1
|
Wu D, Tan L, Ma C, Pan F, Cai W, Li J, Kong Y. Competitive Self-Assembly Interaction between Ferrocenyl Units and Amino Acids for Entry into the Cavity of β-Cyclodextrin for Chiral Electroanalysis. Anal Chem 2022; 94:6050-6056. [PMID: 35389624 DOI: 10.1021/acs.analchem.2c00777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At present, chiral electroanalysis of nonelectroactive chiral compounds still remains a challenge because they cannot provide an electrochemical signal by themselves. Here, a strategy based on a competitive self-assembly interaction of a ferrocene (Fc) unit and the testing isomers entering into the cavity of β-cyclodextrin (β-CD) was carried out for chiral electroanalysis. First of all, the Fc derivative was directly bridged to silica microspheres, followed by inclusion into the cavity of β-CD. As expected, once it was modified onto the surface of a carbon working electrode as an electrochemical sensor, SiO2@Fc-CD-WE, its differential pulse voltammetry signal would markedly decrease compared with the uncovered Fc. Next, when l- and d-isomers of amino acids that included histidine, threonine, phenylalanine, and glutamic acid were examined using SiO2@Fc-CD-WE, it showed an enantioselective entry of amino acids into the cavity of β-cyclodextrin instead of Fc, resulting in the release of Fc with signal enhancement. For histidine, glutamic acid, and threonine, l-isomers showed a higher peak current response compared with d-isomers. The peak current ratios between l- and d-isomers were 2.88, 1.21, and 1.40, respectively. At the same time, the opposite phenomenon occurred for phenylalanine with a peak current ratio of 3.19 between d- and l-isomers. In summary, we are assured that the recognition strategy based on the supramolecular interaction can enlarge the detection range of chiral compounds by electrochemical analysis.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2018; 53:677-696. [PMID: 27942626 DOI: 10.1039/c6cc08967d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pillar[n]arenes are a new class of synthetic supramolecular macrocycles streamlined by their particular pillar-shaped architecture which consists of an electron-rich cavity and two fine-tuneable rims. The ease and diversity of the functionalization of the two rims open possibilities for the design of new architectures, topological isomers, and scaffolds. Significantly, this emerging class of macrocyclic receptors offers a unique platform for biological purposes. This review article covers the most recent contributions from the pillar[n]arene field in terms of artificial membrane transport systems, controlled drug delivery systems, biomedical imaging, biosensors, cell adhesion, fluorescent sensing, and pesticide detection based on host-guest interactions. The review also uniquely describes the properties of sub-units that make pillar[n]arenes suitable for biological applications and it provides a detailed outline for the design of new innovative pillar-like structures with specific properties to open up a new avenue for pillar[n]arene chemistry.
Collapse
Affiliation(s)
- CuhaWijay Sathiyajith
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Rafik Rajjak Shaikh
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qian Han
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yue Zhang
- The First Clinical College, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, P. R. China.
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
3
|
Yang L, Jing X, He C, Chang Z, Duan C. Redox-Active M8L6Cubic Hosts with Tetraphenylethylene Faces Encapsulate Organic Dyes for Light-Driven H2Production. Chemistry 2016; 22:18107-18114. [DOI: 10.1002/chem.201601447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Linlin Yang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China
| | - Zhiduo Chang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China
| |
Collapse
|
4
|
Datta S, Bhattacharya S. Carbon-Nanotube-Mediated Electrochemical Transition in a Redox-Active Supramolecular Hydrogel Derived from Viologen and an l-Alanine-Based Amphiphile. Chemistry 2016; 22:7524-32. [PMID: 27059107 DOI: 10.1002/chem.201600214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 12/16/2022]
Abstract
A two-component hydrogelator (16-A)2 -V(2+) , comprising an l-alanine-based amphiphile (16-A) and a redox-active viologen based partner (V(2+) ), is reported. The formation the hydrogel depended, not only on the acid-to-amine stoichiometric ratio, but on the choice of the l-amino acid group and also on the hydrocarbon chain length of the amphiphilic component. The redox responsive property and the electrochemical behavior of this two-component system were further examined by step-wise chemical and electrochemical reduction of the viologen nucleus (V(2+) /V(+) and V(+) /V(0) ). The half-wave reduction potentials (E1/2 ) associated with the viologen ring shifted to more negative values with increasing amine component. This indicates that higher extent of salt formation hinders reduction of the viologen moiety. Interestingly, the incorporation of single-walled carbon nanotubes in the electrochemically irreversible hydrogel (16-A)2 -V(2+) transformed it into a quasi-reversible electrochemical system.
Collapse
Affiliation(s)
- Sougata Datta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India.,Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India. .,Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560 064, Jakkur, India.
| |
Collapse
|
5
|
Abstract
This review focuses on molecular containers formed by assembly processes driven by the hydrophobic effect, and summarizes the progress made in the field over the last ten years. This small but growing facet of supramolecular chemistry discusses three classes of molecules used by researchers to investigate how self-assembly can be applied to form discrete, mono-dispersed, and structurally well-defined supramolecular entities. The approaches demonstrate the importance of preorganization of arrays of rigid moieties to define a specific form predisposed to bind, fold, or assemble. As the examples demonstrate, studying these systems and their properties is teaching us how to control supramolecular chemistry in water, shedding light on aspects of aqueous solutions chemistry, and illustrating novel applications that harness the unique properties of the hydrophobic effect.
Collapse
Affiliation(s)
- Jacobs H Jordan
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| | | |
Collapse
|
6
|
Yao Y, Wei P, Yue S, Li J, Xue M. Amphiphilic pillar[5]arenes: influence of chemical structure on self-assembly morphology and application in gas response and λ-DNA condensation. RSC Adv 2014. [DOI: 10.1039/c3ra46430j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Kataev EA, Müller C. Recent advances in molecular recognition in water: artificial receptors and supramolecular catalysis. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Mahata K, Frischmann PD, Würthner F. Giant electroactive M4L6 tetrahedral host self-assembled with Fe(II) vertices and perylene bisimide dye edges. J Am Chem Soc 2013; 135:15656-61. [PMID: 24059438 DOI: 10.1021/ja4083039] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembly of octahedral Fe(II) ions and linear perylene bisimide (PBI) dyes with 2,2'-bipyridine groups covalently attached at the imide positions quantitatively yields an Fe4(PBI)6 tetrahedron by the directional bonding approach. With an edge length of 3.9 nm and estimated internal volume >950 Å(3), tetrahedron T is one of the largest M4L6 tetrahedra ever reported. Importantly, many of the desirable photo- and electroactive properties of the PBI ligands are transferred to the nanoscale metallosupramolecule. Tetrahedron T absorbs strongly across the visible spectrum out to 650 nm and exhibits a total of 7 highly reversible electrochemical oxidation and reduction waves spanning a 3.0 V range. This facile cycling of 34 electrons between +18 and -16 charged species is likely enabled due to the porous nature of the tetrahedron that allows the necessary counterions to freely flow in and out of the host. Host-guest encapsulation of C60 by T in acetonitrile was studied by (13)C NMR spectroscopy, UV-vis spectroscopy, and ESI-MS, confirming that the tetrahedron is a suitable host for large, functional guest molecules.
Collapse
Affiliation(s)
- Kingsuk Mahata
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
9
|
Gan H, Gibb BC. Guest-mediated switching of the assembly state of a water-soluble deep-cavity cavitand. Chem Commun (Camb) 2013; 49:1395-7. [PMID: 23306216 DOI: 10.1039/c2cc38227j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deep-cavity cavitand TEMOA (2) is shown to assemble via the hydrophobic effect into tetrameric and hexameric assemblies. With inner volumes of 1400-1500 Å(3) and 3200-3700 Å(3) respectively, these well-defined and mono-dispersed assemblies represent the largest of their type to date.
Collapse
Affiliation(s)
- Haiying Gan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | |
Collapse
|
10
|
Yamanaka M, Kobayashi K. Capsular Assemblies of Calix[4]resorcinarene-based Cavitands. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201200175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Yao Y, Xue M, Chen J, Zhang M, Huang F. An Amphiphilic Pillar[5]arene: Synthesis, Controllable Self-Assembly in Water, and Application in Calcein Release and TNT Adsorption. J Am Chem Soc 2012; 134:15712-5. [DOI: 10.1021/ja3076617] [Citation(s) in RCA: 378] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yong Yao
- MOE Key Laboratory of Macromolecular Synthesis and
Functionalization, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Min Xue
- MOE Key Laboratory of Macromolecular Synthesis and
Functionalization, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianzhuang Chen
- MOE Key Laboratory of Macromolecular Synthesis and
Functionalization, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Mingming Zhang
- MOE Key Laboratory of Macromolecular Synthesis and
Functionalization, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- MOE Key Laboratory of Macromolecular Synthesis and
Functionalization, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
12
|
Qiu Y, Yi S, Kaifer AE. Trapping of Bulky Guests inside Dimeric Molecular Capsules Formed by a Deep-Cavity Cavitand. J Org Chem 2012; 77:4622-7. [DOI: 10.1021/jo3003387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanhua Qiu
- Center for Supramolecular
Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Song Yi
- Center for Supramolecular
Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Angel E. Kaifer
- Center for Supramolecular
Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| |
Collapse
|
13
|
Tang H, de Oliveira CS, Sonntag G, Gibb CLD, Gibb BC, Bohne C. Dynamics of a supramolecular capsule assembly with pyrene. J Am Chem Soc 2012; 134:5544-7. [PMID: 22417319 DOI: 10.1021/ja301278p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water-soluble octaacid cavitands (OAs) form dimeric capsules suitable for guest incorporation. Our studies reveal that the mechanism of pyrene (Py) binding involves the rapid (<1 ms) formation of the Py·OA complex followed by slower binding with the second OA. The dissociation of the capsular OA·Py·OA complex occurs with a lifetime of 2.7 s, which is 5 orders of magnitude slower than the microsecond opening/closing ("breathing") previously observed to provide access of small molecules to the encapsulated guest. These different dynamics of the capsules have a potential impact on how the chemistry of included guests could be altered.
Collapse
Affiliation(s)
- Hao Tang
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Dragässer A, Shekhah O, Zybaylo O, Shen C, Buck M, Wöll C, Schlettwein D. Redox mediation enabled by immobilised centres in the pores of a metal–organic framework grown by liquid phase epitaxy. Chem Commun (Camb) 2012; 48:663-5. [DOI: 10.1039/c1cc16580a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Gao CY, Zhao L, Wang MX. Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within a Supramolecular Cage. J Am Chem Soc 2011; 134:824-7. [DOI: 10.1021/ja209729h] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Cai-Yan Gao
- The Key Laboratory
of Bioorganic Phosphorus Chemistry
and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- The Key Laboratory
of Bioorganic Phosphorus Chemistry
and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- The Key Laboratory
of Bioorganic Phosphorus Chemistry
and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
|
18
|
Leeland JW, White FJ, Love JB. Encapsulation of a Magnesium Hydroxide Cubane by a Bowl-Shaped Polypyrrolic Schiff Base Macrocycle. J Am Chem Soc 2011; 133:7320-3. [PMID: 21517021 DOI: 10.1021/ja201630b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James W. Leeland
- EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K
| | - Fraser J. White
- EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K
| | - Jason B. Love
- EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K
| |
Collapse
|
19
|
Abstract
An improved synthesis of a water-soluble deep-cavity cavitand (octa-acid, 1) is presented. Previously (Gibb, C. L. D. & Gibb, B. C., J. Am. Chem. Soc., 2004, 126, 11408-11409) we documented access to host 1 in eight (non-linear) steps starting from resorcinol; a synthesis that required four steps involving chromatographic purification. Here we reveal a modified synthesis of host 1. Consisting of seven (non-linear) steps, this new synthesis involves only one chromatographic step, and avoids a minor impurity observed in the original approach. This improved synthesis will therefore be useful for the laboratories that are investigating the properties of these types of host.
Collapse
Affiliation(s)
- Simin Liu
- Department of Chemistry, University of New Orleans New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
20
|
Qiu Y, Yi S, Kaifer AE. Encapsulation of Tetrathiafulvalene Inside a Dimeric Molecular Capsule. Org Lett 2011; 13:1770-3. [DOI: 10.1021/ol200258g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yanhua Qiu
- Center for Supramolecular Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124-0431, United States
| | - Song Yi
- Center for Supramolecular Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124-0431, United States
| | - Angel E. Kaifer
- Center for Supramolecular Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124-0431, United States
| |
Collapse
|
21
|
Wang Z, Möhwald H, Gao C. Preparation and redox-controlled reversible response of ferrocene-modified poly(allylamine hydrochloride) microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1286-1291. [PMID: 21043487 DOI: 10.1021/la103758t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Single-component microcapsules were fabricated by the in situ reaction of ferrocenecarboxaldehyde (Fc-CHO) with poly(allylamine hydrochloride) (PAH) doped inside CaCO(3) microparticles, followed by core removal. The PAH-Fc microcapsules had very thick shells with remnant PAH-Fc inside, leading to a robust capsule structure that is less collapsed in the dry state. This single-component microcapsule is stabilized by the hydrophobic aggregation of Fc moieties and the protection of hydrophilic PAH backbones. Because of the excellent redox properties of Fc, the PAH-Fc microcapsules showed redox sensitivity to oxidation and reduction, as confirmed by UV-vis absorption spectroscopy and confocal laser scanning microscopy, resulting in reversible swelling and shrinking (11.7 vs 5.5 μm) in their size. Consequently, the permeability was also reversibly tuned, leading to the controlled loading and release of desired substances such as dextran.
Collapse
Affiliation(s)
- Zhipeng Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
22
|
Laughrey Z, Gibb BC. Water-soluble, self-assembling container molecules: an update. Chem Soc Rev 2011; 40:363-86. [DOI: 10.1039/c0cs00030b] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Liu S, Gibb BC. Solvent denaturation of supramolecular capsules assembled via the hydrophobic effect. Chem Commun (Camb) 2011; 47:3574-6. [DOI: 10.1039/c1cc10122f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Hart JS, White FJ, Love JB. Donor-extended tripodal pyrroles: encapsulation, metallation, and H-bonded tautomers. Chem Commun (Camb) 2011; 47:5711-3. [DOI: 10.1039/c1cc11378j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Sarmentero MA, Fernández-Pérez H, Zuidema E, Bo C, Vidal-Ferran A, Ballester P. Catalytic Hydrogenation of Norbornadiene by a Rhodium Complex in a Self-Folding Cavitand. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Sarmentero MA, Fernández-Pérez H, Zuidema E, Bo C, Vidal-Ferran A, Ballester P. Catalytic Hydrogenation of Norbornadiene by a Rhodium Complex in a Self-Folding Cavitand. Angew Chem Int Ed Engl 2010; 49:7489-92. [DOI: 10.1002/anie.201003026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Subramani C, Yesilbag G, Jordan BJ, Li X, Khorasani A, Cooke G, Sanyal A, Rotello VM. Recognition mediated encapsulation and isolation of flavin–polymer conjugates using dendritic guest moieties. Chem Commun (Camb) 2010; 46:2067-9. [DOI: 10.1039/b926746h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Le Poul N, Douziech B, Zeitouny J, Thiabaud G, Colas H, Conan F, Cosquer N, Jabin I, Lagrost C, Hapiot P, Reinaud O, Le Mest Y. Mimicking the Protein Access Channel to a Metal Center: Effect of a Funnel Complex on Dissociative versus Associative Copper Redox Chemistry. J Am Chem Soc 2009; 131:17800-7. [DOI: 10.1021/ja9055905] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Le Poul
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Bénédicte Douziech
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Joceline Zeitouny
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Grégory Thiabaud
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Hélène Colas
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Françoise Conan
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Nathalie Cosquer
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Ivan Jabin
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Corinne Lagrost
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Philippe Hapiot
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Olivia Reinaud
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| | - Yves Le Mest
- Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Brussels, Belgium, and Sciences Chimiques de Rennes, MaCSE, CNRS, UMR 6226, Université Européenne de Bretagne
| |
Collapse
|