1
|
Zheng Y, Chen S, Mao K, Zhu H. Enantiomeric peptides self-assembling into fibrils with the same handedness. Chem Commun (Camb) 2024. [PMID: 39555701 DOI: 10.1039/d4cc04920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
It is widely accepted that peptides with enantiomeric configurations would self-assemble into nanostructures with opposite supramolecular chirality. However, in this work, we found that the L-peptide polyphenylalanine F10 (FFFFFFFFFF) and its enantiomer f10 displayed mirror image CD spectra, yet both self-assembled into fibers with exclusive left-handedness, a phenomenon also observed in the other two enantiomeric pairs (F9f and f9F, F5f5 and f5F5). Our work provides new insights into the relationship between the molecular chirality of peptide building blocks and the supramolecular chirality of their self-assemblies.
Collapse
Affiliation(s)
- YongFang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - ShiXian Chen
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - KeJing Mao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| |
Collapse
|
2
|
Bilog M, Vedad J, Capadona C, Profit AA, Desamero RZB. Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A. Biochim Biophys Acta Gen Subj 2024; 1868:130690. [PMID: 39117048 PMCID: PMC11547331 DOI: 10.1016/j.bbagen.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1-13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1-13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1-13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.
Collapse
Affiliation(s)
- Marvin Bilog
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States
| | - Jayson Vedad
- PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; Chemistry and Biochemistry Department, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, United States
| | - Charisse Capadona
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States
| | - Adam A Profit
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States
| | - Ruel Z B Desamero
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States.
| |
Collapse
|
3
|
Qi K, Qi H, Wang M, Ma X, Wang Y, Yao Q, Liu W, Zhao Y, Wang J, Wang Y, Qi W, Zhang J, Lu JR, Xu H. Chiral inversion induced by aromatic interactions in short peptide assembly. Nat Commun 2024; 15:6186. [PMID: 39043665 PMCID: PMC11266598 DOI: 10.1038/s41467-024-50448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Although hydrophobic interactions provide the main driving force for initial peptide aggregation, their role in regulating suprastructure handedness of higher-order architectures remains largely unknown. We here interrogate the effects of hydrophobic amino acids on handedness at various assembly stages of peptide amphiphiles. Our studies reveal that relative to aliphatic side chains, aromatic side chains set the twisting directions of single β-strands due to their strong steric repulsion to the backbone, and upon packing into multi-stranded β-sheets, the side-chain aromatic interactions between strands form the aromatic ladders with a directional preference. This ordering not only leads to parallel β-sheet arrangements but also induces the chiral flipping over of single β-strands within a β-sheet. In contrast, the lack of orientational hydrophobic interactions in the assembly of aliphatic peptides implies no chiral inversion upon packing into β-sheets. This study opens an avenue to harness peptide aggregates with targeted handedness via aromatic side-chain interactions.
Collapse
Affiliation(s)
- Kai Qi
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Hao Qi
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Qiang Yao
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Wenliang Liu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jian R Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom.
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China.
| |
Collapse
|
4
|
Pranav, Bajpai A, Dwivedi PK, Sivakumar S. Chiral nanomaterial-based approaches for diagnosis and treatment of protein-aggregated neurodiseases: current status and future opportunities. J Mater Chem B 2024; 12:1991-2005. [PMID: 38333942 DOI: 10.1039/d3tb02381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein misfolding and its aggregation, known as amyloid aggregates (Aβ), are some of the major causes of more than 20 diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. The process of Aβ formation involves an energy-driven oligomerization of Aβ monomers, leading to polymerization and eventual aggregation into fibrils. Aβ fibrils exhibit multilevel chirality arising from its amino acid residues and the arrangement of folded polypeptide chains; thus, a chirality-driven approach can be utilized for the detection and inhibition of Aβ fibrils. In this regard, chiral nanomaterials have recently opened new possibilities for various biomedical applications owing to their stereoselective interaction with biological systems. Leveraging this chirality-driven approach with chiral nanomaterials against protein-aggregated diseases could yield promising results, particularly in the early detection of Aβ forms and the inhibition of Aβ aggregate formation via specific and strong "chiral-chiral interaction." Despite the advantages, the development of advanced theranostic systems using chiral nanomaterials against protein-aggregated diseases has received limited attention so far because of considerably limited formulations for chiral nanomaterials and lack of information of their chiroptical behavior. This review aims to present the current status of chiral nanomaterials explored for detecting and inhibiting Aβ forms. This review covers the origin of chirality in amyloid fibrils and nanomaterials and different chiral detection methods; furthermore, different chiral nanosystems such as chiral plasmonic nanomaterials, chiral carbon-based nanomaterials, and chiral nanosurfaces, which have been used so far for different therapeutic applications against protein-aggregated diseases, are discussed in detail. The findings from this review may pave the way for the development of novel approaches using chiral nanomaterials to combat diseases resulting from protein misfolding and can further be extended to other disease forms.
Collapse
Affiliation(s)
- Pranav
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Abhishek Bajpai
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Prabhat K Dwivedi
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Sri Sivakumar
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
- Materials Science Program, Indian Institute of Technology, Kanpur 208016, India
- Centre for Environmental Science and Engineering, India
| |
Collapse
|
5
|
Caimi F, Zanchetta G. Twisted Structures in Natural and Bioinspired Molecules: Self-Assembly and Propagation of Chirality Across Multiple Length Scales. ACS OMEGA 2023; 8:17350-17361. [PMID: 37251126 PMCID: PMC10210192 DOI: 10.1021/acsomega.3c01822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Several biomolecules can form dynamic aggregates in water, whose nanometric structures often reflect the chirality of the monomers in unexpected ways. Their twisted organization can be further propagated to the mesoscale, in chiral liquid crystalline phases, and even to the macroscale, where chiral, layered architectures contribute to the chromatic and mechanical properties of various plant, insect, and animal tissues. At all scales, the resulting organization is determined by a subtle balance among chiral and nonchiral interactions, whose understanding and fine-tuning is fundamental also for applications. We present recent advances in the chiral self-assembly and mesoscale ordering of biological and bioinspired molecules in water, focusing on systems based on nucleic acids or related aromatic molecules, oligopeptides, and their hybrid stuctures. We highlight the common features and key mechanisms governing this wide range of phenomena, together with novel characterization approaches.
Collapse
|
6
|
Wu J, Chen Y. Signal peptide stabilizes folding and inhibits misfolding of serum amyloid A. Protein Sci 2022; 31:e4485. [PMID: 36309973 PMCID: PMC9667897 DOI: 10.1002/pro.4485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Signal peptide (SP) plays an important role in membrane targeting for insertion of secretory and membrane proteins during translocation processes in prokaryotes and eukaryotes. Beside the targeting functions, SP has also been found to affect the stability and folding of several proteins. Serum amyloid A (SAA) proteins are apolipoproteins responding to acute-phase inflammation. The fibrillization of SAA results in a protein misfolding disease named amyloid A (AA) amyloidosis. The main disease-associated isoform of human SAA, SAA1.1, is expressed as a precursor protein with an N-terminal signal peptide composed of 18 residues. The cleavage of the SP generates mature SAA1.1. To investigate whether the SP affects properties of SAA1.1, we systematically examined the structure, protein stability, and fibrillization propensity of pre-SAA1.1, which possesses the SP, and Ser-SAA1.1 without the SP but containing with an additional N-terminal serine residue. We found that the presence of the SP did not significantly affect the predominant helical structure but changed the tertiary conformation as evidenced by intrinsic fluorescence and exposed hydrophobic surfaces. Pre-SAA1.1 and Ser-SAA1.1 formed distinct oligomeric assemblies in which pre-SAA1.1 populated as tetramer and octamer, whereas Ser-SAA1.1 existed as a predominant hexamer. Pre-SAA1.1 was found significantly more stable than Ser-SAA1.1 upon thermal and chemical unfolding. Ser-SAA1.1, but not pre-SAA1.1, is capable of forming amyloid fibrils in protein misfolding study, indicating a protective role of the SP. Altogether, our results demonstrated a novel role of the SP in SAA folding and misfolding and provided a novel direction for therapeutic development of AA amyloidosis.
Collapse
Affiliation(s)
- Jin‐Lin Wu
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| | - Yun‐Ru Chen
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
7
|
Scelsi A, Bochicchio B, Smith AM, Laezza A, Saiani A, Pepe A. Hydrogels from the Assembly of SAA/Elastin-Inspired Peptides Reveal Non-Canonical Nanotopologies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227901. [PMID: 36432002 PMCID: PMC9698559 DOI: 10.3390/molecules27227901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Peptide-based hydrogels are of great interest in the biomedical field according to their biocompatibility, simple structure and tunable properties via sequence modification. In recent years, multicomponent assembly of peptides have expanded the possibilities to produce more versatile hydrogels, by blending gelating peptides with different type of peptides to add new features. In the present study, the assembly of gelating P5 peptide SFFSF blended with P21 peptide, SFFSFGVPGVGVPGVGSFFSF, an elastin-inspired peptides or, alternatively, with FF dipeptide, was investigated by oscillatory rheology and different microscopy techniques in order to shed light on the nanotopologies formed by the self-assembled peptide mixtures. Our data show that, depending on the added peptides, cooperative or disruptive assembly can be observed giving rise to distinct nanotopologies to which correspond different mechanical properties that could be exploited to fabricate materials with desired properties.
Collapse
Affiliation(s)
- Alessandra Scelsi
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Andrew M. Smith
- Department of Materials, Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Antonio Laezza
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alberto Saiani
- Department of Materials, Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
- Correspondence: ; Tel.: +39-09-7120-5486
| |
Collapse
|
8
|
Ma X, Zhao Y, He C, Zhou X, Qi H, Wang Y, Chen C, Wang D, Li J, Ke Y, Wang J, Xu H. Ordered Packing of β-Sheet Nanofibrils into Nanotubes: Multi-hierarchical Assembly of Designed Short Peptides. NANO LETTERS 2021; 21:10199-10207. [PMID: 34870987 DOI: 10.1021/acs.nanolett.1c02944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although it is well-known proteins and their complexes are hierarchically organized and highly ordered structures, it remains a major challenge to replicate their hierarchical self-assembly process and to fabricate multihierarchical architectures with well-defined shapes and monodisperse characteristic sizes via peptide self-assembly. Here we describe an amphiphilic short peptide Ac-I3GGHK-NH2 that first preassembles into thin, left-handed β-sheet nanofibrils, followed by their ordered packing into right-handed nanotubes. The key intermediate morphology and structures featuring the hierarchical process are simultaneously demonstrated. Further mechanistic exploration with the variants Ac-I3GGGK-NH2, Ac-I3GGFK-NH2, and Ac-I3GGDHDK-NH2 reveals the vital role of multiple His-His side chain interactions between nanofibrils in mediating higher-order assembly and architectures. Altogether, our findings not only advance current understanding of hierarchical assembly of peptides and proteins but also afford a paradigm of how to take advantage of side chain interactions to construct higher-order assemblies with enhanced complexities.
Collapse
Affiliation(s)
- Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Chunyong He
- Spallation Neutron Source Science Center, Dalang, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xing Zhou
- Qingdao West Coast New Area Marine Development Bureau, 59 Shuilingshan Road, Qingdao 266400, China
| | - Hao Qi
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jie Li
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dalang, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
9
|
Sangji MH, Sai H, Chin SM, Lee SR, R Sasselli I, Palmer LC, Stupp SI. Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures. NANO LETTERS 2021; 21:6146-6155. [PMID: 34259001 DOI: 10.1021/acs.nanolett.1c01737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The morphology of supramolecular peptide nanostructures is difficult to predict given their complex energy landscapes. We investigated peptide amphiphiles containing β-sheet forming domains that form twisted nanoribbons in water. We explained the morphology based on a balance between the energetically favorable packing of molecules in the center of the nanostructures, the unfavorable packing at the edges, and the deformations due to packing of twisted β-sheets. We find that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal β-sheets. We also observed a change in the supramolecular chirality of the nanostructures as the peptide sequence was modified, although only amino acids with l-configuration were used. Upon increasing charge repulsion between molecules, we observed a change in morphology to long cylinders and then rodlike fragments and spherical micelles. Understanding the self-assembly mechanisms of peptide amphiphiles into nanostructures should be useful to optimize their well-known functions.
Collapse
Affiliation(s)
- M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey M Chin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Zheng Y, Mao K, Chen S, Zhu H. Chirality Effects in Peptide Assembly Structures. Front Bioeng Biotechnol 2021; 9:703004. [PMID: 34239866 PMCID: PMC8258317 DOI: 10.3389/fbioe.2021.703004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Peptide assembly structures have been widely exploited in fabricating biomaterials that are promising for medical applications. Peptides can self-organize into various highly ordered supramolecular architectures, such as nanofibril, nanobelt, nanotube, nanowire, and vesicle. Detailed studies of the molecular mechanism by which these versatile building blocks assemble can guide the design of peptide architectures with desired structure and functionality. It has been revealed that peptide assembly structures are highly sequence-dependent and sensitive to amino acid composition, the chirality of peptide and amino acid residues, and external factors, such as solvent, pH, and temperature. This mini-review focuses on the regulatory effects of chirality alteration on the structure and bioactivity of linear and cyclic peptide assemblies. In addition, chiral self-sorting and co-assembly of racemic peptide mixtures were discussed.
Collapse
Affiliation(s)
- Yongfang Zheng
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kejing Mao
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shixian Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hu Zhu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
11
|
Wang M, Zhao Y, Zhang L, Deng J, Qi K, Zhou P, Ma X, Wang D, Li Z, Wang J, Yang J, Lu JR, Zhang J, Xu H. Unexpected Role of Achiral Glycine in Determining the Suprastructural Handedness of Peptide Nanofibrils. ACS NANO 2021; 15:10328-10341. [PMID: 34047551 DOI: 10.1021/acsnano.1c02547] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helical supramolecular architectures play important structural and functional roles in biological systems. Although their occurrence is widely perceived to correlate to fundamental chiral units including l-amino acids and d-sugars, the detailed relationship between molecular and supramolecular handedness is still unclear. At the same time, although achiral units are practically always in close proximity to chiral ones by covalent linkage along a polymeric chain, their effect on supramolecular handedness has received relatively less attention. Here, we designed a set of short amphiphilic peptides, in which an achiral glycine residue was incorporated at the interface between the hydrophobic and hydrophilic segments. We observed that glycine incorporation caused dramatic variations in suprastructural handedness in self-assembled peptide nanofibrils, and the effect of the hydrophilic charged residue at the C-terminus on supramolecular handedness was demolished, leading to chiral truncation. Furthermore, molecular dynamics simulations and quantum chemistry calculations revealed that the unanticipated role of the glycine residue in regulating supramolecular handedness originated from its effect on the conformational preference of single β-strands. Importantly, reduced density gradient analyses on single β-strands indicated that, due to the lack of a side chain in glycine, intricate noncovalent interactions were produced among the neighboring amino acid side chains of the incorporated glycine and its local backbone, resulting in diverse β-strand conformations.
Collapse
Affiliation(s)
- Muhan Wang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
- Department of Civil Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Limin Zhang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kai Qi
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Peng Zhou
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Li
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian R Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jun Zhang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
12
|
Szała B, Molski A. Chiral structure fluctuations predicted by a coarse-grained model of peptide aggregation. SOFT MATTER 2020; 16:5071-5080. [PMID: 32453328 DOI: 10.1039/d0sm00090f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reports on the chiral structure fluctuations of peptide clusters at the early stages of aggregation in a coarse-grained peptide model. Our model reproduces a variety of aggregate structures, from disordered to crystal-like, that are observed experimentally. Unexpectedly, our molecular dynamics simulations showed that the small peptide cluster undergoes chiral structure fluctuations although the underlying implicit solvent model does not assume the chirality of peptides. The chiral fluctuations are quantified through a cluster twist parameter. A simple model is presented where the twist parameter undergoes a stochastic diffusion on a 1D potential surface. The shape of the potential surface changes with the cluster size. The model shows semi-quantitative agreement with the simulations. We hypothesize that the chiral fluctuations at the early stages of peptide aggregation can contribute to the selection of the final fibril structures.
Collapse
Affiliation(s)
- Beata Szała
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | | |
Collapse
|
13
|
Scelsi A, Bochicchio B, Pepe A. Labeling of Nanofiber-Forming Peptides by Site-Directed Bioconjugation: Effect of Spacer Length on Self-Assembly. Curr Org Synth 2020; 16:319-325. [PMID: 31975683 DOI: 10.2174/1570179416666181127150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The conjugation of small organic molecules to self-assembling peptides is a versatile tool to decorate nanostructures with original functionalities. Labeling with chromophores or fluorophores, for example, creates optically active fibers with potential interest in photonic devices. AIM AND OBJECTIVE In this work, we present a rapid and effective labeling procedure for a self-assembling peptide able to form nanofibers. Rapid periodate oxidation of the N-terminal serine residue of the peptide and subsequent conjugation with dansyl moiety generated fluorophore-decorated peptides. RESULTS Three dansyl-conjugated self-assembling peptides with variable spacer-length were synthesized and characterized and the role of the size of the linker between fluorophore and peptide in self-assembling was investigated. Our results show that a short linker can alter the self-assembly in nanofibers of the peptide. CONCLUSIONS Herein we report on an alternative strategy for creating functionalized nanofibrils, able to expand the toolkit of chemoselective bioconjugation strategies to be used in site-specific decoration of self-assembling peptides.
Collapse
Affiliation(s)
| | | | - Antonietta Pepe
- Department of Science, University of Basilicata, Potenza, Italy
| |
Collapse
|
14
|
Song S, Wang J, Song N, Di H, Liu D, Yu Z. Peptide interdigitation-induced twisted nanoribbons as chiral scaffolds for supramolecular nanozymes. NANOSCALE 2020; 12:2422-2433. [PMID: 31916547 DOI: 10.1039/c9nr09492j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Establishing reliable strategies for rationally manipulating the organization of peptide building blocks and thereby precisely creating chiral nanostructures is challenging, while meaningful toward development of advanced functional materials. Here we report on a peptide-interdigitating mechanism for the reliable self-assembly of lipid-inspired amphiphiles (LIPIAs) into robust twisted nanoribbons by grafting domains to one alkyl tail of lipids as an extended element. Peptide interdigitation promoted the self-assembly of LIPIAs into twisted or flat nanoribbons driven by antiparallel or parallel β-sheet hydrogen bonds, respectively, strongly associated with the connecting direction of the incorporated domains. We found that the LIPIAs containing N-terminus-connected domains with either bulky or small side chain groups formed twisted nanoribbons in a broad pH range, thus implying a sequence- and pH-independent strategy for creation of robust chiral nanostructures. Integrating the resulting twisted nanoribbons with gold nanoparticles led to supramolecular nanozymes exhibiting the excellent catalytic activity and enantioselectivity of asymmetric oxidation of 3,4-dihyroxy-phenylalanine molecules. Our finding demonstrates that the peptide-interdigitating mechanism is a reliable strategy for precise creation of chiral nanostructures serving as chiral matrices for supramolecular nanozymes with improved catalytic performance, thus potentially paving the way towards advanced biomimetic systems resembling natural systems.
Collapse
Affiliation(s)
- Shuxin Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
Zhang K, Liu X, Han M, Liu Y, Wang X, Yu H, Liu J, Zhang Q. Functional differentiation of three phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in response to Vibrio anguillarum infection in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2019; 92:450-459. [PMID: 31207302 DOI: 10.1016/j.fsi.2019.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
PIK3CA has been extensively investigated from its molecular mechanism perspective and association with its mutations in different types of cancers. However, little has been reported regarding the pathological significance of PIK3CA expression in teleost. Here, in our present study, three PIK3CA genes termed SmPIK3CAa, SmPIK3CAb and SmPIK3CA-like were firstly identified in the genome of turbot S. maximus. Although these three genes located in different chromosomes, all of them share the same five domains. Phylogenetic and synteny analysis indicated that SmPIK3CAa, SmPIK3CAb and SmPIK3CA-like were three paralogs that may originate from duplication of the same ancestral PIK3CA gene. Subcellular localization analysis confirmed the cytoplasm distribution of these three paralogs. All three SmPIK3CA were ubiquitously expressed in examined tissues in turbot, with the higher expression levels in immune-related tissues such as blood, spleen, kidney, gills and intestines. Upon Vibrio anguillarum challenge, SmPIK3CAa and SmPIK3CA-like transcripts were significantly induced in spleen, intestine and blood despite of differential expression levels and responsive time points. Additionally, individuals in resistant group showed significantly higher expression level of both two genes than in the susceptible group. Moreover, four SNPs (102, 2530, 3027 and 3060) and one haplotype (Hap2) located in exon region of SmPIK3CA-like were identified and confirmed to be associated with V. anguillarum resistance in turbot by association analysis in different populations. Taken together, these results suggested that functional differentiation occurred in three SmPIK3CA paralogs with Vibrio anguillarum resistance and SmPIK3CAa and SmPIK3CA-like probable play potential roles in innate immune response to pathogenic invasions in turbot.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xuangang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
16
|
Scelsi A, Bochicchio B, Smith A, Workman VL, Castillo Diaz LA, Saiani A, Pepe A. Tuning of hydrogel stiffness using a two-component peptide system for mammalian cell culture. J Biomed Mater Res A 2019; 107:535-544. [PMID: 30456777 PMCID: PMC6587839 DOI: 10.1002/jbm.a.36568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023]
Abstract
Self-assembling peptide hydrogels (SAPHs) represent emerging cell cultures systems in several biomedical applications. The advantages of SAPHs are mainly ascribed to the absence of toxic chemical cross-linkers, the presence of ECM-like fibrillar structures and the possibility to produce hydrogels with a large range of different mechanical properties. We will present a two-component peptide system with tuneable mechanical properties, consisting of a small pentapeptide (SFFSF-NH2 , SA5N) that acts as a gelator and a larger 21-mer peptide (SFFSF-GVPGVGVPGVG-SFFSF, SA21) designed as a physical cross-linker. The hydrogels formed by different mixtures of the two peptides are made up mainly of antiparallel β-sheet nanofibers entangling in an intricate network. The effect of the addition of SA21 on the morphology of the hydrogels was investigated by atomic force microscopy and transmission electron microscopy and correlated to the mechanical properties of the hydrogel. Finally, the biocompatibility of the hydrogels using 2D cell cultures was tested. © 2018 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 535-544, 2019.
Collapse
Affiliation(s)
- Alessandra Scelsi
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
- PhD School of Science, University of BasilicataPotenzaItaly
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Andrew Smith
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Victoria L. Workman
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Luis A. Castillo Diaz
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
- Biotecnología Médica y Farmacéutica. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ)GuadalajaraMexico
| | - Alberto Saiani
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| |
Collapse
|
17
|
Ahmed I, Jones EM. Importance of micelle‐like multimers in the atypical aggregation kinetics of N‐terminal serum amyloid A peptides. FEBS Lett 2019; 593:518-526. [DOI: 10.1002/1873-3468.13334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Ikhlaus Ahmed
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA USA
| | - Eric M. Jones
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA USA
| |
Collapse
|
18
|
Jurado R, Adamcik J, López-Haro M, González-Vera JA, Ruiz-Arias Á, Sánchez-Ferrer A, Cuesta R, Domínguez-Vera JM, Calvino JJ, Orte A, Mezzenga R, Gálvez N. Apoferritin Protein Amyloid Fibrils with Tunable Chirality and Polymorphism. J Am Chem Soc 2018; 141:1606-1613. [DOI: 10.1021/jacs.8b11418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rocío Jurado
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain
| | - Jozef Adamcik
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Miguel López-Haro
- Department of Material Science and Metallurgy Engineering and Inorganic Chemistry, University of Cádiz, 11510, Cádiz, Spain
| | - Juan A. González-Vera
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | - Álvaro Ruiz-Arias
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | | | - Rafael Cuesta
- Department of Organic and Inorganic Chemistry, EPS Linares, University of Jaén, 23700 Linares, Spain
| | | | - José J. Calvino
- Department of Material Science and Metallurgy Engineering and Inorganic Chemistry, University of Cádiz, 11510, Cádiz, Spain
| | - Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Natividad Gálvez
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain
| |
Collapse
|
19
|
Mulvee M, Vasiljevic N, Mann S, Patil AJ. Construction of supramolecular hydrogels using photo-generated nitric oxide radicals. SOFT MATTER 2018; 14:5950-5954. [PMID: 30010173 DOI: 10.1039/c8sm00651b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photo-generated nitric oxide radicals (NO˙) derived from sodium nitroprusside dihydrate (SNP) are employed for the construction of supramolecular hydrogels based on an amino acid derivative precursor, N-fluorenylmethyloxycarbonyl tyrosine phosphate (FYP), which through dephosphorylation produces the gelator, N-fluorenylmethyloxycarbonyl tyrosine (FY). Self-assembly of the amphiphilic gelator yields high-aspect ratio nanofilaments that entangle to form self-supporting, viscoelastic hydrogels. The presence of photolyzed SNP yields periodically twisted nanofilaments with opposite chirality to filaments formed through conventional hydrogelation routes.
Collapse
Affiliation(s)
- Matthew Mulvee
- Centre for Organized Matter Chemistry and Centre for Protocell Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | | | | | | |
Collapse
|
20
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Rennegarbe M, Lenter I, Schierhorn A, Sawilla R, Haupt C. Influence of C-terminal truncation of murine Serum amyloid A on fibril structure. Sci Rep 2017; 7:6170. [PMID: 28733641 PMCID: PMC5522423 DOI: 10.1038/s41598-017-06419-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022] Open
Abstract
Amyloid A (AA) amyloidosis is a systemic protein misfolding disease affecting humans and other vertebrates. While the protein precursor in humans and mice is the acute-phase reactant serum amyloid A (SAA) 1.1, the deposited fibrils consist mainly of C-terminally truncated SAA fragments, termed AA proteins. For yet unknown reasons, phenotypic variations in the AA amyloid distribution pattern are clearly associated with specific AA proteins. Here we describe a bacterial expression system and chromatographic strategies to obtain significant amounts of C-terminally truncated fragments of murine SAA1.1 that correspond in truncation position to relevant pathological AA proteins found in humans. This enables us to investigate systematically structural features of derived fibrils. All fragments form fibrils under nearly physiological conditions that show similar morphological appearance and amyloid-like properties as evident from amyloid-specific dye binding, transmission electron microscopy and infrared spectroscopy. However, infrared spectroscopy suggests variations in the structural organization of the amyloid fibrils that might be derived from a modulating role of the C-terminus for the fibril structure. These results provide insights, which can help to get a better understanding of the molecular mechanisms underlying the different clinical phenotypes of AA amyloidosis.
Collapse
Affiliation(s)
- Matthies Rennegarbe
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Inga Lenter
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Angelika Schierhorn
- Institute of Biochemistry and Biotechnology, Martin-Luther-University, Kurt-Mothes-Straße 3, 06120, Halle (Saale), Germany
| | - Romy Sawilla
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany.
| |
Collapse
|
22
|
Wang M, Zhou P, Wang J, Zhao Y, Ma H, Lu JR, Xu H. Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides? J Am Chem Soc 2017; 139:4185-4194. [PMID: 28240550 DOI: 10.1021/jacs.7b00847] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide and protein fibrils have attracted an enormous amount of interests due to their relevance to many neurodegenerative diseases and their potential applications in nanotechnology. Although twisted fibrils are regarded as the key intermediate structures of thick fibrils or bundles of fibrils, the factors determining their twisting tendency and their handedness development from the molecular to the supramolecular level are still poorly understood. In this study, we have designed three pairs of enantiomeric short amphiphilic peptides: LI3LK and DI3DK, LI3DK and DI3LK, and LaI3LK and DaI3DK, and investigated the chirality of their self-assembled nanofibrils through the combined use of atomic force microscopy (AFM), circular dichroism (CD) spectroscopy, scanning electron microscopy (SEM), and molecular dynamic (MD) simulations. The results indicated that the twisted handedness of the supramolecular nanofibrils was dictated by the chirality of the hydrophilic Lys head at the C-terminal, while their characteristic CD signals were determined by the chirality of hydrophobic Ile residues. MD simulations delineated the handedness development from molecular chirality to supramolecular handedness by showing that the β-sheets formed by LI3LK, LaI3LK, and DI3LK exhibited a propensity to twist in a left-handed direction, while the ones of DI3DK, DaI3DK, and LI3DK in a right-handed twisting orientation.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| |
Collapse
|
23
|
Jannone JM, Grigg JI, Aguirre LM, Jones EM. Electrostatic Interactions at N- and C-Termini Determine Fibril Polymorphism in Serum Amyloid A Fragments. J Phys Chem B 2016; 120:10258-10268. [PMID: 27632709 DOI: 10.1021/acs.jpcb.6b07672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid polymorphism presents a challenge to physical theories of amyloid formation and stability. The amyloidogenic protein serum amyloid A (SAA) exhibits complex and unexplained structural polymorphism in its N-terminal fragments: the N-terminal 11-residue peptide (SAA1-11) forms left-handed helical fibrils, while extension by one residue (SAA1-12) produces a rare right-handed amyloid. In this study, we use a combination of vibrational spectroscopy and ultramicroscopy to examine fibrils of these peptides and their terminally acetylated and amidated variants, in an effort to uncover the physical basis for this effect. Raman spectroscopy and atomic force microscopy provide evidence that SAA1-12 forms a β-helical fibril architecture, while SAA1-11 forms more typical stacked β-sheets. Importantly, N-terminal acetylation blocks fibril formation by SAA1-12 with no effect on SAA1-11, while C-terminal amidation has nearly the opposite effect. Together, these data suggest distinct electrostatic interactions at the N- and C-termini stabilize the two fibril structures; we propose model fibril structures in which C-terminal extension changes the favored intermolecular interaction between peptide monomers from an Arg1-C-terminus charge pair to an N-terminus-C-terminus charge pair. This model suggests a general mechanism for charge-mediated amyloid polymorphism and may inform strategies for design of peptide-based nanomaterials stabilized by engineered intermolecular contacts.
Collapse
Affiliation(s)
- Justine M Jannone
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - James I Grigg
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - Lauren M Aguirre
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - Eric M Jones
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| |
Collapse
|
24
|
Sosnowska M, Skibiszewska S, Kamińska E, Wieczerzak E, Jankowska E. Designing peptidic inhibitors of serum amyloid A aggregation process. Amino Acids 2016; 48:1069-1078. [PMID: 26759015 DOI: 10.1007/s00726-015-2167-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/26/2015] [Indexed: 02/05/2023]
Abstract
Amyloid A amyloidosis is a life-threatening complication of a wide range of chronic inflammatory, infectious and neoplastic diseases, and the most common form of systemic amyloidosis worldwide. It is characterized by extracellular tissue deposition of fibrils that are composed of fragments of serum amyloid A protein (SAA), a major acute-phase reactant protein, produced predominantly by hepatocytes. Currently, there are no approved therapeutic agents directed against the formation of fibrillar SAA assemblies. We attempted to develop peptidic inhibitors based on their similarity and complementarity to the regions critical for SAA self-association, which they should interact with and block their assembly into amyloid fibrils. Inh1 and inh4 which are comprised of the residues from the amyloidogenic region of SAA1.1 protein and Aβ peptide, respectively, were found by us as capable to significantly suppress aggregation of the SAA1-12 peptide. It was chosen as an aggregation model that mimicks the amyloidogenic nucleus of SAA protein. We suppose that aromatic interactions may be responsible for inhibitory activity of both compounds. We also recognized that aromatic residues are involved in self-association of SAA1-12.
Collapse
Affiliation(s)
- Marta Sosnowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Sandra Skibiszewska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Emilia Kamińska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
25
|
Kurouski D, Handen JD, Dukor RK, Nafie LA, Lednev IK. Supramolecular chirality in peptide microcrystals. Chem Commun (Camb) 2015; 51:89-92. [PMID: 25351531 DOI: 10.1039/c4cc05002a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The vibrational circular dichroism (VCD) spectra of microcrystals of fibril-forming peptides have been measured for the first time. VCD spectra were measured and compared for microcrystals and fibrils formed from the same peptide, human islet amyloid polypeptide (IAPP, amylin). Structural information related to the supramolecular chirality of both the microcrystals and the fibrils, as well as the VCD enhancement mechanisms in fibrils and microcrystals, is obtained from these spectral comparisons. It is concluded that strongly enhanced VCD does not require braiding of two or more filaments that is permitted in fibrils but not microcrystals.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University at Albany, 1400 Washington Ave., Albany, USA.
| | | | | | | | | |
Collapse
|
26
|
Zou L, Liu B. Identification of a Serum amyloid A gene and the association of SNPs with Vibrio-resistance and growth traits in the clam Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2015; 43:301-309. [PMID: 25602707 DOI: 10.1016/j.fsi.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Serum amyloid A (SAA), an acute response protein as well as an apolipoprotein, is considered to play crucial roles in both innate immunity and lipid metabolism. In this study, a SAA gene (MmSAA) was identified in the clam Meretrix meretrix. The full length DNA of MmSAA was 1407bp, consisting of three exons and two introns. The distribution of MmSAA in clam tissues was examined with the highest expression in hepatopancreas. In response to the Vibrio parahaemolyticus challenge, MmSAA mRNA showed significantly higher expression at 24 h post-challenge in experimental clams (P < 0.05). Forty-eight single nucleotide polymorphisms (SNPs) in the DNA partial sequence of MmSAA were discovered and examined for their association with Vibrio-resistance and growth traits, respectively. The single SNP association analysis indicated that five single SNPs (g.42, g.72, g.82, g.147 and g.165) were significantly associated with Vibrio-resistance (P < 0.05). Haplotype analysis produced additional support for association with the Chi-square values 6.393 (P = 0.012). Among the five selected SNPs, the effect of a missense mutation (g.82, A → G) was detected by site-directed mutagenesis with fusion expression of protein assay, and the result showed that the recombinant plasmids containing wild-type pET30a-MmSAA had more inhibition effect than the mutant ones on the growth rate of the host bacteria. In addition, four growth traits of the clams in 09G3SPSB population were recorded and the SNP g.176 was found to be significantly associated with the growth traits with the Global score value 0.790 (P = 0.015). Our findings suggested that common genetic variation in MmSAA might contribute to the risk of susceptibility to Vibrio infection and might be associated with the growth traits in the clams M. meretrix, and more works are still needed to validate these SNPs as potential markers for actual selective breeding.
Collapse
Affiliation(s)
- Linhu Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
27
|
Anantharaj S, Jayakannan M. Amyloid-Like Hierarchical Helical Fibrils and Conformational Reversibility in Functional Polyesters Based on l-Amino Acids. Biomacromolecules 2015; 16:1009-20. [DOI: 10.1021/bm501903t] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Santhanaraj Anantharaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune − 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune − 411008, Maharashtra, India
| |
Collapse
|
28
|
Scelsi A, Bochicchio B, Smith A, Saiani A, Pepe A. Nanospheres from the self-assembly of an elastin-inspired triblock peptide. RSC Adv 2015. [DOI: 10.1039/c5ra21182d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of an elastin-inspired triblock peptide into nanospheres highlights the important role of conformational flexibility and π–π stacking.
Collapse
Affiliation(s)
- A. Scelsi
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
- School of Materials and Manchester Institute of Biotechnology
| | - B. Bochicchio
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
| | - A. Smith
- School of Materials and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - A. Saiani
- School of Materials and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - A. Pepe
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
| |
Collapse
|
29
|
Dzwolak W. Chirality and Chiroptical Properties of Amyloid Fibrils. Chirality 2014; 26:580-7. [DOI: 10.1002/chir.22335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/28/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Wojciech Dzwolak
- Biological and Chemical Research Centre, Department of Chemistry; University of Warsaw; Warsaw Poland
| |
Collapse
|
30
|
Kurouski D, Lu X, Popova L, Wan W, Shanmugasundaram M, Stubbs G, Dukor RK, Lednev IK, Nafie LA. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils? J Am Chem Soc 2014; 136:2302-12. [PMID: 24484302 PMCID: PMC3968177 DOI: 10.1021/ja407583r] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The unique enhanced
sensitivity of vibrational circular dichroism
(VCD) to the formation and development of amyloid fibrils in solution
is extended to four additional fibril-forming proteins or peptides
where it is shown that the sign of the fibril VCD pattern correlates
with the sense of supramolecular filament chirality and, without exception,
to the dominant fibril morphology as observed in AFM or SEM images.
Previously for insulin, it has been demonstrated that the sign of
the VCD band pattern from filament chirality can be controlled by
adjusting the pH of the incubating solution, above pH 2 for “normal”
left-hand-helical filaments and below pH 2 for “reversed”
right-hand-helical filaments. From AFM or SEM images, left-helical
filaments form multifilament braids of left-twisted fibrils while
the right-helical filaments form parallel filament rows of fibrils
with a flat tape-like morphology, the two major classes of fibril
morphology that from deep UV resonance Raman scattering exhibit the
same cross-β-core secondary structure. Here we investigate whether
fibril supramolecular chirality is the underlying cause of the major
morphology differences in all amyloid fibrils by showing that the
morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin,
HET-s (218–289) prion, and a short polypeptide fragment of
transthyretin, TTR (105–115), directly correlates to their
supramolecular chirality as revealed by VCD. The result is strong
evidence that the chiral supramolecular organization of filaments
is the principal underlying cause of the morphological heterogeneity
of amyloid fibrils. Because fibril morphology is linked to cell toxicity,
the chirality of amyloid aggregates should be explored in the widely
used in vitro models of amyloid-associated diseases.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Volpatti LR, Vendruscolo M, Dobson CM, Knowles TPJ. A clear view of polymorphism, twist, and chirality in amyloid fibril formation. ACS NANO 2013; 7:10443-10448. [PMID: 24359171 DOI: 10.1021/nn406121w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The self-assembly of protein molecules into highly ordered linear aggregates, known as amyloid fibrils, is a phenomenon receiving increasing attention because of its biological roles in health and disease and the potential of these structures to form artificial proteinaceous scaffolds for biomaterials applications. A particularly powerful approach to probe the key physical properties of fibrillar structures is atomic force microscopy, which was used by Usov et al. in this issue of ACS Nano to reveal the polymorphic transitions and chirality inversions of amyloid fibrils in unprecedented detail. Starting from this study, this Perspective highlights recent progress in understanding the dynamic polymorphism, twisting behavior, and handedness of amyloid fibrils and discusses the promising future of these self-assembling structures as advanced functional materials with applications in nanotechnology and related fields.
Collapse
Affiliation(s)
- Lisa R Volpatti
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
32
|
Forman CJ, Fejer SN, Chakrabarti D, Barker PD, Wales DJ. Local frustration determines molecular and macroscopic helix structures. J Phys Chem B 2013; 117:7918-28. [PMID: 23724893 DOI: 10.1021/jp4040503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Decorative domains force amyloid fibers to adopt spiral ribbon morphologies, as opposed to the more common twisted ribbon. We model the effect of decorating domains as a perturbation to the relative orientation of β strands in a bilayered extended β-sheet. The model consists of minimal energy assemblies of rigid building blocks containing two anisotropic interacting ellipsoids. The relative orientation of the ellipsoids dictates the morphology of the resulting assembly. Amyloid structures derived from experiment are consistent with our model, and we use magnets to demonstrate that the frustration principle is scale and system independent. In contrast to other models of amyloid, our model isolates the effect of frustration from the fundamental interactions between building blocks to reveal the frustration rather than dependence of morphology on the physical interactions. Consequently, amyloid is viewed as a discrete molecular version of the more general macroscopic frustrated bilayer that is exemplified by Bauhinia seedpods. The model supports the idea that the interactions arising from an arbitrary peptide sequence can support an amyloid structure if a bilayer can form first, which suggests that supplementary protein sequences, such as chaperones or decorative domains, could play a significant role in stabilizing such bilayers and therefore in selecting morphology during nucleation. Our model provides a foundation for exploring the effects of frustration on higher-order superstructural polymorphic assemblies that may exhibit complex functional behavior. Two outstanding examples are the systematic kinking of decorated fibers and the nested frustration of the Bauhinia seedpod.
Collapse
Affiliation(s)
- Christopher J Forman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | | | |
Collapse
|
33
|
Levels of supramolecular chirality of polyglutamine aggregates revealed by vibrational circular dichroism. FEBS Lett 2013; 587:1638-43. [PMID: 23583713 DOI: 10.1016/j.febslet.2013.03.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 11/21/2022]
Abstract
Polyglutamine (PolyQ) aggregates are a hallmark of several severe neurodegenerative diseases, expanded CAG-repeat diseases in which inheritance of an expanded polyQ sequence above a pathological threshold is associated with a high risk of disease. Application of vibrational circular dichroism (VCD) reveals that these PolyQ fibril aggregates exhibit a chiral supramolecular organization that is distinct from the supramolecular organization of previously observed amyloid fibrils. PolyQ fibrils grown from monomers with Q repeats 35 and above (Q≥35) exhibit approximately 10-fold enhancement of the same VCD spectrum compared to the already enhanced VCD of fibrils formed from Q repeats 30 and below (Q≤30).
Collapse
|
34
|
Kurouski D, Dukor RK, Lu X, Nafie LA, Lednev IK. Normal and reversed supramolecular chirality of insulin fibrils probed by vibrational circular dichroism at the protofilament level of fibril structure. Biophys J 2013; 103:522-531. [PMID: 22947868 DOI: 10.1016/j.bpj.2012.04.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022] Open
Abstract
Fibrils are β-sheet-rich aggregates that are generally composed of several protofibrils and may adopt variable morphologies, such as twisted ribbons or flat-like sheets. This polymorphism is observed for many different amyloid associated proteins and polypeptides. In a previous study we proposed the existence of another level of amyloid polymorphism, namely, that associated with fibril supramolecular chirality. Two chiral polymorphs of insulin, which can be controllably grown by means of small pH variations, exhibit opposite signs of vibrational circular dichroism (VCD) spectra. Herein, using atomic force microscopy (AFM) and scanning electron microscopy (SEM), we demonstrate that indeed VCD supramolecular chirality is correlated not only by the apparent fibril handedness but also by the sense of supramolecular chirality from a deeper level of chiral organization at the protofilament level of fibril structure. Our microscopic examination indicates that normal VCD fibrils have a left-handed twist, whereas reversed VCD fibrils are flat-like aggregates with no obvious helical twist as imaged by atomic force microscopy or scanning electron microscopy. A scheme is proposed consistent with observed data that features a dynamic equilibrium controlled by pH at the protofilament level between left- and right-twist fibril structures with distinctly different aggregation pathways for left- and right-twisted protofilaments.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University at Albany, The State University of New York, Albany, New York
| | | | | | - Laurence A Nafie
- Department of Chemistry, Syracuse University, Syracuse, New York; BioTools, Jupiter, Florida
| | - Igor K Lednev
- Department of Chemistry, University at Albany, The State University of New York, Albany, New York.
| |
Collapse
|
35
|
Olesen SW, Fejer SN, Chakrabarti D, Wales DJ. A left-handed building block self-assembles into right- and left-handed helices. RSC Adv 2013. [DOI: 10.1039/c3ra41813h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Gößler-Schöfberger R, Hesser G, Reif MM, Friedmann J, Duscher B, Toca-Herrera JL, Oostenbrink C, Jilek A. A stereochemical switch in the aDrs model system, a candidate for a functional amyloid. Arch Biochem Biophys 2012; 522:100-6. [PMID: 22510364 PMCID: PMC3365241 DOI: 10.1016/j.abb.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/18/2012] [Accepted: 04/04/2012] [Indexed: 11/21/2022]
Abstract
Amyloid fibrils are commonly observed to adopt multiple distinct morphologies, which eventually can have significantly different neurotoxicities, as e.g. demonstrated in case of the Alzheimer peptide. The architecture of amyloid deposits is apparently also determined by the stereochemistry of amino acids. Post-translational changes of the chirality of certain residues may thus be a factor in controlling the formation of functional or disease-related amyloids. Anionic dermaseptin (aDrs), an unusual peptide from the skin secretions of the frog Pachymedusa dacnicolor, assembles to amyloid-like fibrils in a pH-dependent manner, which could play a functional role in defense. aDrs can be enzymatically converted into the diastereomer [d-Leu2]-aDrs by an l/d-isomerase. EM and AFM on fibrils formed by these isomers have shown that their predominant morphology is controlled by the stereochemistry of residue 2, whereas kinetic and thermodynamic parameters of aggregation are barely affected. When fibrils were grown from preformed seeds, backbone stereochemistry rather than templating-effects apparently dominated the superstructural organization of the isomers. Interestingly, MD indicated small differences in the conformational propensities between the isomers. Our results demonstrate how d-amino acid substitutions could take active part in the formation of functional or disease-related amyloid. Moreover, these findings contribute to the development of amyloid-based nanomaterials.
Collapse
Affiliation(s)
| | - Günter Hesser
- CSNA Center for Surface- and Nanoanalytics, Johannes Kepler University Linz, Austria
| | - Maria M. Reif
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Austria
| | - Jacqueline Friedmann
- Laboratory of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | | | - José Luis Toca-Herrera
- Laboratory of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Austria
| | - Alexander Jilek
- Institute of Organic Chemistry, Johannes Kepler University Linz, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| |
Collapse
|
37
|
Kurouski D, Dukor RK, Lu X, Nafie LA, Lednev IK. Spontaneous inter-conversion of insulin fibril chirality. Chem Commun (Camb) 2012; 48:2837-9. [PMID: 22241279 DOI: 10.1039/c2cc16895b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid fibrils are associated with many neurodegenerative diseases and are considered to be the energetically most favorable form of proteins. Here we report that a small pH change initiates spontaneous transformation of insulin fibrils from one polymorph to another. As a result, fibril supramolecular chirality overturns both accompanying morphological and structural changes.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
38
|
Babenko V, Harada T, Yagi H, Goto Y, Kuroda R, Dzwolak W. Chiral superstructures of insulin amyloid fibrils. Chirality 2011; 23:638-46. [DOI: 10.1002/chir.20996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/09/2011] [Indexed: 01/11/2023]
|
39
|
Iski EV, Tierney HL, Jewell AD, Sykes ECH. Spontaneous Transmission of Chirality through Multiple Length Scales. Chemistry 2011; 17:7205-12. [DOI: 10.1002/chem.201100268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Erin V. Iski
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| | - Heather L. Tierney
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| | - April D. Jewell
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| |
Collapse
|
40
|
Egashira M, Takase H, Yamamoto I, Tanaka M, Saito H. Identification of regions responsible for heparin-induced amyloidogenesis of human serum amyloid A using its fragment peptides. Arch Biochem Biophys 2011; 511:101-6. [PMID: 21569756 DOI: 10.1016/j.abb.2011.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 02/08/2023]
Abstract
Human serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Although several studies have been performed, a detailed understanding of the molecular mechanism for SAA fibrillation remains elusive. Glycosaminoglycans such as heparin are suggested to serve as scaffolds in amyloid fibril formation in some cases. In the present study, amyloidogenic properties of synthetic fragment peptides corresponding to the N-terminal (residues 1-27), central (residues 43-63), and C-terminal (residues 77-104) regions of SAA molecule induced by heparin were examined using fluorescence, circular dichroism (CD), and electron microscopy. Fluorescence and CD measurements demonstrated that SAA (1-27) peptide is evidently involved in heparin-induced amyloidogenesis. Correspondingly, relatively minor changes in fluorescence and a quite different pattern in the CD spectrum were observed in SAA (43-63) peptide. In contrast, SAA (77-104) peptide did not show any changes induced by heparin. Transmission electron microscopy indicated that SAA (1-27) peptide forms short and straight fibrils, whereas SAA (43-63) peptide forms much longer and seemingly elastic fibrils. These results suggest that the N-terminal region plays a crucial role as a rigid core and the central region facilitates the elongation of fibrils in heparin-induced amyloidogenesis of SAA molecule.
Collapse
Affiliation(s)
- Masashi Egashira
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | | | | | | | | |
Collapse
|
41
|
Ziserman L, Lee HY, Raghavan SR, Mor A, Danino D. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J Am Chem Soc 2011; 133:2511-7. [PMID: 21244023 DOI: 10.1021/ja107069f] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The self-assembly of nanotubes from chiral amphiphiles and peptide mimics is still poorly understood. Here, we present the first complete path to nanotubes by chiral self-assembly studied with C(12)-β(12) (N-α-lauryl-lysyl-aminolauryl-lysyl-amide), a molecule designed to have unique hybrid architecture. Using the technique of direct-imaging cryo-transmission electron microscopy (cryo-TEM), we show the time-evolution from micelles of C(12)-β(12) to closed nanotubes, passing through several types of one-dimensional (1-D) intermediates such as elongated fibrils, twisted ribbons, and coiled helical ribbons. Scattering and diffraction techniques confirm that the fundamental unit is a monolayer lamella of C(12)-β(12), with the hydrophobic tails in the gel state and β-sheet arrangement. The lamellae are held together by a combination of hydrophobic interactions, and two sets of hydrogen-bonding networks, supporting C(12)-β(12) monomers assembly into fibrils and associating fibrils into ribbons. We further show that neither the "growing width" model nor the "closing pitch" model accurately describe the process of nanotube formation, and both ribbon width and pitch grow with maturation. Additionally, our data exclusively indicate that twisted ribbons are the precursors for coiled ribbons, and the latter structures give rise to nanotubes, and we show chirality is a key requirement for nanotube formation.
Collapse
Affiliation(s)
- Lior Ziserman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
42
|
Kurouski D, Lombardi RA, Dukor RK, Lednev IK, Nafie LA. Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chem Commun (Camb) 2010; 46:7154-6. [DOI: 10.1039/c0cc02423f] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|