used.
Collapse
Affiliation(s)
- Anthony Abshire
- Department of Chemistry, University of Tennessee, Knoxville, TN 37796-1600, USA.
| | - Desiree Moore
- Department of Chemistry, University of Tennessee, Knoxville, TN 37796-1600, USA.
| | - Jobe Courtney
- Department of Chemistry, University of Tennessee, Knoxville, TN 37796-1600, USA.
| | - Ampofo Darko
- Department of Chemistry, University of Tennessee, Knoxville, TN 37796-1600, USA.
| |
Collapse
|
15
|
Buckley AM, Crowley DC, Brouder TA, Ford A, Rao Khandavilli UB, Lawrence SE, Maguire AR. Dirhodium Carboxylate Catalysts from 2-Fenchyloxy or 2-Menthyloxy Arylacetic Acids: Enantioselective C-H Insertion, Aromatic Addition and Oxonium Ylide Formation/Rearrangement. ChemCatChem 2021; 13:4318-4324. [PMID: 34820025 PMCID: PMC8597163 DOI: 10.1002/cctc.202100924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Indexed: 11/27/2022]
Abstract
A new class of dirhodium carboxylate catalysts have been designed and synthesized from 2-fenchyloxy or 2-menthyloxy arylacetic acids which display excellent enantioselectivity across a range of transformations of α-diazocarbonyl compounds. The catalysts were successfully applied to enantioselective C-H insertion reactions of aryldiazoacetates and α-diazo-β-oxosulfones affording the respective products in up to 93 % ee with excellent trans diastereoselectivity in most cases. Furthermore, efficient desymmetrization in an intramolecular C-H insertion was achieved. In addition, these catalysts prove highly enantioselective for intramolecular aromatic addition with up to 88 % ee, and oxonium ylide formation and rearrangement with up to 74 % ee.
Collapse
Affiliation(s)
- Aoife M. Buckley
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Daniel C. Crowley
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Thomas A. Brouder
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Alan Ford
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - U. B. Rao Khandavilli
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Simon E. Lawrence
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Anita R. Maguire
- School of Chemistry and School of PharmacyAnalytical and Biological Chemistry Research FacilitySynthesis and Solid State Pharmaceutical CentreUniversity College CorkCorkIreland
| |
Collapse
|
16
|
Affiliation(s)
- Hidetoshi Noda
- Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagaku-ku Tokyo 141-0021 Japan
| | - Xinxin Tang
- Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagaku-ku Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagaku-ku Tokyo 141-0021 Japan
| |
Collapse
|
17
|
Shi D, Cao J, Weng P, Yan X, Li Z, Jiang YB. Chalcogen bonding mediates the formation of supramolecular helices of azapeptides in crystals. Org Biomol Chem 2021; 19:6397-6401. [PMID: 34251014 DOI: 10.1039/d1ob01053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore whether chalcogen bonding was able to drive the formation of supramolecular helices, alanine-based azapeptides containing a β-turn structure, with a thiophene group, respectively, incorporated in the N- or C-terminus, were employed as helical building blocks. While the former derivative formed a supramolecular M-helix via intermolecular SS chalcogen bonding in crystals, the latter formed P-helix via intermolecular SO chalcogen bonding.
Collapse
Affiliation(s)
- Di Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Jinlian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
18
|
Cindy Lee WC, Wang DS, Zhang C, Xie J, Li B, Zhang XP. Asymmetric Radical Cyclopropanation of Dehydroaminocarboxylates: Stereoselective Synthesis of Cyclopropyl α-Amino Acids. Chem 2021; 7:1588-1601. [PMID: 34693072 PMCID: PMC8528158 DOI: 10.1016/j.chempr.2021.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A catalytic radical process has been developed for asymmetric cyclopropanation of dehydroaminocarboxylates with in situ-generated α-aryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the environments of D 2-symmetric chiral amidoporphyrin platform as the supporting ligands, the Co(II)-metalloradical system can effectively activate various α-aryldiazomethanes to cyclopropanate different dehydroaminocarboxylates under mild conditions, enabling the stereoselective synthesis of chiral cyclopropyl α-amino acid derivatives. In addition to high yields and excellent enantioselectivities, the Co(II)-catalyzed asymmetric radical cyclopropanation exhibits (Z)-diastereoselectivity, which is the opposite of uncatalyzed thermal reaction. Combined computational and experimental studies support a stepwise radical mechanism for the Co(II)-catalyzed cyclopropanation reaction. The resulting enantioenriched (Z)-α-amino-β-arylcyclopropanecarboxylates, as showcased for the efficient synthesis of dipeptides, may serve as unique non-proteinogenic amino acid building blocks for the design and preparation of novel peptides with restricted conformations.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
19
|
Löffler LE, Buchsteiner M, Collins LR, Caló FP, Singha S, Fürstner A. [Rh
2
(MEPY)
4
] and [BiRh(MEPY)
4
]: Convenient Syntheses and Computational Analysis of Strikingly Dissimilar Siblings. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lorenz E. Löffler
- Max-Planck-Institut für Kohlenforschung DE-45470 Mülheim/Ruhr Germany
| | | | - Lee R. Collins
- Max-Planck-Institut für Kohlenforschung DE-45470 Mülheim/Ruhr Germany
| | - Fabio P. Caló
- Max-Planck-Institut für Kohlenforschung DE-45470 Mülheim/Ruhr Germany
| | - Santanu Singha
- Max-Planck-Institut für Kohlenforschung DE-45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung DE-45470 Mülheim/Ruhr Germany
| |
Collapse
|
20
|
Brunard E, Boquet V, Van Elslande E, Saget T, Dauban P. Catalytic Intermolecular C(sp 3)-H Amination: Selective Functionalization of Tertiary C-H Bonds vs Activated Benzylic C-H Bonds. J Am Chem Soc 2021; 143:6407-6412. [PMID: 33900759 DOI: 10.1021/jacs.1c03872] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A catalytic intermolecular amination of nonactivated tertiary C(sp3)-H bonds (BDE of 96 kcal·mol-1) is reported for substrates displaying an activated benzylic site (BDE of 85 kcal·mol-1). The tertiary C(sp3)-H bond is selectively functionalized to afford α,α,α-trisubstituted amides in high yields. This unusual site-selectivity results from the synergistic combination of Rh2(S-tfpttl)4, a rhodium(II) complex with a well-defined catalytic pocket, with tert-butylphenol sulfamate (TBPhsNH2), which leads to a discriminating rhodium-bound nitrene species under mild oxidative conditions. This catalytic system is very robust, and the reaction was performed on a 50 mmol scale with only 0.01 mol % of catalyst. The TBPhs group can be removed under mild conditions to afford the corresponding NH-free amines.
Collapse
Affiliation(s)
- Erwan Brunard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Boquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Elsa Van Elslande
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Tanguy Saget
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Philippe Dauban
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Singha S, Buchsteiner M, Bistoni G, Goddard R, Fürstner A. A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth-Rhodium Paddlewheel Catalysts. J Am Chem Soc 2021; 143:5666-5673. [PMID: 33829767 PMCID: PMC8154533 DOI: 10.1021/jacs.1c01972] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 01/02/2023]
Abstract
Heterobimetallic bismuth-rhodium paddlewheel complexes with phenylglycine ligands carrying TIPS-groups at the meta-positions of the aromatic ring exhibit outstanding levels of selectivity in reactions of donor/acceptor and donor/donor carbenes; at the same time, the reaction rates are much faster and the substrate scope is considerably wider than those of previous generations of chiral [BiRh] catalysts. As shown by a combined experimental, crystallographic, and computational study, the new catalysts draw their excellent application profile largely from the stabilization of the chiral ligand sphere by London dispersion (LD) interactions of the peripheral silyl substituents.
Collapse
Affiliation(s)
| | | | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
22
|
Anada M, Hashimoto S, Ito M, Kondo Y, Namie R, Natori Y, Takeda K, Nambu H, Yamamoto Y. Diastereo- and Enantioselective Intramolecular 1,6-C–H Insertion Reaction of Diaryldiazomethanes Catalyzed by Chiral Dirhodium(II) Carboxylates. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Trouvé J, Gramage-Doria R. Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis. Chem Soc Rev 2021; 50:3565-3584. [DOI: 10.1039/d0cs01339k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The implementation of interactions beyond hydrogen bonding in the 2nd coordination sphere of transition metal catalysts is rare. However, it has already shown great promise in last 5 years, providing new tools to control the activity and selectivity as here reviewed.
Collapse
|
24
|
Murai T, Lu W, Kuribayashi T, Morisaki K, Ueda Y, Hamada S, Kobayashi Y, Sasamori T, Tokitoh N, Kawabata T, Furuta T. Conformational Control in Dirhodium(II) Paddlewheel Catalysts Supported by Chalcogen-Bonding Interactions for Stereoselective Intramolecular C–H Insertion Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuya Murai
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Wenjie Lu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Kazuhiro Morisaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shohei Hamada
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takahiro Sasamori
- Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takeo Kawabata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takumi Furuta
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
25
|
Sun X, Gu P, Qin J, Su Y. Rhodium-catalysed diastereo- and enantio-selective cyclopropanation of α-boryl styrenes. Chem Commun (Camb) 2020; 56:12379-12382. [PMID: 32930681 DOI: 10.1039/d0cc02549f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A rhodium-catalyzed diastereo- and enantio-selective cyclopropanation of α-boryl styrenes with α-diazoarylacetates was established. Rh2(S-PTTL)4 (0.2 mol%) was found to be effective for the conversion, and 21 diastereopure cyclopropylboronates were prepared in high yields with excellent enantioselectivity (ee up to 99%).
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | | | | | | |
Collapse
|
26
|
Kaasik M, Kanger T. Supramolecular Halogen Bonds in Asymmetric Catalysis. Front Chem 2020; 8:599064. [PMID: 33195108 PMCID: PMC7609521 DOI: 10.3389/fchem.2020.599064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Halogen bonding has received a significant increase in attention in the past 20 years. An important part of this interest has centered on catalytic applications of halogen bonding. Halogen bond (XB) catalysis is still a developing field in organocatalysis, although XB catalysis has outgrown its proof of concept phase. The start of this year witnessed the publication of the first example of a purely XB-based enantioselective catalytic reaction. While the selectivity can be improved upon, there are already plenty of examples in which halogen bonds, among other interactions, play a crucial role in the outcome of highly enantioselective reactions. This paper will give an overview of the current state of the use of XBs in catalytic stereoselective processes.
Collapse
Affiliation(s)
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
27
|
Miyazawa T, Suzuki T, Kumagai Y, Takizawa K, Kikuchi T, Kato S, Onoda A, Hayashi T, Kamei Y, Kamiyama F, Anada M, Kojima M, Yoshino T, Matsunaga S. Chiral paddle-wheel diruthenium complexes for asymmetric catalysis. Nat Catal 2020. [DOI: 10.1038/s41929-020-00513-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Ren Z, Musaev DG, Davies HML. Influence of Aryl Substituents on the Alignment of Ligands in the Dirhodium Tetrakis(1,2,2‐Triarylcyclopropane‐ carboxylate) Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhi Ren
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Huw M. L. Davies
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| |
Collapse
|
29
|
Lin JX, Daolio A, Scilabra P, Terraneo G, Li H, Resnati G, Cao R. The Relevance of Size Matching in Self-assembly: Impact on Regio- and Chemoselective Cocrystallizations. Chemistry 2020; 26:11701-11704. [PMID: 32529674 DOI: 10.1002/chem.202002264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Indexed: 11/07/2022]
Abstract
Decamethonium diiodide is reported to perform the chemo- and regioselective encapsulation of para-dihalobenzenes through the competitive formation of halogen-bonded cocrystals starting from solutions that also contain ortho and meta isomers. Selective caging in the solid occurs even when an excess ortho or meta isomers, or even a mixture of them, is present in the solution. A prime matching between the size and shape of the dication and the formed dianions plays a key role in enabling the selective self-assembly, as proven by successful encapsulation of halogen-bond donors as weak as 1,4-dichlorobenzene and by the results of cocrystallization trials involving mismatching tectons. Encapsulated para-dihalobenzenes guest molecules can be removed quantitatively by heating the cocrystals under reduced pressure and be recovered as pure materials. The residual decamethonium diiodide can be recycled with no reduction in selectivity.
Collapse
Affiliation(s)
- Jing-Xiang Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,The School of Ocean Science and Biochemistry Engineering, Fujian Polytechnic Normal University, Fuqing, 350300, P. R. China
| | - Andrea Daolio
- NFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Patrick Scilabra
- NFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Giancarlo Terraneo
- NFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Hongfan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Giuseppe Resnati
- NFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
30
|
Zippel C, Hassan Z, Nieger M, Bräse S. Design and Synthesis of a [2.2]Paracyclophane‐based Planar Chiral Dirhodium Catalyst and its Applications in Cyclopropanation Reaction of Vinylarenes with
α
‐Methyl‐
α
‐Diazo Esters. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Christoph Zippel
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Zahid Hassan
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- 3D Matter Made To Order – Cluster of Excellence (EXC-2082/1 – 390761711)Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Martin Nieger
- Department of ChemistryUniversity of Helsinki P. O. Box 55 00014 University of Helsinki Finland
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- 3D Matter Made To Order – Cluster of Excellence (EXC-2082/1 – 390761711)Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – FMSKarlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
31
|
Wolf J, Huber F, Erochok N, Heinen F, Guérin V, Legault CY, Kirsch SF, Huber SM. Aktivierung einer Metall‐Halogen‐Bindung durch Halogenbrücken. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julian Wolf
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Florian Huber
- Organic ChemistryBergische Universität Wuppertal Gaussstrasse 20 42119 Wuppertal Deutschland
| | - Nikita Erochok
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Flemming Heinen
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Vincent Guérin
- Department of ChemistryUniversité de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Kanada
| | - Claude Y. Legault
- Department of ChemistryUniversité de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Kanada
| | - Stefan F. Kirsch
- Organic ChemistryBergische Universität Wuppertal Gaussstrasse 20 42119 Wuppertal Deutschland
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
32
|
Wolf J, Huber F, Erochok N, Heinen F, Guérin V, Legault CY, Kirsch SF, Huber SM. Activation of a Metal-Halogen Bond by Halogen Bonding. Angew Chem Int Ed Engl 2020; 59:16496-16500. [PMID: 32472957 PMCID: PMC7540446 DOI: 10.1002/anie.202005214] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 11/07/2022]
Abstract
In recent years, the non-covalent interaction of halogen bonding (XB) has found increasing application in organocatalysis. However, reports of the activation of metal-ligand bonds by XB have so far been limited to a few reactions with elemental iodine or bromine. Herein, we present the activation of metal-halogen bonds by two classes of inert halogen bond donors and the use of the resulting activated complexes in homogenous gold catalysis. The only recently explored class of iodolium derivatives were shown to be effective activators in two test reactions and their activity could be modulated by blocking of the Lewis acidic sites. Bis(benzimidazolium)-based halogen bonding activators provided even more rapid conversion, while the non-iodinated reference compound showed little activity. The role of halogen bonding in the activation of metal-halogen bonds was further investigated by NMR experiments and DFT calculations, which support the mode of activation occurring via halogen bonding.
Collapse
Affiliation(s)
- Julian Wolf
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Florian Huber
- Organic Chemistry, Bergische Universität Wuppertal, Gaussstrasse 20, 42119, Wuppertal, Germany
| | - Nikita Erochok
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Flemming Heinen
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Vincent Guérin
- Department of Chemistry, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Claude Y Legault
- Department of Chemistry, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Stefan F Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaussstrasse 20, 42119, Wuppertal, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
33
|
Dong K, Fan X, Pei C, Zheng Y, Chang S, Cai J, Qiu L, Yu ZX, Xu X. Transient-axial-chirality controlled asymmetric rhodium-carbene C(sp 2)-H functionalization for the synthesis of chiral fluorenes. Nat Commun 2020; 11:2363. [PMID: 32398762 PMCID: PMC7217916 DOI: 10.1038/s41467-020-16098-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
In catalytic asymmetric reactions, the formation of chiral molecules generally relies on a direct chirality transfer (point or axial chirality) from a chiral catalyst to products in the stereo-determining step. Herein, we disclose a transient-axial-chirality transfer strategy to achieve asymmetric reaction. This method relies on transferring point chirality from the catalyst to a dirhodium carbene intermediate with axial chirality, namely a transient-axial-chirality since this species is an intermediate of the reaction. The transient chirality is then transferred to the final product by C(sp2)-H functionalization reaction with exceptionally high enantioselectivity. We also generalize this strategy for the asymmetric cascade reaction involving dual carbene/alkyne metathesis (CAM), a transition-metal-catalyzed method to access chiral 9-aryl fluorene frameworks in high yields with up to 99% ee. Detailed DFT calculations shed light on the mode of the transient-axial-chirality transfer and the detailed mechanism of the CAM reaction.
Collapse
Affiliation(s)
- Kuiyong Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xing Fan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Chao Pei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yang Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sailan Chang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ju Cai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lihua Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
34
|
Semi-Synthesis of C-Ring Cyclopropyl Analogues of Fraxinellone and Their Insecticidal Activity Against Mythimna separata Walker. Molecules 2020; 25:molecules25051109. [PMID: 32131461 PMCID: PMC7179169 DOI: 10.3390/molecules25051109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Fraxinellone (1) is a naturally occurring degraded limonoid isolated from Meliaceae and Rutaceae plants. As a potential natural-product-based insecticidal agent, fraxinellone has been structurally modified to improve its activity. Furan ring of fraxinellone is critical in exhibiting its insecticidal activity, but with few modifications. Herein, C-ring-modified cyclopropyl analogues were semi-synthesized by Rh(II)-catalyzed cyclopropanation. The structures of the target compounds were well characterized by NMR and HRMS. The precise three-dimensional structural information of 3a was established by X-ray crystallography. Their insecticidal activity was evaluated against Mythimna separata Walker by a leaf-dipping method. Compound 3c exhibited stronger insecticidal activity than 1 and toosendanin against M. separata with teratogenic symptoms during the different periods, implying that cyclopropanation of the furan ring could strengthen the insecticidal activity of fraxinellone.
Collapse
|
35
|
Wei B, Sharland JC, Lin P, Wilkerson-Hill SM, Fullilove FA, McKinnon S, Blackmond DG, Davies HML. In Situ Kinetic Studies of Rh(II)-Catalyzed Asymmetric Cyclopropanation with Low Catalyst Loadings. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04595] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bo Wei
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Patricia Lin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sidney M. Wilkerson-Hill
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Felicia A. Fullilove
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sam McKinnon
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
36
|
Yuen TY, Brown CJ, Tan YS, Johannes CW. Synthesis of Chiral Alkenyl Cyclopropane Amino Acids for Incorporation into Stapled Peptides. J Org Chem 2019; 85:1556-1566. [DOI: 10.1021/acs.joc.9b02659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tsz Ying Yuen
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 8 Biomedical Grove, #07-01, Neuros, Singapore 138665
| | - Christopher J. Brown
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Charles W. Johannes
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| |
Collapse
|
37
|
Azek E, Spitz C, Ernzerhof M, Lebel H. A Mechanistic Study of the Stereochemical Outcomes of Rhodium‐Catalysed Styrene Aziridinations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Emna Azek
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| | - Cédric Spitz
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| | - Matthias Ernzerhof
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| | - Hélène Lebel
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| |
Collapse
|
38
|
Zhang ZQ, Zheng MM, Xue XS, Marek I, Zhang FG, Ma JA. Catalytic Enantioselective Cyclopropenation of Internal Alkynes: Access to Difluoromethylated Three-Membered Carbocycles. Angew Chem Int Ed Engl 2019; 58:18191-18196. [PMID: 31633856 DOI: 10.1002/anie.201911701] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Indexed: 01/27/2023]
Abstract
Herein we described an efficient RhII -catalyzed enantioselective cyclopropenation reaction of internal alkynes with a masked difluorodiazoethane reagent (PhSO2 CF2 CHN2 , Ps-DFA). This asymmetric transformation offers efficient access to a broad range of enantioenriched difluoromethylated cyclopropenes (40 examples, up to 99 % yield, 97 % ee). The synthetic utility of obtained strained carbocycles is demonstrated by subsequent stereodefined processes, including cross-couplings, hydrogenation, Diels-Alder reaction, and Pauson-Khand reaction.
Collapse
Affiliation(s)
- Zhi-Qi Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
| | - Meng-Meng Zheng
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou, 350207, P. R. China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
39
|
Zhang Z, Zheng M, Xue X, Marek I, Zhang F, Ma J. Catalytic Enantioselective Cyclopropenation of Internal Alkynes: Access to Difluoromethylated Three‐Membered Carbocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhi‐Qi Zhang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesTianjin Collaborative Innovation Centre of Chemical Science & EngineeringTianjin University Tianjin 300072 P. R. China
- Joint School of NUS & TJUInternational Campus of Tianjin University Fuzhou 350207 P. R. China
| | - Meng‐Meng Zheng
- State Key Laboratory of Elemento-organic ChemistryNankai University Tianjin 300071 P. R. China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryNankai University Tianjin 300071 P. R. China
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200009 Israel
| | - Fa‐Guang Zhang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesTianjin Collaborative Innovation Centre of Chemical Science & EngineeringTianjin University Tianjin 300072 P. R. China
- Joint School of NUS & TJUInternational Campus of Tianjin University Fuzhou 350207 P. R. China
| | - Jun‐An Ma
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesTianjin Collaborative Innovation Centre of Chemical Science & EngineeringTianjin University Tianjin 300072 P. R. China
- Joint School of NUS & TJUInternational Campus of Tianjin University Fuzhou 350207 P. R. China
- State Key Laboratory of Elemento-organic ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
40
|
Davies HML. Finding Opportunities from Surprises and Failures. Development of Rhodium-Stabilized Donor/Acceptor Carbenes and Their Application to Catalyst-Controlled C-H Functionalization. J Org Chem 2019; 84:12722-12745. [PMID: 31525891 PMCID: PMC7232105 DOI: 10.1021/acs.joc.9b02428] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Catalyst-controlled C-H functionalization by means of the C-H insertion chemistry of rhodium carbenes has become a powerful synthetic method. The key requirements for the development of this chemistry are donor/acceptor carbenes and the chiral dirhodium tetracarboxylate catalysts. This perspective will describe the stages involved in developing this chemistry and illustrate the scope of the donor/acceptor carbene C-H functionalization.
Collapse
Affiliation(s)
- Huw M L Davies
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , Unites States
| |
Collapse
|
41
|
Shao X, Malcolmson SJ. Catalytic Enantio- and Diastereoselective Cyclopropanation of 2-Azadienes for the Synthesis of Aminocyclopropanes Bearing Quaternary Carbon Stereogenic Centers. Org Lett 2019; 21:7380-7385. [PMID: 31465235 PMCID: PMC6790987 DOI: 10.1021/acs.orglett.9b02692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the catalytic enantio- and diastereoselective preparation of aminocyclopropanes by the cyclopropanation of terminal and (Z)-internal 2-azadienes with donor/acceptor carbenes derived from α-diazoesters. The resulting cyclopropanes bear quaternary carbon stereogenic centers vicinal to the amino-substituted carbon and are formed as a single diastereomer in up to 99:1 er and 97% yield with 0.5 mol % of Rh2(DOSP)4 and only 1.5 equiv of the diazo reagent. Transformations with internal azadienes afford cyclopropanes with three contiguous stereogenic centers.
Collapse
Affiliation(s)
- Xinxin Shao
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United State
| | - Steven J. Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United State
| |
Collapse
|
42
|
Chu Z, Tang Z, Zhang K, Wang L, Li W, Wu HH, Zhang J. Gold(I)-Catalyzed Enantioselective Cyclopropanation of α-Aryl Diazoacetates with Enamides. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaowei Chu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Zhiqiong Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Kenan Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Lei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
43
|
Affiliation(s)
- Revannath L. Sutar
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Stefan M. Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| |
Collapse
|
44
|
Phipps EJT, Piou T, Rovis T. Rh(III)-Catalyzed Cyclopropanation of Unactivated Olefins Initiated by C-H Activation. Synlett 2019; 30:1787-1790. [PMID: 32801480 PMCID: PMC7428168 DOI: 10.1055/s-0039-1690130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have developed a Rh(III)-catalyzed cyclopropanation of unactivated olefins initiated by an alkenyl C-H activation. A variety of 1,1-disubstituted olefins undergo efficient cyclopropanation with a slight excess of alkene stoichiometry. A series of mechanistic interrogations implicate a metal-carbene as an intermediate.
Collapse
Affiliation(s)
- Erik J T Phipps
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tiffany Piou
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
45
|
Pike SJ, Hunter CA, Brammer L, Perutz RN. Benchmarking of Halogen Bond Strength in Solution with Nickel Fluorides: Bromine versus Iodine and Perfluoroaryl versus Perfluoroalkyl Donors. Chemistry 2019; 25:9237-9241. [PMID: 30985028 PMCID: PMC6771525 DOI: 10.1002/chem.201900924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/18/2022]
Abstract
The energetics of halogen bond formation in solution have been investigated for a series of nickel fluoride halogen bond acceptors; trans-[NiF(2-C5 NF4 )(PEt3 )2 ] (A1), trans-[NiF{2-C5 NF3 (4-H)}(PEt3 )2 ] (A2), trans-[NiF{2-C5 NF3 (4-NMe2 )}(PEt3 )2 ] (A3) and trans-[NiF{2-C5 NF2 H(4-CF3 )}(PCy3 )2 ] (A4) with neutral organic halogen bond donors, iodopentafluorobenzene (D1), 1-iodononafluorobutane (D2) and bromopentafluorobenzene (D3), in order to establish the significance of changes from perfluoroaryl to perfluoroalkyl donors and from iodine to bromine donors. 19 F NMR titration experiments have been employed to obtain the association constants, enthalpy, and entropy for the halogen bond formed between these donor-acceptor partners in protiotoluene. For A2-A4, association constants of the halogen bonds formed with iodoperfluoroalkane (D2) are consistently larger than those obtained for analogous complexes with the iodoperfluoroarene (D1). For complexes formed with A2-A4, the strength of the halogen bond is significantly lowered upon modification of the halogen donor atom from I (in D1) to Br (in D3) (for D1: 5≤K285 ≤12 m-1 , for D3: 1.0≤K193 ≤1.6 m-1 ). The presence of the electron donating NMe2 substituent on the pyridyl ring of acceptor A3 led to an increase in -ΔH, and the association constants of the halogen bond complexes formed with D1-D3, compared to those formed by A1, A2 and A4 with the same donors.
Collapse
Affiliation(s)
- Sarah J. Pike
- Department of ChemistryUniversity of York, HeslingtonYorkYO10 5DDUK
| | | | - Lee Brammer
- Department of ChemistryUniversity of Sheffield, Brook HillSheffieldS3 7HFUK
| | - Robin N. Perutz
- Department of ChemistryUniversity of York, HeslingtonYorkYO10 5DDUK
| |
Collapse
|
46
|
Nasrallah A, Boquet V, Hecker A, Retailleau P, Darses B, Dauban P. Catalytic Enantioselective Intermolecular Benzylic C(sp
3
)−H Amination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Nasrallah
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Univ. Paris-Sud, Université Paris-Saclay 1, av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Vincent Boquet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Univ. Paris-Sud, Université Paris-Saclay 1, av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Alexandra Hecker
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Univ. Paris-Sud, Université Paris-Saclay 1, av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Univ. Paris-Sud, Université Paris-Saclay 1, av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Benjamin Darses
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Univ. Paris-Sud, Université Paris-Saclay 1, av. de la Terrasse 91198 Gif-sur-Yvette France
- Université Grenoble Alpes Département de Chimie Moléculaire, CNRS UMR-5250 38058 Grenoble France
| | - Philippe Dauban
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Univ. Paris-Sud, Université Paris-Saclay 1, av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
47
|
Nasrallah A, Boquet V, Hecker A, Retailleau P, Darses B, Dauban P. Catalytic Enantioselective Intermolecular Benzylic C(sp 3 )-H Amination. Angew Chem Int Ed Engl 2019; 58:8192-8196. [PMID: 30968491 DOI: 10.1002/anie.201902882] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 11/11/2022]
Abstract
A practical general method for asymmetric intermolecular benzylic C(sp3 )-H amination has been developed by combining the pentafluorobenzyl sulfamate PfbsNH2 with the chiral rhodium(II) catalyst Rh2 (S-tfptad)4 . Various substrates can be used as limiting components and converted to benzylic amines with excellent yields and high levels of enantioselectivity. Additional key features for the reaction are the low catalyst loading and the ability to remove the Pfbs group under mild conditions to give NH-free benzylic amines.
Collapse
Affiliation(s)
- Ali Nasrallah
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Vincent Boquet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Alexandra Hecker
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Benjamin Darses
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France.,Université Grenoble Alpes, Département de Chimie Moléculaire, CNRS UMR-5250, 38058, Grenoble, France
| | - Philippe Dauban
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
48
|
Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization. Nat Rev Chem 2019; 3:347-360. [PMID: 32995499 DOI: 10.1038/s41570-019-0099-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C-H Functionalization has become widely recognized as an exciting new strategy for the synthesis of complex molecular targets. Instead of relying on functional groups as the controlling elements of how molecules are assembled, it offers a totally different logic for organic synthesis. For this type of strategy to be successful, reagents and catalysts need to be developed that generate intermediates that are sufficiently reactive to functionalize C-H bonds but still capable of distinguishing between the different C-H bonds and other functional groups present in a molecule. The most well-established approaches have tended to use substrates that have inherently a favored site for C-H functionalization or rely on intramolecular reactions to control where the reaction will occur. A challenging but potentially more versatile approach would be to use catalysts to control the site-selectivity without requiring the influence of any directing group. One example that is capable of achieving such transformations is the C-H insertion chemistry of transient metal carbenes. Dirhodium tetracarboxylates have been shown to be especially effective catalysts for these reactions. This review will highlight the development of these dirhodium catalysts and illustrate their effectiveness to control both site-selective and stereoselective C-H functionalization of a wide variety of substrates.
Collapse
|
49
|
Huang MY, Yang JM, Zhao YT, Zhu SF. Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01187] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ming-Yao Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ji-Min Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Tao Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Phipps EJT, Rovis T. Rh(III)-Catalyzed C-H Activation-Initiated Directed Cyclopropanation of Allylic Alcohols. J Am Chem Soc 2019; 141:6807-6811. [PMID: 30998324 DOI: 10.1021/jacs.9b02156] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed a Rh(III)-catalyzed diastereoselective [2+1] annulation onto allylic alcohols initiated by alkenyl C-H activation of N-enoxyphthalimides to furnish substituted cyclopropyl-ketones. Notably, the traceless oxyphthalimide handle serves three functions: directing C-H activation, oxidation of Rh(III), and, collectively with the allylic alcohol, in directing cyclopropanation to control diastereoselectivity. Allylic alcohols are shown to be highly reactive olefin coupling partners leading to a directed diastereoselective cyclopropanation reaction, providing products not accessible by other routes.
Collapse
Affiliation(s)
- Erik J T Phipps
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Tomislav Rovis
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|