1
|
Cao D, Xia S, Li L, Zeng H, Li CJ. PPh 3-Promoted Direct Deoxygenation of Epoxides to Alkenes. Org Lett 2024; 26:6418-6423. [PMID: 39046430 DOI: 10.1021/acs.orglett.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Deoxygenation of epoxides into alkenes is one of the most important strategies in organic synthesis, biomass conversions, and medicinal chemistry. Although metal-catalyzed direct deoxygenation provides one of the most commonly encountered protocols for the conversion of epoxides to alkenes, the requirement of expensive catalysts and extra reductants has largely limited their universal applicability. Herein, we report an efficient PPh3-promoted metal-free strategy for deoxygenation of epoxides to generate alkene derivatives. The success of deoxyalkenylation of epoxides bearing a wide range of functional groups to give terminal, 1,1-disubstituted, and 1,2-disubstituted alkenes manifests the powerfulness and versatility of this strategy. Moreover, gram-scale synthesis with excellent yield and modification of biologically active molecules exemplifies its generality and practicability.
Collapse
Affiliation(s)
- Dawei Cao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Shumei Xia
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Lijuan Li
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Qi M, Xu AW. A visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction. Org Biomol Chem 2024; 22:2654-2661. [PMID: 38470359 DOI: 10.1039/d4ob00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This study presents a green and practical visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction using aldehydes as alkyl radical precursors. The photocatalytic system exhibits a broad substrate scope and synthetically useful yields. Mechanistic experiments revealed that alkyl radicals could be generated through auto-oxidation of aldehydes under irradiation, which is a mild and effective method for achieving late-stage functionalization of N-heteroarenes. Some biologically active N-heteroarenes could be alkylated using this photocatalytic system smoothly.
Collapse
Affiliation(s)
- Ming Qi
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
3
|
Zhang T, Zhang C, Lu X, Peng C, Zhang Y, Zhu X, Zhong G, Zhang J. Synthesis of silyl indenes by ruthenium-catalyzed aldehyde- and acylsilane-enabled C-H alkylation/cyclization. Org Biomol Chem 2024; 22:466-471. [PMID: 38099332 DOI: 10.1039/d3ob01699d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A ruthenium-catalyzed C-H alkylation/cyclization sequence is presented to prepare silyl indenes with atom and step-economy. This domino reaction is triggered by acyl silane-directed C-H activation, and an aldehyde controlled the following enol cyclization/condensation other than β-H elimination. The protocol tolerates a broad substitution pattern, and the further synthetic elaboration of silyl indenes allows access to a diverse range of interesting indene and indanone derivatives.
Collapse
Affiliation(s)
- Tao Zhang
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Cheng Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiunan Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Chengxing Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Yawei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiong Zhu
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| | - Guofu Zhong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China.
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| |
Collapse
|
4
|
Doraghi F, Yousefnejad F, Farzipour S, Aledavoud SP, Larijani B, Mahdavi M. Recent advances in synthesis of stilbene derivatives via cross-coupling reaction. Org Biomol Chem 2023; 21:1846-1861. [PMID: 36752124 DOI: 10.1039/d2ob01982e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The stilbenes are undoubtedly some of the most significant moieties in various bioactive natural and synthetic structures, and they are considered privileged structures. In recent years, the preparation of these structures via cross-coupling reactions has attracted much attention. In the current review, we present a summary of the recent developments in the construction of stilbene and stilbene derivatives by carbon-carbon coupling reactions of organic compounds in the presence of transition metal catalysts or under metal-free conditions. In this context, we outline the features of the important reactions, some product yields, and challenging reaction mechanisms.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Soghra Farzipour
- Department of radiopharmaceutical, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Xia S, Cao D, Zeng H, He LN, Li CJ. Nickel-Catalyzed Stereoselective Alkenylation of Ketones Mediated by Hydrazine. JACS AU 2022; 2:1929-1934. [PMID: 36032538 PMCID: PMC9400169 DOI: 10.1021/jacsau.2c00320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The direct conversion of naturally abundant carbonyl compounds provides a powerful platform for the efficient synthesis of valuable chemicals. In particular, the conversion of ketones to alkenes is a commonly encountered chemical transformation, often achieved via the multistep Shapiro reaction with tosylhydrazone and over stoichiometric organolithium or Grignard reagent. Herein, we report an earth abundant nickel-catalyzed alkenylation of naturally abundant methylene ketones to afford a wide range of alkene derivatives, mediated by hydrazine. The protocol features a broad substrate scope (including alkyl ketones, aryl ketones, and aldehydes), good functional group compatibility, mild reaction conditions, water tolerance, and only environmentally friendly N2, H2, and H2O as theoretical byproducts. Moreover, gram-scale synthesis with good yield and generation of pharmaceutical intermediates highlighted its practical applicability.
Collapse
Affiliation(s)
- Shumei Xia
- Department
of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- State
Key Laboratory and Institute of Elemento-Organic Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dawei Cao
- Department
of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- The
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huiying Zeng
- The
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liang-Nian He
- State
Key Laboratory and Institute of Elemento-Organic Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Chao-Jun Li
- Department
of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
7
|
Li X, Shen Y, Zhang G, Zheng X, Zhao Q, Song Z. Ru(II)-Catalyzed Decarbonylative Alkylation and Annulations of Benzaldehydes with Iodonium Ylides under Chelation Assistance. Org Lett 2022; 24:5281-5286. [PMID: 35849760 DOI: 10.1021/acs.orglett.2c01843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ru(II)-catalyzed decarbonylative alkylation and annulation of salicylaldehydes and 2-aminobenzaldehydes with iodonium ylides has been developed for the synthesis of dibenzo[b,d]furans and NH-free carbazolones. The reaction proceeds smoothly under mild conditions with a low catalyst loading and a broad substrate compatibility. Notably, hydroxy and free amino groups were demonstrated to be the effective directing groups, enabling the successful aldehyde C-H bond activation and subsequent decarbonylation and annulation under the inexpensive Ru(II) catalyst.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yang Shen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, China
| | - Xin Zheng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qing Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zihe Song
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
8
|
Wang B, Zhong X, Yao H, Deng R, Yan Z, Gao M, Sen L. Direct alkylation and acylation of 2H‐indazoles using aldehydes under metal‐free conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingqing Wang
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Xiaoyang Zhong
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Hua Yao
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Ruihong Deng
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Zhaohua Yan
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Mengjiao Gao
- Nanchang University Medical College: Medical College of Nanchang University department of medical CHINA
| | - Lin Sen
- Nanchang University Department of Chemistry Nangchang University 330000 Nangchang CHINA
| |
Collapse
|
9
|
Nonami R, Morimoto Y, Kanemoto K, Yamamoto Y, Shirai T. Cationic Iridium‐Catalyzed Asymmetric Decarbonylative Aryl Addition of Aromatic Aldehydes to Bicyclic Alkenes. Chemistry 2022; 28:e202104347. [DOI: 10.1002/chem.202104347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Reina Nonami
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Yusei Morimoto
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry Institute of Science and Engineering Chuo University Kasuga 1-3-27, Bunkyo-ku Tokyo 112-8551 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohiko Shirai
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| |
Collapse
|
10
|
Theoretical Study of the Chemical Properties and the Reaction Pathway of Decarbonylative Alkylative Esterification of Styrenes with Aliphatic Aldehydes. J CHEM-NY 2022. [DOI: 10.1155/2022/4842630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using inexpensive and available aliphatic aldehydes as an alkyl source is a useful and cost-effective way to extend the chain of benzyl esters; this decarbonylative alkylative esterification of styrene derivatives has been used for organic synthesis and medical chemistry. A cocatalyzed decarbonylative alkylative esterification of styrene derivatives with aliphatic aldehydes and iodobenzenediacetate to provide chain elongated benzoates was investigated by the density functional theory, and quantum theory of atoms in molecules analysis has been used. The chemical properties and the reaction pathway between styrene and aldehyde derivatives in the presence of PhI(OAc)2 and Co(OAc)2 have been studied. Chemical properties of styrene and aldehyde derivatives for detecting the stability of products were studied using HOMO and LUMO, potential electronic chemical, global hardness, and global electrophilicity power. The molecular electron potential results show that the styrene and its derivatives are electron donors and aldehyde derivatives are electron acceptors. The localized orbital locator, electron location function analysis, and quantum theory of atoms in the molecule have been used to study the active sites for interactions between reactants. The decarbonylative alkylative esterification was restricted exclusively to cobalt catalysts. The step of ligand exchange was the rate-determining step for this reaction.
Collapse
|
11
|
Zhou YL, Chen JJ, Cheng J, Yang L. Cu-Catalyzed alkylation-cyanation type difunctionalization of styrenes with aliphatic aldehydes and TMSCN via decarbonylation. Org Biomol Chem 2022; 20:1231-1235. [PMID: 35043807 DOI: 10.1039/d1ob02376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed decarbonylative alkylation-cyanation of styrene derivatives with aliphatic aldehydes and trimethylsilyl cyanide to provide chain elongated nitriles is reported. Using TBHP as an oxidant and free radical initiator, the reaction can smoothly convert abundant α-di-substituted, α-mono-substituted and linear aliphatic aldehydes into the corresponding 3°, 2° and 1° alkyl radicals to initiate the subsequent radical-type difunctionalization of various styrenes.
Collapse
Affiliation(s)
- Yu-Ling Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jun-Jia Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jing Cheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| |
Collapse
|
12
|
Patra SA, Das Pattanayak P, Mohapatra D, Dinda R. Recent Advancement on Decarbonylation Reactions Assisted by Ru-complexes: Synthetic and Mechanistic Approach. Dalton Trans 2022; 51:8571-8582. [DOI: 10.1039/d2dt00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This frontier article covers the recent advancements in the ruthenium complex catalysed decarbonylation reactions of different types of carbonyl compounds and provides a direction towards the mechanistic understanding involved in...
Collapse
|
13
|
Wang Y, Lang Y, Li CJ, Zeng H. Visible-light-induced transition metal and photosensitizer free decarbonylative addition of amino-arylaldehydes to ketones. Chem Sci 2022; 13:698-703. [PMID: 35173934 PMCID: PMC8768876 DOI: 10.1039/d1sc06278f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
The decarbonylative-coupling reaction is generally promoted by transition metals (via organometallic complexes) or peroxides (via radical intermediates), often at high temperatures to facilitate the CO release. Herein, a visible-light-induced, transition metal and external photosensitizer free decarbonylative addition of benzaldehydes to ketones/aldehydes at room temperature is reported. Tertiary/secondary alcohols were obtained in moderate to excellent yields promoted by using CsF under mild conditions. The detailed mechanistic investigation showed that the reaction proceeded through photoexcitation–decarbonylation of the aldehyde to generate an aromatic anion, followed by its addition to ketones/aldehydes. The reaction mechanism was verified by the density functional theory (DFT) calculations. A visible-light-induced, transition-metal and external photosensitizer free decarbonylative addition of benzaldehydes to ketones/aldehydes via anion intermediates at room temperature is developed.![]()
Collapse
Affiliation(s)
- Yi Wang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
14
|
Sun Z, Huang H, Wang Q, Deng G. Bromo Radical‐Mediated Photoredox Aldehyde Decarbonylation towards Transition‐Metal‐Free Hydroalkylation of Acrylamides at Room Temperature. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhaozhao Sun
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Qiaolin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
15
|
Li T, Hammond GB, Xu B. Cobalt-Catalyzed Aerobic Oxidative Cleavage of Alkyl Aldehydes: Synthesis of Ketones, Esters, Amides, and α-Ketoamides. Chemistry 2021; 27:9737-9741. [PMID: 34010489 DOI: 10.1002/chem.202101035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/17/2022]
Abstract
A widely applicable approach was developed to synthesize ketones, esters, amides via the oxidative C-C bond cleavage of readily available alkyl aldehydes. Green and abundant molecular oxygen (O2 ) was used as the oxidant, and base metals (cobalt and copper) were used as the catalysts. This strategy can be extended to the one-pot synthesis of ketones from primary alcohols and α-ketoamides from aldehydes.
Collapse
Affiliation(s)
- Tingting Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
16
|
|
17
|
Sun C, Yu Y, Zhang X, Liu Y, Sun C, Kai G, Shi L, Li H. Transition-metal-free decarbonylative alkylation towards N-aryl α-hydroxy amides via triple C–C bond cleavages and their selective deuteration. Org Chem Front 2021. [DOI: 10.1039/d1qo00530h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A transition-metal-free decarbonylative alkylation reaction for the synthesis of N-aryl α-hydroxy amides via precise cleavages and reorganizations of three C–C σ bonds has been developed.
Collapse
Affiliation(s)
- Chengyu Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yonghai Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengtao Sun
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lei Shi
- Huabao Flavours & Fragrances Co., Ltd., 1299 Yecheng Road, Shanghai 201822, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
18
|
Min X, Ji D, Guan Y, Guo S, Hu Y, Wan B, Chen Q. Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiang‐Ting Min
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Qing Guan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Shi‐Yu Guo
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Boshun Wan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
19
|
Min X, Ji D, Guan Y, Guo S, Hu Y, Wan B, Chen Q. Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angew Chem Int Ed Engl 2020; 60:1583-1587. [DOI: 10.1002/anie.202010782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xiang‐Ting Min
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Qing Guan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Shi‐Yu Guo
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Boshun Wan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
20
|
Li XR, Chen SQ, Fan J, Li CJ, Wang X, Liu ZW, Shi XY. Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Org Lett 2020; 22:8808-8813. [DOI: 10.1021/acs.orglett.0c03113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xin-Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Si-Qi Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao-Jun Li
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Xue Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
21
|
Chen X, Yun Y, Dong Z, Zhou Y, Li F, Jiang N, Chen D. Unusual transformation of 4-hydroxy/methoxybenzylic alcohols via C C ipso-substitution reaction using proton-exchanged montmorillonite as media. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Rhodium-catalyzed decarbonylation cross-coupling reactions of aromatic aldehydes and arylboronic acids via C C bond activation directed by a guide group chelation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Lu X, Zhang J, Xu L, Shen W, Yu F, Ding L, Zhong G. Ruthenium-Catalyzed Brook Rearrangement Involved Domino Sequence Enabled by Acylsilane-Aldehyde Corporation. Org Lett 2020; 22:5610-5616. [PMID: 32633529 DOI: 10.1021/acs.orglett.0c01983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ruthenium-catalyzed [1,2]-Brook rearrangement involved domino sequence is presented to prepare highly functionalized silyloxy indenes with atomic- and step-economy. This domino reaction is triggered by acylsilane-directed C-H activation, and the aldehyde controlled the subsequent enol cyclization/Brook Rearrangement other than β-H elimination. The protocol tolerates a broad substitution pattern, and the further synthetic elaboration of silyloxy indenes allows access to a diverse range of interesting indene and indanone derivatives.
Collapse
Affiliation(s)
- Xiunan Lu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liangyao Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenzhou Shen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Feifei Yu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liyuan Ding
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
24
|
Lu H, Yu TY, Xu PF, Wei H. Selective Decarbonylation via Transition-Metal-Catalyzed Carbon–Carbon Bond Cleavage. Chem Rev 2020; 121:365-411. [DOI: 10.1021/acs.chemrev.0c00153] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Tian-Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
25
|
Biswas P, Mandal S, Guin J. Aerobic Acylarylation of α,β-Unsaturated Amides with Aldehydes. Org Lett 2020; 22:4294-4299. [DOI: 10.1021/acs.orglett.0c01336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Promita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhasis Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
26
|
Heyboer EM, Johnson RL, Kwiatkowski MR, Pankratz TC, Yoder MC, DeGlopper KS, Ahlgrim GC, Dennis JM, Johnson JB. Nickel-Mediated Cross-Coupling of Boronic Acids and Phthalimides for the Synthesis of Ortho-Substituted Benzamides. J Org Chem 2020; 85:3757-3765. [PMID: 31994396 DOI: 10.1021/acs.joc.9b03396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The decarbonylative coupling of phthalimides with aryl boronic acids provides ready access to a broad range of ortho-substituted benzamides. This nickel-mediated methodology extends reactivity from previously described air-sensitive diorganozinc reagents of limited availability to easily handled and widely commercially available boronic acids. The decarbonylative coupling is tolerant of a broad range of functional groups and demonstrates little sensitivity to steric factors on either of the coupling partners.
Collapse
Affiliation(s)
- Ethan M Heyboer
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Rebecca L Johnson
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Megan R Kwiatkowski
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Trey C Pankratz
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Mason C Yoder
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | | | - Grace C Ahlgrim
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Joseph M Dennis
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Jeffrey B Johnson
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| |
Collapse
|
27
|
Zhou F, Li L, Lin K, Zhang F, Deng G, Gong H. Iron‐Catalyzed Cleavage Reaction of Keto Acids with Aliphatic Aldehydes for the Synthesis of Ketones and Ketone Esters. Chemistry 2020; 26:4246-4250. [DOI: 10.1002/chem.202000114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Fangyuan Zhou
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education The Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Lesong Li
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education The Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Kao Lin
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education The Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Feng Zhang
- College of Science Hunan Agricultural University Changsha 410128 P. R. China
| | - Guo‐Jun Deng
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education The Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Hang Gong
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education The Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| |
Collapse
|
28
|
Chen SQ, Li XR, Li CJ, Fan J, Liu ZW, Shi XY. Aldehyde as a Traceless Directing Group for Regioselective C–H Alkylation Catalyzed by Rhodium(III) in Air. Org Lett 2020; 22:1259-1264. [DOI: 10.1021/acs.orglett.9b04433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Si-Qi Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xin-Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao-Jun Li
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
29
|
Peng X, Liu RX, Xiao XY, Yang L. Fe-catalyzed Decarbonylative Alkylative Spirocyclization of N-Arylcinnamamides: Access to Alkylated 1-Azaspirocyclohexadienones. Molecules 2020; 25:E432. [PMID: 31972970 PMCID: PMC7037460 DOI: 10.3390/molecules25030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
For the convenient introduction of simple linear/branched alkyl groups into biologically important azaspirocyclohexadienones, a practical Fe-catalyzed decarbonylative cascade spiro-cyclization of N-aryl cinnamamides with aliphatic aldehydes to provide alkylated 1-azaspiro-cyclohexadienones was developed. Aliphatic aldehydes were oxidative decarbonylated into primary, secondary and tertiary alkyl radicals conveniently and allows for the subsequent cascade construction of dual C(sp3)-C(sp3) and C=O bonds via radical addition, spirocyclization and oxidation sequence.
Collapse
Affiliation(s)
| | | | | | - Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, China; (X.P.); (R.-X.L.); (X.-Y.X.)
| |
Collapse
|
30
|
Gao RX, Luan XQ, Xie ZY, Yang L, Pei Y. Fe-Catalyzed decarbonylative cascade reaction of N-aryl cinnamamides with aliphatic aldehydes to construct 3,4-dihydroquinolin-2(1H)-ones. Org Biomol Chem 2019; 17:5262-5268. [PMID: 31086867 DOI: 10.1039/c9ob00492k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A practical Fe-catalyzed decarbonylative cascade reaction of N-aryl cinnamamides with aliphatic aldehydes to provide C3 alkylated 3,4-dihydroquinolin-2(1H)-ones is developed. Aliphatic aldehydes were oxidatively decarbonylated into 1°, 2° and 3° alkyl radicals conveniently, allowing for the subsequent cascade construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds via radical addition and HAS-type cyclization. The importance of the amide linkage and the selectivity of the 6-endo-trig over 5-exo-trig cyclization pathway were elucidated by experimental results and DFT calculations.
Collapse
Affiliation(s)
- Ru-Xin Gao
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | | | | | | | | |
Collapse
|
31
|
Srimontree W, Guo L, Rueping M. Hydride Transfer Enables the Nickel‐Catalyzed
ipso
‐Borylation and Silylation of Aldehydes. Chemistry 2019; 26:423-427. [DOI: 10.1002/chem.201904842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Watchara Srimontree
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Lin Guo
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Magnus Rueping
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
- Kaust Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
32
|
Wang Z, Liu Q, Ji X, Deng GJ, Huang H. Bromide-Promoted Visible-Light-Induced Reductive Minisci Reaction with Aldehydes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04411] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
33
|
Li X, Rao J, Ouyang W, Chen Q, Cai N, Lu YJ, Huo Y. Sequential C–H and C–C Bond Cleavage: Divergent Constructions of Fused N-Heterocycles via Tunable Cascade. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wensen Ouyang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ning Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu-Jing Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
34
|
Liang S, Kumon T, Angnes RA, Sanchez M, Xu B, Hammond GB. Synthesis of Alkyl Halides from Aldehydes via Deformylative Halogenation. Org Lett 2019; 21:3848-3854. [PMID: 31050440 PMCID: PMC6525078 DOI: 10.1021/acs.orglett.9b01337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented deformylative halogenation of aldehydes to alkyl halides is presented. Under oxidative conditions, 1,4-dihydropyridine (DHP), derived from an aldehyde, generated a C(sp3)- radical that coupled with a halogen radical that was generated from inexpensive and atom-economical halogen sources (NaBr, NaI, or HCl), to yield an alkyl halide. Because of the mild conditions, a wide range of functional groups were tolerated, and excellent site selectivity was achieved.
Collapse
Affiliation(s)
- Shengzong Liang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tatsuya Kumon
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Ricardo A. Angnes
- Chemistry Institute, State University of Campinas - Unicamp C.P. 6154, CEP.13083-970, Campinas, São Paulo, Brazil
| | - Melissa Sanchez
- California State University Fresno, 2555 East San Ramon Avenue M/S SB70, Fresno, California 93740, United States
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B. Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
35
|
Nickel-catalyzed Suzuki-Miyaura cross-couplings of aldehydes. Nat Commun 2019; 10:1957. [PMID: 31036821 PMCID: PMC6488620 DOI: 10.1038/s41467-019-09766-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
Transition-metal-catalyzed cross-couplings have been extensively used in the pharmaceutical and agrochemical industries for the construction of diverse C-C bonds. Conventional cross-coupling reactions require reactive electrophilic coupling partners, such as organohalides or sulfonates, which are not environmentally friendly and not naturally abundant. Another disadvantage associated with these transformations is the need for an exogenous base to facilitate the key transmetalation step, and this reagent inevitably induces side reactions and limits the substrate scope. Here, we report an unconventional Suzuki-type approach to the synthesis of biaryls, through nickel-catalyzed deformylative cross coupling of aldehydes with organoboron reagents under base-free conditions. The transformation tolerates structurally diverse (hetero)aryl substituents on both coupling partners and shows high reactivity and excellent functional group tolerance. Furthermore, the protocol was carried out on gram scale and successfully applied to the functionalization of complex biologically active molecules. Mechanistic investigations support a catalytic cycle involving the oxidative addition of the nickel into the aldehyde C(acyl)-H bond with subsequent hydride transfer, transmetalation, decarbonylation and reductive elimination processes.
Collapse
|
36
|
Samanta PK, Biswas P. Palladium Catalyzed Regioselective Synthesis of Substituted Biaryl Amides through Decarbonylative Arylation of Phthalimides. J Org Chem 2019; 84:3968-3976. [PMID: 30832471 DOI: 10.1021/acs.joc.8b03157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Partha Kumar Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| |
Collapse
|
37
|
Yang W, Feng J, Wu L, Zhang Y. Aliphatic Aldehydes: Novel Radical Alkylating Reagents. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801355] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wen‐Chao Yang
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - Jian‐Guo Feng
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yong‐Qiang Zhang
- College of Plant ProtectionSouthwest University Chongqing 400716 People's Republic of China
| |
Collapse
|
38
|
Fan X, Liu R, Wei Y, Shi M. Rh-Catalyzed intramolecular decarbonylative cyclization of ortho-formyl group tethered alkylidenecyclopropanes (ACPs) for the construction of 2-methylindenes. Org Chem Front 2019. [DOI: 10.1039/c9qo00614a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh-catalyzed intramolecular cascade decarbonylative coupling reaction of ortho-formyl group-tethered alkylidenecyclopropanes has been developed, affording indene derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Xing Fan
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Ruixing Liu
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
39
|
Peng Y, Zhang F, Qin TT, Xu CL, Yang L. Regio- and stereo-selective decarbonylative alkylative arylation of terminal alkynes with aliphatic aldehydes and arenes via dual C–H bond functionalization. Org Chem Front 2019. [DOI: 10.1039/c9qo01009b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Readily available linear/branched aliphatic aldehydes including sugar derivatives were oxidatively decarbonylated into 1˙, 2˙ and 3˙ alkyl radicals for the alkylative arylation of terminal alkynes via dual C–H bond functionalization.
Collapse
Affiliation(s)
- Yong Peng
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- PR China
| | - Feng Zhang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- PR China
| | - Ting-Ting Qin
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- PR China
| | - Cong-Ling Xu
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- PR China
| | - Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- PR China
| |
Collapse
|
40
|
Peng Y, Jiang YY, Du XJ, Ma DY, Yang L. Co-Catalyzed decarbonylative alkylative esterification of styrenes with aliphatic aldehydes and hypervalent iodine(iii) reagents. Org Chem Front 2019. [DOI: 10.1039/c9qo00748b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Decarbonylation of aliphatic aldehydes into 1°, 2° and 3° alkyl radicals to construct C(sp3)–C(sp3) bond via radical addition and C(sp3)–O bond via the interconversion of CoII–CoIII–CoI.
Collapse
Affiliation(s)
- Yong Peng
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- Hunan
| | - Yuan-Yuan Jiang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- Hunan
| | - Xue-Jiao Du
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- Hunan
| | - Da-You Ma
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Hunan 410013
- PR China
| | - Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- College of Chemistry
- Xiangtan University
- Hunan
| |
Collapse
|
41
|
Alawisi H, Al-Afyouni KF, Arman HD, Tonzetich ZJ. Aldehyde Decarbonylation by a Cobalt(I) Pincer Complex. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00668] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hussah Alawisi
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Kathlyn F. Al-Afyouni
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
42
|
Li Y, Li JH. Decarbonylative Formation of Homoallyl Radical Capable of Annulation with N-Arylpropiolamides via Aldehyde Auto-oxidation. Org Lett 2018; 20:5323-5326. [PMID: 30146885 DOI: 10.1021/acs.orglett.8b02243] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new metal-free aldehyde auto-oxidation strategy that allows the decarbonylative formation of homoallyl radical capable of cascade annulations with alkynes is described. By using various N-arylpropiolamides, the oxidative radical [3 + 2]/[5 + 2] cascade annulation reaction was achieved to produce benzo[ b]cyclopenta[ e]azepin-4(1 H)-ones, which represent a powerful new platform for the intermolecular cycloadditions of alkyne with broad substrate scope and high selectivity.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , China.,State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
43
|
Zou HX, Li Y, Yang XH, Xiang J, Li JH. Metal-Free Oxidative Decarbonylative [3+2] Annulation of Terminal Alkynes with Tertiary Alkyl Aldehydes toward Cyclopentenes. J Org Chem 2018; 83:8581-8588. [PMID: 29871487 DOI: 10.1021/acs.joc.8b01130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new metal-free oxidative decarbonylative [3+2] annulation of terminal alkynes with tertiary alkyl aldehydes is presented, which features broad substrate scope and excellent selectivity. The selectivity of this reaction toward cyclopentenes and indenes relies on the nature of the aldehyde substrates. While treatment of tertiary γ,δ-unsaturated aldehydes with common terminal alkynes assembles cyclopentenes, 2-methyl-2-arylpropanals succeed in accessing indenes.
Collapse
Affiliation(s)
- Hua-Xu Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , China
| | - Yang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , China
| | - Xu-Heng Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , China
| | - Jiannan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , China.,State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
44
|
Tomberg A, Kundu S, Zhou F, Li CJ, Moitessier N. Revised Mechanism for a Ruthenium-Catalyzed Coupling of Aldehyde and Terminal Alkyne. ACS OMEGA 2018; 3:3218-3227. [PMID: 31458579 PMCID: PMC6641445 DOI: 10.1021/acsomega.7b01877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/28/2018] [Indexed: 06/10/2023]
Abstract
Ruthenium catalysts have been found to be of great use for many kinds of reactions. Understanding the details of the catalytic cycle allows to not only rationalize experimental results but also to improve upon reactions. Herein, we present a detailed computational study of a ruthenium-catalyzed coupling between a terminal alkyne and an aldehyde. The reaction under examination facilitates novel access to olefins with the concurrent loss of a single carbon as carbon monoxide. The reaction was first developed in 2009, but the tentative mechanism initially proposed was proven to be contradictory to some experimental data obtained since then. Using a combination of computational investigations and isotope-labeling experiments, several potential mechanisms have been studied. In contrast to the [2+2] cycloaddition mechanism suggested for similar catalysts, we propose a new consensus pathway that proceeds through the formation of a ruthenium-vinylidene complex that undergoes an aldol-type reaction with the aldehyde to yield the product olefins. Computational insights into the influence of different reagents used to optimize reaction conditions and the intricacies of decarbonylation of a Ru-CO complex affecting catalyst turnover are highlighted.
Collapse
|
45
|
Li YX, Wang QQ, Yang L. Metal-free decarbonylative alkylation-aminoxidation of styrene derivatives with aliphatic aldehydes and N-hydroxyphthalimide. Org Biomol Chem 2018; 15:1338-1342. [PMID: 28111684 DOI: 10.1039/c7ob00030h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A convenient metal-free decarbonylative alkylation-aminoxidation of styrene derivatives with aliphatic aldehydes and N-hydroxyphthalimide (NHPI) to yield phthalimide protected alkoxyamines is developed. With DTBP as an oxidant and radical-initiator, this reaction smoothly converts aliphatic aldehydes into alkyl radicals and subsequently allows the cascade construction of C(sp3)-C(sp3) and C(sp3)-O bonds via radical-radical coupling.
Collapse
Affiliation(s)
- Yu-Xia Li
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Hunan, 411105, PR China. and Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
46
|
Manojveer S, Forrest SJK, Johnson MT. Ru-Catalyzed Completely Deoxygenative Coupling of 2-Arylethanols through Base-Induced Net Decarbonylation. Chemistry 2018; 24:803-807. [PMID: 29239494 DOI: 10.1002/chem.201705208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/25/2023]
Abstract
Substituted arylethanols can be coupled by using a readily available Ru catalyst in a fully deoxygenative manner to produce hydrocarbon chains in one step. Control experiments indicate that the first deoxygenation occurs through an aldol condensation, whereas the second occurs through a base-induced net decarbonylation. This double deoxygenation enables further development in the use of alcohols as versatile and green alkylating reagents, as well as in other fields, such as deoxygenation and upgrading of overfunctionalized biomass to produce hydrocarbons.
Collapse
Affiliation(s)
- Seetharaman Manojveer
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Sebastian J K Forrest
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Magnus T Johnson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| |
Collapse
|
47
|
Jiang L, Huang F, Wang Q, Sun C, Liu J, Chen D. Mechanistic insight into Ni-mediated decarbonylation of unstrained ketones: the origin of decarbonylation catalytic activity. Org Chem Front 2018. [DOI: 10.1039/c8qo00335a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of the Ni-mediated decarbonylation catalytic cycle of unstrained ketones was explored using the DFT calculation method.
Collapse
Affiliation(s)
- Langhuan Jiang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Fang Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Qiong Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Chuanzhi Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Jianbiao Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Dezhan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| |
Collapse
|
48
|
Wei W, Dai XJ, Wang H, Li C, Yang X, Li CJ. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling. Chem Sci 2017; 8:8193-8197. [PMID: 29568466 PMCID: PMC5855968 DOI: 10.1039/c7sc04207h] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/08/2017] [Indexed: 12/28/2022] Open
Abstract
A catalytic olefination method via carbonyl reductive cross-coupling was achieved by ruthenium(ii) catalysis.
Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KOtBu and bidentate phosphine dmpe is vital to this transformation.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry , FQRNT Center for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada . .,School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , Shandong , China
| | - Xi-Jie Dai
- Department of Chemistry , FQRNT Center for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Haining Wang
- Department of Chemistry , FQRNT Center for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Chenchen Li
- Department of Chemistry , FQRNT Center for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Xiaobo Yang
- Department of Chemistry , FQRNT Center for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Chao-Jun Li
- Department of Chemistry , FQRNT Center for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| |
Collapse
|
49
|
Liu X, Jia J, Rueping M. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00941] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangqian Liu
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jiaqi Jia
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST
Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
50
|
|