1
|
Zeng JH, Du DT, Liu BE, Zhang ZQ, Zhan ZP. Photoredox-Catalyzed Phosphonocarboxylation of Allenes with Phosphine Oxides and CO 2. J Org Chem 2023; 88:14789-14796. [PMID: 37816195 DOI: 10.1021/acs.joc.3c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Phosphonocarboxylation of allenes with diarylphosphine oxides and CO2 via visible-light photoredox catalysis was developed for the first time. This work provided practical and sustainable access to highly valuable but otherwise difficult-to-access linear allylic β-phosphonyl carboxylic acids in moderate yields with exclusive regio- and stereoselectivity. This method was also characterized by step and atom economy and transition-metal free and mild conditions. Preliminary mechanistic studies suggested that allyl-methyl carbanion species are the key intermediates.
Collapse
Affiliation(s)
- Jia-Hao Zeng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
| | - Deng-Tao Du
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Bao-En Liu
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Zhen-Qiang Zhang
- Yunnan Precious Metals Laboratory Company, Ltd., Kunming 650106, Yunnan, People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| |
Collapse
|
2
|
Li C, Zhou Z, Ma S. A Pd-catalyzed highly selective three-component protocol for trisubstituted allenes. Chem Sci 2023; 14:7709-7715. [PMID: 37476716 PMCID: PMC10355113 DOI: 10.1039/d3sc01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Herein we report the first example of a Pd-catalyzed highly selective three-component reaction of alkynyl-1,4-diol dicarbonates, organoboronic acids, and malonate anions for the efficient synthesis of trisubstituted 2,3-allenyl malonates not readily available by the known protocols. The reaction demonstrates an excellent regio- and chemo-selectivity for both the oxidative addition referring to the two C-O bonds and the subsequent coupling with the nucleophile with a remarkable functional group compatibility. A series of control experiments confirm a unique mechanism involving β-O elimination forming alka-1,2,3-triene and the subsequent insertion of its terminal C[double bond, length as m-dash]C bond into the Ar-Pd bond.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhengnan Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
3
|
Li M, Sun GQ, Liu YY, Li SX, Liu HC, Qiu YF, Chen DP, Wang XC, Liang YM, Quan ZJ. Nickel-Catalyzed Three-Component Tandem Radical Cyclization 1,5-Difunctionalization of 1,3-Enynes and Alkyl Bromide. J Org Chem 2023; 88:1403-1410. [PMID: 36656018 DOI: 10.1021/acs.joc.2c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nickel-catalyzed three-component tandem radical cyclization reaction of aryl bromides with 1,3-enynes and aryl boric acids to construct γ-lactam-substituted allene derivatives has been described. This protocol provides lactam alkyl radicals through the free radical cyclization process, which can be effectively used to participate in the subsequent multicomponent coupling reaction so that 1,3-enynes could directly convert into corresponding poly-substituted allene compounds. In addition, this efficient method enjoys a broad substrate scope and provides a series of 1,5-difunctionalized allenes in a one-pot reaction.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yu-Yu Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hai-Chao Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Pin Chen
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
4
|
Shen YB, Hu F, Li SS. Alkyl amines and ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions. Org Biomol Chem 2023; 21:700-714. [PMID: 36601772 DOI: 10.1039/d2ob02146c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of alkyl amines and ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions represents a promising strategy that greatly enriches redox-neutral hydride transfer chemistry. This review summarizes the remarkable progress made in this field, and focuses on (1) alkyl amines as traceless hydride donors in cascade [1,5]-hydride transfer/elimination reactions and (2) alkyl ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions. The reaction mechanisms, features, scope, limitations, and synthetic applications are included, where appropriate. Importantly, its powerful ability in allene synthesis and the combination with [Re]-vinylidene and carbocation chemistries render this strategy attractive enough to inspire chemists to develop colorful reactions for building molecular complexity.
Collapse
Affiliation(s)
- Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Yuan XA, Li D, Wang S, Jiang YY, Liu P, Bi S. Distinctive Mechanistic Scenarios and Substituent Effects of Gold(I) versus Copper(I) Catalysis for Hydroacylation of Terminal Alkynes with Glyoxal Derivatives. J Org Chem 2022; 87:11681-11692. [PMID: 35984222 DOI: 10.1021/acs.joc.2c01316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory (DFT) calculations have been conducted to study the mechanisms, substituent effects, and the role of bases in Au- and Cu-catalyzed hydroacylation of terminal alkyne with glyoxal derivatives. The two reactions, despite being catalyzed by the same group of transition metals, follow distinctive reaction mechanisms. Through the detailed DFT calculations, insights into the mechanisms are obtained, and the substituent effects and the role of the bases are understood.
Collapse
Affiliation(s)
- Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Dan Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Jiao C, Qi D, Liu X, Zhang Z, Zhang G. Nickel-Catalyzed Deaminative Allenylation of Amino Acid Derivatives: Catalytic Activity Enhanced by an Amide-Type NN 2 Pincer Ligand. Org Lett 2022; 24:5361-5365. [DOI: 10.1021/acs.orglett.2c02042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xingjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Di Qi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Szwetkowski C, Slebodnick C, Santos WL. Regio- and stereoselective copper-catalyzed α,β-protoboration of allenoates: access to Z-β,γ-unsaturated β-boryl esters. Org Biomol Chem 2022; 20:3287-3291. [PMID: 35383802 DOI: 10.1039/d2ob00423b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly efficient regio- and stereoselective method for allenoate borylation has been developed. Using CuCl and bis(pinacolato)diboron in methanol, a variety of allenoates underwent β-boration and α-protonation to afford the corresponding Z-β,γ-unsaturated β-boryl esters under mild conditions with up to 81% yields.
Collapse
Affiliation(s)
- Connor Szwetkowski
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| |
Collapse
|
8
|
Wu G, Yao Y, Li G, Zhang X, Qian H, Ma S. Enantioselective Allenation of Terminal Alkynes Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to the Total Synthesis of Scorodonin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guolin Wu
- Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Yuan Yao
- Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Gen Li
- Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Xue Zhang
- Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| |
Collapse
|
9
|
Xie Y, Feng H, Qi Y, Huang J, Huang L. Chemodivergent Synthesis of Oxazolidin-2-ones via Cu-Catalyzed Carboxyl Transfer Annulation of Propiolic Acids with Amines. J Org Chem 2021; 86:16940-16947. [PMID: 34726412 DOI: 10.1021/acs.joc.1c02099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation. The advantages of this decarboxylative coupling/carboxylative cyclization are showcased in the atom economy, chemical specificity, and functional group tolerance.
Collapse
Affiliation(s)
- Yujuan Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Yayu Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
10
|
Xiao J, Cui Y, Li C, Xu H, Zhai Y, Zhang X, Ma S. Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angew Chem Int Ed Engl 2021; 60:25708-25713. [PMID: 34595806 DOI: 10.1002/anie.202109879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Indexed: 11/10/2022]
Abstract
A gold-catalyzed room temperature allenation of terminal alkynes (ATA) with aldehydes affording 1,3-disubstituted allenes with diverse functional groups has been developed by identifying a gold(I) catalyst and an amine. The practicality of this reaction has been demonstrated by a ten gram-scale synthesis and the synthetic potentials have been demonstrated via various transformations and formal total synthesis of (-)-centrolobine. Mechanistic studies revealed that the gold catalyst, the aldehyde effect, the fluoroalkyl hydroxyl solvent (TFE or HFIP) and the structure of amine are vital in this room temperature ATA reaction.
Collapse
Affiliation(s)
- Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yifan Cui
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| |
Collapse
|
11
|
Xiao J, Cui Y, Li C, Xu H, Zhai Y, Zhang X, Ma S. Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yifan Cui
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- Research Centre for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
12
|
Wu G, Yao Y, Li G, Zhang X, Qian H, Ma S. EATA Reaction Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to Total Synthesis of Scorodonin. Angew Chem Int Ed Engl 2021; 61:e202112427. [PMID: 34734475 DOI: 10.1002/anie.202112427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/10/2022]
Abstract
Naturally occurring conjugated allenynes are of general interest to the scientific community for their potent and various biological activities. The 1,5-H transfer of alka-1,4-diyn-3-yl amines would be one of the most straightforward yet challenging approach to this class of compounds since it may, in principle, form two regioisomeric products involving two different C-C triple bonds. Herein, a catalytic recipe of copper halides with mixed oxidation states, i.e., CuCl/CuBr 2 , has been identified to address the issues of the side reaction of conjugate addition and the selectivity of 1,5-H transfer of the key intermediate, alka-1,4-diyn-3-yl amines, in EATA (Enantioselective Allenation of Terminal Alkynes) reaction involving the conjugated 2-alkynals. This protocol could accommodate a wide range of functional groups providing a series of allenynes with a very high enantioselectivity (up to >99% ee). In addition, the enantioenriched allenynes can be readily transformed into various building blocks and applied to the highly enantioselective total synthesis of linear allenic natural product scorodonin for the first time. Mechanistic studies and DFT calculations elucidated the high regioselectivity for observed 1,5-H transfer within the intermediate of 1,4-diyn-3-yl amines. The calculated energy difference between two of the most stable transition states of 3.4 kcal/mol accounts for a selectivity of over 99:1, which is in perfect agreement with the experimental results.
Collapse
Affiliation(s)
- Guolin Wu
- Fudan University - Handan Campus: Fudan University, Department of Chemistry, CHINA
| | - Yuan Yao
- Fudan University - Handan Campus: Fudan University, Department of Chemistry, CHINA
| | - Gen Li
- Fudan University - Handan Campus: Fudan University, Department of Chemistry, CHINA
| | - Xue Zhang
- Fudan University - Handan Campus: Fudan University, Department of Chemistry, CHINA
| | - Hui Qian
- Fudan University - Handan Campus: Fudan University, Department of Chemistry, CHINA
| | - Shengming Ma
- SIOC/Zhejiang University, SKLOMC, 345 Lingling Lu, 200032, Shanghai, CHINA
| |
Collapse
|
13
|
Zhou ZZ, Song XR, Du S, Xia KJ, Tian WF, Xiao Q, Liang YM. Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chem Commun (Camb) 2021; 57:9390-9393. [PMID: 34528958 DOI: 10.1039/d1cc03303d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, a highly regioselective alkylation of propargylic carbonates for trisubstituted allenes with alkyl 1,4-dihydropyridine derivatives (1,4-DHPs) is developed via a photoredox/nickel dual-catalyzed process, which represents the first direct approach to access alkylated allene products without alkyl organometallic reagents. This method features a broad substrate scope and mild conditions. A hypothetical mechanism with an alkyl radical and an allenyl Ni(III) species is proposed. Benzylation products were also obtained to be the complement building blocks for the potential synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Ke-Jian Xia
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China.
| | - Wan-Fa Tian
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
14
|
Zorba L, Egaña E, Gómez-Bengoa E, Vougioukalakis GC. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS OMEGA 2021; 6:23329-23346. [PMID: 34549133 PMCID: PMC8444324 DOI: 10.1021/acsomega.1c03092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]-hydride transfer during the transformation of the intermediate propargylamine to the final allene.
Collapse
Affiliation(s)
- Leandros
P. Zorba
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eunate Egaña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Enrique Gómez-Bengoa
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
15
|
Luo K, Li Y, Fu Z, Zhang L, Wang Z, Xu J, Yu B, Wu L. Transition‐Metal‐Free Cascade Enyne Rearrangement and Cyclopropanation of Allenylphosphine Oxides with
N
‐Tosylhydrazones Accessing Alkynylcyclopropane Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Zitong Fu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ling Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Zhipeng Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jiangyan Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Bingjun Yu
- Lab of Plant Stress Biology, College of Life Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Chemical Engineering Xinjiang Agricultural University Urumqi 830052 People's Republic of China
| |
Collapse
|
16
|
Alonso JM, Almendros P. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chem Rev 2021; 121:4193-4252. [PMID: 33630581 PMCID: PMC8479864 DOI: 10.1021/acs.chemrev.0c00986] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/19/2022]
Abstract
The allene functionality has participated in one of the most exciting voyages in organic chemistry, from chemical curiosities to a recurring building block in modern organic chemistry. In the last decades, a special kind of allene, namely, allenol, has emerged. Allenols, formed by an allene moiety and a hydroxyl functional group with diverse connectivity, have become common building blocks for the synthesis of a wide range of structures and frequent motif in naturally occurring systems. The synergistic effect of the allene and hydroxyl functional groups enables allenols to be considered as a unique and sole functionality exhibiting a special reactivity. This Review summarizes the most significant contributions to the chemistry of allenols that appeared during the past decade, with emphasis on their synthesis, reactivity, and occurrence in natural products.
Collapse
Affiliation(s)
- José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
17
|
Zhang X, Yang J, Xiong N, Han Z, Duan X, Zeng R. Indium-mediated annulation of 2-azidoaryl aldehydes with propargyl bromides to [1,2,3]triazolo[1,5- a]quinolines. Org Biomol Chem 2021; 19:6346-6352. [PMID: 34231622 DOI: 10.1039/d1ob01183a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient indium-mediated cascade annulation reaction of 2-azidoaryl aldehydes with propargyl bromides is reported. The aromatic 5/6/6-fused heterocycles, [1,2,3]triazolo[1,5-a]quinoline derivatives, could be constructed in one pot in moderate yields with a broad substrate scope. Mechanistic studies indicated that the reaction proceeded through allenol formation, azide-allene [3 + 2] cycloaddition, and dehydration. The synthetic potential of the products including the denitrogenative functionalization and the Pd-catalyzed coupling reactions has also been explored.
Collapse
Affiliation(s)
- Xiaomin Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Jiali Yang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Ni Xiong
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Zhe Han
- School of Nuclear Science and Technology, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China
| | - Xinhua Duan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China. and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
18
|
Yuan C, Zhao X, Nan G. Silver-catalyzed multicomponent reactions for the construction of γ-carbonyl-α-amino acid derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Vidhani DV, Gillett JR, Cusido Y, Alabugin IV. [1,5]-Sigmatropic Shifts Regulated by Built-in Frustration. J Phys Chem A 2020; 124:6016-6028. [DOI: 10.1021/acs.jpca.0c03933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dinesh V. Vidhani
- Department of Math & Natural Science, Miami Dade College, Miami, Florida, United States
| | - Jared R. Gillett
- Department of Chemistry & Biochemistry, University of Wisconsin, La Crosse, Wisconsin, United States
| | - Yanet Cusido
- Department of Math & Natural Science, Miami Dade College, Miami, Florida, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
20
|
Lustosa DM, Hartmann D, Rudolph M, Rominger F, Hashmi ASK. Gold‐Catalyzed One‐Pot A
3
‐Coupling/1,5‐Hydride Shift/Schmittel‐Type Cyclization: From Aldehydes, Amines and Alkynes to the Synthesis of Benzo[
b
]fluorenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Danilo M. Lustosa
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Deborah Hartmann
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department Faculty of Science King Abdulaziz University (KAU) 21589 Jeddah Saudi Arabia
| |
Collapse
|
21
|
Yao Y, Zhang X, Ma S. DFT study on the E-stereoselective reductive A3-coupling reaction of terminal alkynes with aldehydes and 3-pyrroline. Org Chem Front 2020. [DOI: 10.1039/d0qo00564a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanism of the Cu(i)-catalyzed reductive A3-coupling reaction of terminal alkynes with aldehydes and 3-pyrroline for the synthesis of E-allylic amines has been studied by DFT calculations.
Collapse
Affiliation(s)
- Yuan Yao
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
22
|
Wang Q, Xi Chen, Wang XG, Liu HC, Liang YM. Base-Promoted Nitrile–Alkyne Domino-Type Cyclization: A General Method to Trisubstituted Imidazoles. Org Lett 2019; 21:9874-9877. [DOI: 10.1021/acs.orglett.9b03782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Gang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
23
|
Amiri K, Khosravi H, Balalaie S, Golmohammadi F, Anwar MU, Al-Harrasi A. Regio- and chemo-selective cyclization of allenic-Ugi products for the synthesis of 3-pyrroline skeletons. Org Biomol Chem 2019; 17:8858-8870. [PMID: 31556430 DOI: 10.1039/c9ob01963d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly efficient and stable novel class of allenic-Ugi products through a Crabbé homologation reaction is successfully demonstrated. Then, a regio- and chemo-selective cyclization of allenic-Ugi derivatives in a 5-exo-dig fashion to access 3-pyrroline skeletons is developed. Also, computational studies were performed and explained to provide insights into the reaction mechanism. This approach displays high bond-forming efficiency and atom economy with high yields.
Collapse
Affiliation(s)
- Kamran Amiri
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
24
|
Lustosa DM, Clemens S, Rudolph M, Hashmi ASK. Gold‐Catalyzed One‐Pot Synthesis of 1,3‐Disubstituted Allenes from Benzaldehydes and Terminal Alkynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Danilo M. Lustosa
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Simon Clemens
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
25
|
Tzouras N, Neofotistos SP, Vougioukalakis GC. Zn-Catalyzed Multicomponent KA 2 Coupling: One-Pot Assembly of Propargylamines Bearing Tetrasubstituted Carbon Centers. ACS OMEGA 2019; 4:10279-10292. [PMID: 31460120 PMCID: PMC6648923 DOI: 10.1021/acsomega.9b01387] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
Tetrasubstituted propargylamines comprise a unique class of highly useful compounds, which can be accessed through the multicomponent coupling between ketones, amines, and alkynes (KA2 coupling), an underexplored transformation. Herein, the development of a novel, highly efficient, and user-friendly catalytic system for the KA2 coupling, based on the environmentally benign, inexpensive, and readily available zinc acetate, is described. This system is employed in the multicomponent assembly of unprecedented, tetrasubstituted propargylamines derived from structurally diverse, challenging, and even biorelevant substrates. Notable features of this protocol include the demonstration of the enhancing effect that neat conditions can have on catalytic activity, as well as the expedient functionalization of hindered, prochiral cyclohexanones, linear ketones, and interesting molecular scaffolds such as norcamphor and nornicotine.
Collapse
|
26
|
Abstract
So far, over 150 natural products and pharmaceuticals containing an allene moiety have been identified. During the last two decades, allenes have also been demonstrated as synthetically versatile starting materials in organic synthesis. In comparison to alkenes and alkynes, allenes are unique unsaturated hydrocarbons due to their axial chirality, which could be transformed to central chirality via chirality transfer to provide an irreplaceable entry to chiral molecules. Thus, methods for allene synthesis from readily available chemicals are of great interest. In 1979, Crabbé et al. reported the first CuBr-mediated allenation of terminal alkynes (ATA) reaction to form monosubstituted allenes from 1-alkynes and paraformaldehyde in the presence of diisopropylamine. During the following 30 years, the ATA reactions were limited to paraformaldehyde. This Account describes our efforts toward the development of ATA reactions in the last ten years. First, we improved the yields and scope greatly for the synthesis of monosubstituted allenes by modifying the original Crabbé recipe. Next we developed the ZnI2-promoted or CuI-catalyzed ATA reactions for the synthesis of 1,3-disubstituted allenes from terminal alkyne and normal aldehydes. Furthermore, we first realized the CdI2-promoted ATA reaction of ketones with pyrrolidine as the matched amine for the preparation of trisubstituted allenes. Due to the toxicity of CdI2, we also developed two alternative approaches utilizing CuBr/ZnI2 or CuI/ZnBr2/Ti(OEt)4. The asymmetric version of ATA reactions for the synthesis of optically active 1,3-disubstituted allenes has also been achieved in this group with two strategies. One is called "chiral ligand" strategy, using terminal alkynes, aldehydes, and nonchiral amine with the assistance of a proper chiral ligand. The other is the "chiral amine" strategy, applying terminal alkynes, aldehydes, and chiral amines such as ( S)- or ( R)-α,α-diphenylprolinol or ( S)- or ( R)-α,α-dimethylprolinol. Optically active 1,3-disubstituted allenes containing different synthetically useful functionalities such as alcohol, amide, sulfamide, malonate, carboxylate, and carbohydrate units could be prepared without protection with the newly developed CuBr2-catalyzed chiral amine strategy. Recently, we have applied these enantioselective allenation of terminal alkyne (EATA) reactions to the syntheses of some natural allenes such as laballenic acid, insect pheromone, methyl ( R)-8-hydroxyocta-5,6-dienoate, phlomic acid, and lamenallenic acid, as well as some non-allene natural γ-butyrolactones such as xestospongienes (E, F, G, and H), ( R)-4-tetradecalactone, ( S)-4-tetradecalactone, ( R)-γ-palmitolactone, and ( R)-4-decalactone.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
27
|
Li Q, He X, Tao J, Xie M, Wang H, Li R, Shang Y. Base‐mediated 1,4‐Conjugate Addition/Intramolecular 5‐
exo‐dig
Annulation of Propargylamines with Benzoylacetonitriles and
β
‐Keto Esters for Polysubstituted Furans and Furo[3,4‐
c
]coumarins Formation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qianqian Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Jiajia Tao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Hui Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
28
|
Cui JF, Yang B, Yu Q, Lai NCH, Chen H, Wong MK. Silver-Mediated Organic Transformations of Propargylamines to Enones, α-Thioketones, and Isochromans. ChemistrySelect 2019. [DOI: 10.1002/slct.201900024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jian-Fang Cui
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University, Hung Hum; Hong Kong
- Department of Chemistry; Southern University of Science and Technology; Shenzhen People's Republic of China
| | - Bin Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University, Hung Hum; Hong Kong
| | - Qiong Yu
- The Hong Kong Polytechnic University; Shenzhen Research Institute, Shenzhen; People's Republic of China
| | - Nathanael Chun-Him Lai
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University, Hung Hum; Hong Kong
| | - Han Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University, Hung Hum; Hong Kong
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University, Hung Hum; Hong Kong
- The Hong Kong Polytechnic University; Shenzhen Research Institute, Shenzhen; People's Republic of China
| |
Collapse
|
29
|
Kuang J, Xia Y, Yang A, Zhang H, Su C, Lee D. Copper-catalyzed aminothiolation of terminal alkynes with tunable regioselectivity. Chem Commun (Camb) 2019; 55:1813-1816. [DOI: 10.1039/c8cc09122f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A simple, mild, and efficient catalytic aminothiolation of terminal alkynes for the synthesis of both 2- and 3-substituted thiazolo[3,2-a]benzimidazoles is established upon catalysis with copper(i), in which complementary regioselectivities could be achieved by using sterically different phenanthroline-based ligands.
Collapse
Affiliation(s)
- Jinqiang Kuang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - An Yang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Heng Zhang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Chenliang Su
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
| | - Daesung Lee
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
30
|
Cid MM, Lago-Silva M, Comesaña MG, Nieto Faza O, López CS. Computational and experimental studies on Cu/Au-catalyzed stereoselective synthesis of 1,3-disubstituted allenes. Org Chem Front 2019. [DOI: 10.1039/c9qo00364a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thorough mechanistic investigation unveils details of the allenylation of terminal alkynes (ATA) under Crabbé-like conditions allowing for an enantioselective approach.
Collapse
Affiliation(s)
| | - María Lago-Silva
- Departamento de Química Orgánica
- Universidade de Vigo
- 36310 Vigo
- Spain
| | | | | | | |
Collapse
|
31
|
Cui Y, Lin W, Ma S. A metal-catalyzed new approach for α-alkynylation of cyclic amines. Chem Sci 2018; 10:1796-1801. [PMID: 30842847 PMCID: PMC6369436 DOI: 10.1039/c8sc04115f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/24/2018] [Indexed: 01/05/2023] Open
Abstract
The first catalytic α-alkynylation of cyclic amines with the help of the N-propargylic group with an exclusive high E-stereoselectivity has been realized.
The first catalytic α-alkynylation of cyclic amines with the help of the N-propargylic group to afford 2-(1-alkynyl) N-allylic cyclic amines with an exclusive E-stereoselectivity for the in situ formed C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond has been realized. Based on mechanistic studies, it is proven that the reaction proceeds through metal-mediated anti-1,5-hydride transfer forming an iminonium intermediate, which accepts the addition of the in situ generated 1-alkynyl metal species. The synthetic application has also been demonstrated.
Collapse
Affiliation(s)
- Yifan Cui
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China . .,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Weilong Lin
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China . .,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China . .,Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China
| |
Collapse
|
32
|
Palladium-catalyzed, ligand-free S N 2’ substitution reactions of organoaluminum with propargyl acetates for the synthesis of multi-substituted allenes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Liu C, Zhang H, Ding L, Liu J. TfOH/Fe(OTf) 3
Cocatalyzed Reaction of Arylallenes with Alcohols for Structurally Diverse Indene Derivatives. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congrong Liu
- School of Environment Engineering, Nanjing Institute of Technology; 1 Hongjingdadao, Nanjing Jiangsu 211167 China
- Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Haiyun Zhang
- School of Environment Engineering, Nanjing Institute of Technology; 1 Hongjingdadao, Nanjing Jiangsu 211167 China
| | - Lianghui Ding
- School of Environment Engineering, Nanjing Institute of Technology; 1 Hongjingdadao, Nanjing Jiangsu 211167 China
| | - Juan Liu
- Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
34
|
Shao XB, Zhang Z, Li QH, Zhao ZG. Synthesis of multi-substituted allenes from organoalane reagents and propargyl esters by using a nickel catalyst. Org Biomol Chem 2018; 16:4797-4806. [PMID: 29915845 DOI: 10.1039/c8ob00781k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient and simple route for the synthesis of multi-substituted allenes has been developed by a nickel catalyzed SN2' substitution reaction of propargyl esters with organic aluminium reagents under mild conditions, which gave the corresponding multi-substituted allenes in good to excellent yields (up to 92%) and high selectivities (up to 99%) at 60 °C for 6 h in THF. Aryls bearing electron-donating or electron-withdrawing groups in propargyl esters gave products in good yields. In addition, the multi-substituted allenes bearing a thienyl or a pyridyl group were obtained in 95-97% selectivities with isolated yields of 72-83%. Furthermore, the SN2' substitution reaction worked efficiently with propargyl carbonate compounds as well. On the basis of the experimental results, a possible catalytic cycle has been proposed.
Collapse
Affiliation(s)
- Xue Bei Shao
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China.
| | | | | | | |
Collapse
|
35
|
Hossain ML, Wang J. Cu(I)‐Catalyzed Cross‐Coupling of Diazo Compounds with Terminal Alkynes: An Efficient Access to Allenes. CHEM REC 2018; 18:1548-1559. [DOI: 10.1002/tcr.201800023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of ChemistryPeking University Beijing 100871 China
| |
Collapse
|
36
|
Lv Y, Pu W, Zhu X, Zhao T, Lin F. Copper-Catalyzed Cross-Coupling of Secondary α-Haloamides with Terminal Alkynes: Access to Diverse 2,3-Allenamides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials; Anyang 455000 People's Republic of China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Xueli Zhu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Tiantian Zhao
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Feifei Lin
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| |
Collapse
|
37
|
Periasamy M, Mohan L, Satyanarayana I, Reddy PO. Enantioselective Synthesis of β-Allenoates via Phosphine-Catalyzed and ZnI 2-Promoted Preparation of Oxazolidines and Propargylamines Using Chiral Amines, 1-Alkynes, and Propiolates. J Org Chem 2018; 83:267-274. [PMID: 29171746 DOI: 10.1021/acs.joc.7b02632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diphenylphosphinoethane (DPPE)-catalyzed and ZnI2-promoted in situ formation of oxazolidine, alkynyl zinc, and propargylamine intermediates from 1-alkynes, chiral (S)-diphenyl(pyrrolidin-2-yl)methanol, and propiolates gave the corresponding chiral (R)-β-allenoates in 40-72% yield with up to >99% ee. The intermediate propargylamine was isolated in 50% yield and converted to give the β-allenoate 10aa in 68% yield and 96% ee upon reaction with ZnI2. The results are discussed considering a mechanism involving oxazolidine and iminium ions formed in situ followed by addition of alkynyl zinc complex to produce the propargylamine that gives the corresponding allenoate via a 1,5-hydrogen shift in the presence of ZnI2.
Collapse
Affiliation(s)
- Mariappan Periasamy
- School of Chemistry, University of Hyderabad Central University P.O. , Hyderabad, 500046 Telangana, India
| | - Lakavathu Mohan
- School of Chemistry, University of Hyderabad Central University P.O. , Hyderabad, 500046 Telangana, India
| | - Iddum Satyanarayana
- School of Chemistry, University of Hyderabad Central University P.O. , Hyderabad, 500046 Telangana, India
| | - Polimera Obula Reddy
- School of Chemistry, University of Hyderabad Central University P.O. , Hyderabad, 500046 Telangana, India
| |
Collapse
|
38
|
Han Y, Ma S. Rhodium-catalyzed highly diastereoselective intramolecular [4 + 2] cycloaddition of 1,3-disubstituted allene-1,3-dienes. Org Chem Front 2018. [DOI: 10.1039/c8qo00650d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RhCl(PPh3)3-catalyzed [4 + 2] intramolecular cycloaddition of allene-1,3-dienes afforded cis-fused [3.4.0]-bicyclic products with three chiral centers in good yields with excellent chemo- and diastereoselectivity.
Collapse
Affiliation(s)
- Yulin Han
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| |
Collapse
|
39
|
Han Y, Zhang X. Theoretical Studies of Allene Synthesis through Cadmium Iodide-Mediated Allenylation of Terminal Alkynes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yulin Han
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
40
|
Kumar R, Dwivedi V, Sridhar Reddy M. Metal-Free Iodosulfonylation of Internal Alkynes: Stereodefined Access to Tetrasubstituted Olefins. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700576] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ravi Kumar
- Medicinal & Process Chemistry Division; CSIR - Central Drug Research Institute; B.S. 10/1, Sector 10, Jankipuram Extension; Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Vikas Dwivedi
- Medicinal & Process Chemistry Division; CSIR - Central Drug Research Institute; B.S. 10/1, Sector 10, Jankipuram Extension; Sitapur Road Lucknow 226031 India
| | - Maddi Sridhar Reddy
- Academy of Scientific and Innovative Research; New Delhi 110001 India
- MCB Division; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| |
Collapse
|
41
|
Schaarschmidt M, Wanner KT. Synthesis of Allene Substituted Nipecotic Acids by Allenylation of Terminal Alkynes. J Org Chem 2017; 82:8371-8388. [DOI: 10.1021/acs.joc.7b00630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maren Schaarschmidt
- Department of Pharmacy, Center
for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Klaus T. Wanner
- Department of Pharmacy, Center
for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| |
Collapse
|
42
|
Tzouras NV, Stamatopoulos IK, Papastavrou AT, Liori AA, Vougioukalakis GC. Sustainable metal catalysis in C H activation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Zhang S, Cheng B, Wang SA, Zhou L, Tung CH, Wang J, Xu Z. Gold-Catalyzed Cycloisomerization/1,5-H Migration/Diels–Alder Reaction Cascade: Synthesis of Complex Nitrogen-Containing Heterocycles. Org Lett 2017; 19:1072-1075. [DOI: 10.1021/acs.orglett.7b00090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shuyao Zhang
- Key
Lab for Colloid and Interface Chemistry of Education Ministry, School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Beiming Cheng
- Key
Lab for Colloid and Interface Chemistry of Education Ministry, School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shen-An Wang
- Key
Lab for Colloid and Interface Chemistry of Education Ministry, School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ling Zhou
- Key
Lab for Colloid and Interface Chemistry of Education Ministry, School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Department
of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Chen-Ho Tung
- Key
Lab for Colloid and Interface Chemistry of Education Ministry, School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jianwu Wang
- Key
Lab for Colloid and Interface Chemistry of Education Ministry, School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhenghu Xu
- Key
Lab for Colloid and Interface Chemistry of Education Ministry, School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Zhu C, Feng C, Yamane M. Pd/Cu cooperative catalysis: an efficient synthesis of (3-isoindazolyl)allenes via cross-coupling of 2-alkynyl azobenzenes and terminal alkynes. Chem Commun (Camb) 2017; 53:2606-2609. [DOI: 10.1039/c7cc00562h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a cooperative Pd/Cu-catalyzed synthesis of (3-isoindazolyl)allenes via cross-coupling of 2-alkynyl azobenzenes and terminal alkynes.
Collapse
Affiliation(s)
- Chuan Zhu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211800
| | - Chao Feng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211800
| | - Motoki Yamane
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
45
|
Boreux A, Lonca GH, Riant O, Gagosz F. Synthesis of Trifluoromethyl-allenes by Gold-Catalyzed Rearrangement of Propargyl Benzyl Ethers. Org Lett 2016; 18:5162-5165. [DOI: 10.1021/acs.orglett.6b02636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arnaud Boreux
- Laboratoire
de Synthèse Organique, UMR 7652 CNRS/Ecole Polytechnique, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
- Institute
of Condensed Matter and Nanosciences (IMCN), Division of Molecules,
Solids and Reactivity (MOST), Université Catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Geoffroy H. Lonca
- Laboratoire
de Synthèse Organique, UMR 7652 CNRS/Ecole Polytechnique, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - Olivier Riant
- Institute
of Condensed Matter and Nanosciences (IMCN), Division of Molecules,
Solids and Reactivity (MOST), Université Catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Fabien Gagosz
- Laboratoire
de Synthèse Organique, UMR 7652 CNRS/Ecole Polytechnique, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
46
|
Gómez-Herrera A, Nahra F, Brill M, Nolan SP, Cazin CSJ. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes. ChemCatChem 2016. [DOI: 10.1002/cctc.201600868] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Fady Nahra
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281 - S3 9000 Gent Belgium
| | - Marcel Brill
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
| | - Steven P. Nolan
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281 - S3 9000 Gent Belgium
- Chemistry Department; College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Catherine S. J. Cazin
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281 - S3 9000 Gent Belgium
| |
Collapse
|
47
|
Sogo H, Iwasawa N. Rhenium(I)-Catalyzed Generation of α,β-Unsaturated Carbene Complex Intermediates from Propargyl Ethers for the Preparation of Cycloheptadiene Derivatives. Angew Chem Int Ed Engl 2016; 55:10057-60. [DOI: 10.1002/anie.201604371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Hideyuki Sogo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
48
|
Sogo H, Iwasawa N. Rhenium(I)-Catalyzed Generation of α,β-Unsaturated Carbene Complex Intermediates from Propargyl Ethers for the Preparation of Cycloheptadiene Derivatives. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hideyuki Sogo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
49
|
Xiao ZF, Ding TH, Mao SW, Ning XS, Kang YB. Zinc Iodide-Mediated Direct Synthesis of 2,3-Dihydroisoxazoles from Alkynes and Nitrones. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Hydrogen-Atom Transfer Reactions. Top Curr Chem (Cham) 2016; 374:17. [DOI: 10.1007/s41061-016-0018-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/01/2016] [Indexed: 02/04/2023]
|