1
|
Alejaldre L, Lemay-St-Denis C, Perez Lopez C, Sancho Jodar F, Guallar V, Pelletier JN. Known Evolutionary Paths Are Accessible to Engineered ß-Lactamases Having Altered Protein Motions at the Timescale of Catalytic Turnover. Front Mol Biosci 2020; 7:599298. [PMID: 33330628 PMCID: PMC7716773 DOI: 10.3389/fmolb.2020.599298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of new protein functions is dependent upon inherent biophysical features of proteins. Whereas, it has been shown that changes in protein dynamics can occur in the course of directed molecular evolution trajectories and contribute to new function, it is not known whether varying protein dynamics modify the course of evolution. We investigate this question using three related ß-lactamases displaying dynamics that differ broadly at the slow timescale that corresponds to catalytic turnover yet have similar fast dynamics, thermal stability, catalytic, and substrate recognition profiles. Introduction of substitutions E104K and G238S, that are known to have a synergistic effect on function in the parent ß-lactamase, showed similar increases in catalytic efficiency toward cefotaxime in the related ß-lactamases. Molecular simulations using Protein Energy Landscape Exploration reveal that this results from stabilizing the catalytically-productive conformations, demonstrating the dominance of the synergistic effect of the E014K and G238S substitutions in vitro in contexts that vary in terms of sequence and dynamics. Furthermore, three rounds of directed molecular evolution demonstrated that known cefotaximase-enhancing mutations were accessible regardless of the differences in dynamics. Interestingly, specific sequence differences between the related ß-lactamases were shown to have a higher effect in evolutionary outcomes than did differences in dynamics. Overall, these ß-lactamase models show tolerance to protein dynamics at the timescale of catalytic turnover in the evolution of a new function.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | - Claudèle Lemay-St-Denis
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | | | | | - Victor Guallar
- Barcelona Supercomputing Center, Barcelona, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Joelle N. Pelletier
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Chemistry Department, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Patel MP, Hu L, Stojanoski V, Sankaran B, Venkataram Prasad BV, Palzkill T. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M β-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry 2017; 56:3443-3453. [PMID: 28613873 PMCID: PMC5645026 DOI: 10.1021/acs.biochem.7b00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTX-M β-lactamases provide resistance against the β-lactam antibiotic, cefotaxime, but not a related antibiotic, ceftazidime. β-Lactamases that carry the P167S substitution, however, provide ceftazidime resistance. In this study, CTX-M-14 was used as a model to study the structural changes caused by the P167S mutation that accelerate ceftazidime turnover. X-ray crystallography was used to determine the structures of the P167S apoenzyme along with the structures of the S70G/P167S, E166A/P167S, and E166A mutant enzymes complexed with ceftazidime as well as the E166A/P167S apoenzyme. The S70G and E166A mutations allow capture of the enzyme-substrate complex and the acylated form of ceftazidime, respectively. The results showed a large conformational change in the Ω-loop of the ceftazidime acyl-enzyme complex of the P167S mutant but not in the enzyme-substrate complex, suggesting the change occurs upon acylation. The change results in a larger active site that prevents steric clash between the aminothiazole ring of ceftazidime and the Asn170 residue in the Ω-loop, allowing accommodation of ceftazidime for hydrolysis. In addition, the conformational change was not observed in the E166A/P167S apoenzyme, suggesting the presence of acylated ceftazidime influences the conformational change. Finally, the E166A acyl-enzyme structure with ceftazidime did not exhibit the altered conformation, indicating the P167S substitution is required for the change. Taken together, the results reveal that the P167S substitution and the presence of acylated ceftazidime both drive the structure toward a conformational change in the Ω-loop and that in CTX-M P167S enzymes found in drug-resistant bacteria this will lead to an increased level of ceftazidime hydrolysis.
Collapse
Affiliation(s)
- Meha P. Patel
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Vlatko Stojanoski
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B. V. Venkataram Prasad
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Timothy Palzkill
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
3
|
Gootz TD. Global dissemination of β2-lactamases mediating resistance to cephalosporins and carbapenems. Expert Rev Anti Infect Ther 2014; 2:317-27. [PMID: 15482196 DOI: 10.1586/14787210.2.2.317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
While the main era of beta-lactam discovery programs is over, these agents continue to be the most widely prescribed antimicrobials in both community and hospital settings. This has led to considerable beta-lactam pressure on pathogens, resulting in a literal explosion of new beta-lactamase variants of existing enzyme classes. Recent advances in the molecular tools used to detect and characterize beta-lactamases and their genes has, in part, fueled the large increase in communications identifying novel beta-lactamases, particularly in Gram-negative bacilli. It now seems clear that the beta-lactams themselves have shaped the field of new enzymes, and the evolution of key amino acid substitutions around the active sites of beta-lactamases continues to drive resistance. Over 130 variants of TEM beta-lactamase now exist, and more are reported in the scientific literature each month. The most disturbing current trend is that many bla structural genes normally limited to the chromosome are now mobilized on plasmids and integrons, broadening the spread of resistance to include carbapenems and cephamycins. Furthermore, in some Enterobacteriaceae, concomitant loss of outer membrane porins act in concert with these transmissible beta-lactamase genes to confer resistance to the most potent beta-lactams and inhibitor combinations available. Continued reviews of the literature are necessary in order to keep abreast of the ingenuity with which bacteria are changing the current genetic landscape to confer resistance to this important class of antimicrobials.
Collapse
Affiliation(s)
- Thomas D Gootz
- Pfizer Global Research and Development, Department of Antimicrobials, Immunology and Cancer, Eastern Point Road, Groton, Connecticut 06340, USA.
| |
Collapse
|
4
|
Levitt PS, Papp-Wallace KM, Taracila MA, Hujer AM, Winkler ML, Smith KM, Xu Y, Harris ME, Bonomo RA. Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis. J Biol Chem 2012; 287:31783-93. [PMID: 22843686 DOI: 10.1074/jbc.m112.348540] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacteria harboring KPC-2, a class A β-lactamase, are resistant to all β-lactam antibiotics and pose a major public health threat. Arg-164 is a conserved residue in all class A β-lactamases and is located in the solvent-exposed Ω-loop of KPC-2. To probe the role of this amino acid in KPC-2, we performed site-saturation mutagenesis. When compared with wild type, 11 of 19 variants at position Arg-164 in KPC-2 conferred increased resistance to the oxyimino-cephalosporin, ceftazidime (minimum inhibitory concentration; 32→128 mg/liter) when expressed in Escherichia coli. Using the R164S variant of KPC-2 as a representative β-lactamase for more detailed analysis, we observed only a modest 25% increase in k(cat)/K(m) for ceftazidime (0.015→0.019 μm(-1) s(-1)). Employing pre-steady-state kinetics and mass spectrometry, we determined that acylation is rate-limiting for ceftazidime hydrolysis by KPC-2, whereas deacylation is rate-limiting in the R164S variant, leading to accumulation of acyl-enzyme at steady-state. CD spectroscopy revealed that a conformational change occurred in the turnover of ceftazidime by KPC-2, but not the R164S variant, providing evidence for a different form of the enzyme at steady state. Molecular models constructed to explain these findings suggest that ceftazidime adopts a unique conformation, despite preservation of Ω-loop structure. We propose that the R164S substitution in KPC-2 enhances ceftazidime resistance by proceeding through "covalent trapping" of the substrate by a deacylation impaired enzyme with a lower K(m). Future antibiotic design must consider the distinctive behavior of the Ω-loop of KPC-2.
Collapse
Affiliation(s)
- Peter S Levitt
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Salverda MLM, De Visser JAGM, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 2011; 34:1015-36. [PMID: 20412308 DOI: 10.1111/j.1574-6976.2010.00222.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
TEM-1 β-lactamase is one of the most well-known antibiotic resistance determinants around. It confers resistance to penicillins and early cephalosporins and has shown an astonishing functional plasticity in response to the introduction of novel drugs derived from these antibiotics. Since its discovery in the 1960s, over 170 variants of TEM-1 - with different amino acid sequences and often resistance phenotypes - have been isolated in hospitals and clinics worldwide. Next to this well-documented 'natural' evolution, the in vitro evolution of TEM-1 has been the focus of attention of many experimental studies. In this review, we compare the natural and laboratory evolution of TEM-1 in order to address the question to what extent the evolution of antibiotic resistance can be repeated, and hence might have been predicted, under laboratory conditions. We also use the comparison to gain an insight into the adaptive relevance of hitherto uncharacterized substitutions present in clinical isolates and to predict substitutions not yet observed in nature. Based on new structural insights, we review what is known about substitutions in TEM-1 that contribute to the extension of its resistance phenotype. Finally, we address the clinical relevance of TEM alleles during the past decade, which has been dominated by the emergence of another β-lactamase, CTX-M.
Collapse
|
6
|
Frase H, Shi Q, Testero SA, Mobashery S, Vakulenko SB. Mechanistic basis for the emergence of catalytic competence against carbapenem antibiotics by the GES family of beta-lactamases. J Biol Chem 2009; 284:29509-13. [PMID: 19656947 DOI: 10.1074/jbc.m109.011262] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major mechanism of bacterial resistance to beta-lactam antibiotics (penicillins, cephalosporins, carbapenems, etc.) is the production of beta-lactamases. A handful of class A beta-lactamases have been discovered that have acquired the ability to turn over carbapenem antibiotics. This is a disconcerting development, as carbapenems are often considered last resort antibiotics in the treatment of difficult infections. The GES family of beta-lactamases constitutes a group of extended spectrum resistance enzymes that hydrolyze penicillins and cephalosporins avidly. A single amino acid substitution at position 170 has expanded the breadth of activity to include carbapenems. The basis for this expansion of activity is investigated in this first report of detailed steady-state and pre-steady-state kinetics of carbapenem hydrolysis, performed with a class A carbapenemase. Monitoring the turnover of imipenem (a carbapenem) by GES-1 (Gly-170) revealed the acylation step as rate-limiting. GES-2 (Asn-170) has an enhanced rate of acylation, compared with GES-1, and no longer has a single rate-determining step. Both the acylation and deacylation steps are of equal magnitude. GES-5 (Ser-170) exhibits an enhancement of the rate constant for acylation by a remarkable 5000-fold, whereby the enzyme acylation event is no longer rate-limiting. This carbapenemase exhibits k(cat)/K(m) of 3 x 10(5) m(-1)s(-1), which is sufficient for manifestation of resistance against imipenem.
Collapse
Affiliation(s)
- Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
7
|
Delmas J, Chen Y, Prati F, Robin F, Shoichet BK, Bonnet R. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases. J Mol Biol 2007; 375:192-201. [PMID: 17999931 DOI: 10.1016/j.jmb.2007.10.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Oxyimino-cephalosporin antibiotics, such as ceftazidime, escape the hydrolytic activity of most bacterial beta-lactamases. Their widespread use prompted the emergence of the extended-spectrum beta-lactamases CTX-Ms, which have become highly prevalent. The C7 beta-amino thiazol-oxyimino-amide side chain of ceftazidime has a protective effect against most CTX-M beta-lactamases. However, Asp240Gly CTX-M derivatives demonstrate enhanced hydrolytic activity against this compound. In this work, we present the crystallographic structures of Asp240Gly-harboring enzyme CTX-M-16 in complex with ceftazidime-like glycylboronic acid (resolution 1.80 A) and molecular dynamics simulations of the corresponding acyl-enzyme complex. These experiments revealed breathing motions of CTX-M enzymes and the role of the substitution Asp240Gly in the accommodation of ceftazidime. The substitution Asp240Gly resulted in insertion of the C7 beta side chain of ceftazidime deep in the catalytic pocket and orchestrated motions of the active serine Ser70, the beta 3 strand and the omega loop, which favored the key interactions of the residues 237 and 235 with ceftazidime.
Collapse
Affiliation(s)
- Julien Delmas
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand F-63003, France
| | | | | | | | | | | |
Collapse
|
8
|
Konstantinou K, Baddam K, Lanka A, Reddy K, Zervos M. Cefepime versus ceftazidime for treatment of pneumonia. J Int Med Res 2004; 32:84-93. [PMID: 14997712 DOI: 10.1177/147323000403200114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Consecutive patients with pneumonia, treated with cefepime (n = 66) or ceftazidime (n = 132), were evaluated in a retrospective, observational study. There was no significant difference between the two treatment groups with respect to age, underlying diseases, acute physical and chronic health evaluation score, intensive care unit admission, presence of sepsis, community or hospital acquisition, causative organism, duration of therapy, death, cure or improvement in infection, adverse events, superinfections, presence of vancomycin-resistant enterococcus (VRE) and resistance to therapy. Post-therapy hospitalization (days) and vancomycin co-administration were significantly lower, and time to vancomycin initiation significantly higher, in the cefepime compared with the ceftazidime group. The results suggest a trend towards less resistance on therapy, less VRE, reduced vancomycin use and shorter post-therapy hospitalization in patients treated with cefepime compared with ceftazidime. The clinical outcomes for hospitalized patients treated for serious pneumonia were similar between the two groups.
Collapse
Affiliation(s)
- K Konstantinou
- Department of Medicine, Division of Infectious Diseases, William Beaumont Hospital, Royal Oak, MI, USA
| | | | | | | | | |
Collapse
|
9
|
Doucet N, De Wals PY, Pelletier JN. Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase. J Biol Chem 2004; 279:46295-303. [PMID: 15326193 DOI: 10.1074/jbc.m407606200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved Class A beta-lactamase active site residue Tyr-105 was substituted by saturation mutagenesis in TEM-1 beta-lactamase from Escherichia coli in order to clarify its role in enzyme activity and in substrate stabilization and discrimination. Minimum inhibitory concentrations were calculated for E. coli cells harboring each Y105X mutant in the presence of various penicillin and cephalosporin antibiotics. We found that only aromatic residues as well as asparagine replacements conferred high in vivo survival rates for all substrates tested. At position 105, the small residues alanine and glycine provide weak substrate discrimination as evidenced by the difference in benzylpenicillin hydrolysis relative to cephalothin, two typical penicillin and cephalosporin antibiotics. Kinetic analyses of mutants of interest revealed that the Y105X replacements have a greater effect on K(m) than k(cat), highlighting the importance of Tyr-105 in substrate recognition. Finally, by performing a short molecular dynamics study on a restricted set of Y105X mutants of TEM-1, we found that the strong aromatic bias observed at position 105 in Class A beta-lactamases is primarily defined by a structural requirement, selecting planar residues that form a stabilizing wall to the active site. The adopted conformation of residue 105 prevents detrimental steric interactions with the substrate molecule in the active site cavity and provides a rationalization for the strong aromatic bias found in nature at this position among Class A beta-lactamases.
Collapse
Affiliation(s)
- Nicolas Doucet
- Département de Biochimie and Département de chimie, Université de Montréal, C. P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
10
|
Wilkinson AS, Bryant PK, Meroueh SO, Page MGP, Mobashery S, Wharton CW. A dynamic structure for the acyl-enzyme species of the antibiotic aztreonam with the Citrobacter freundii beta-lactamase revealed by infrared spectroscopy and molecular dynamics simulations. Biochemistry 2003; 42:1950-7. [PMID: 12590581 DOI: 10.1021/bi0266941] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infrared difference spectra show that at least 4 conformations coexist for the ester carbonyl group of the stable acyl-enzyme species formed between the antibiotic aztreonam and the class C beta-lactamase from Citrobacter freundii. A novel method for the assignment of the bands that arise from the ester carbonyl group has been employed. This has made use of the finding that the infrared absorption intensity of aliphatic esters is surprisingly constant, so a direct comparison with simple model esters has been possible. This has allowed a clear distinction to be made between ester and amide (protein) absorptions. The polarity of the conformer environment varies from hexane-like to strongly hydrogen-bonded. We assume that the conformer with the lowest frequency (1,690 cm(-)(1)) and hence the strongest hydrogen-bonding is the singular conformer observed in the X-ray crystallographic structure, since a good interaction via two hydrogen bonds with the oxyanion hole is seen. Molecular dynamics simulation by the method of locally enhanced sampling revealed that the motion of the ester carbonyl of the acyl-enzyme species in and out of the oxyanion hole is facile. The simulation revealed two pathways for this motion that would go through intermediates that first break one or the other of the two hydrogen bonds to the oxyanion hole, prior to departure of the carbonyl moiety out of the active site. It is likely that such motion for the acyl-enzyme species might also occur with more typical beta-lactam substrates for beta-lactamases, but their detection in the more rapid time scale may prove a challenge.
Collapse
Affiliation(s)
- Alan-Shaun Wilkinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Díaz N, Sordo TL, Merz KM, Suárez D. Insights into the acylation mechanism of class A beta-lactamases from molecular dynamics simulations of the TEM-1 enzyme complexed with benzylpenicillin. J Am Chem Soc 2003; 125:672-84. [PMID: 12526667 DOI: 10.1021/ja027704o] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we present results from molecular dynamics MD simulations ( approximately 1 ns) of the TEM-1 beta-lactamase in aqueous solution. Both the free form of the enzyme and its complex with benzylpenicillin were studied. During the simulation of the free enzyme, the conformation of the Omega loop and the interresidue contacts defining the complex H-bond network in the active site were quite stable. Most interestingly, the water molecule connecting Glu166 and Ser70 does not exchange with bulk solvent, emphasizing its structural and catalytic relevance. In the presence of the substrate, Ser130, Ser235, and Arg244 directly interact with the beta-lactam carboxylate via H-bonds, whereas the Lys234 ammonium group has only an electrostatic influence. These interactions together with other specific contacts result in a very short distance ( approximately 3 A) between the attacking hydroxyl group of Ser70 and the beta-lactam ring carbonyl group, which is a favorable orientation for nucleophilic attack. Our simulations also gave insight into the possible pathways for proton abstraction from the Ser70 hydroxyl group. We propose that either the Glu166 carboxylate-Wat1 or the substrate carboxylate-Ser130 moieties could abstract a proton from the nucleophilic Ser70.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería 8, Spain
| | | | | | | |
Collapse
|
12
|
Shimamura T, Ibuka A, Fushinobu S, Wakagi T, Ishiguro M, Ishii Y, Matsuzawa H. Acyl-intermediate structures of the extended-spectrum class A beta-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin. J Biol Chem 2002; 277:46601-8. [PMID: 12221102 DOI: 10.1074/jbc.m207884200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial resistance to beta-lactam antibiotics is a serious problem limiting current clinical therapy. The most common form of resistance is the production of beta-lactamases that inactivate beta-lactam antibiotics. Toho-1 is an extended-spectrum beta-lactamase that has acquired efficient activity not only to penicillins but also to cephalosporins including the expanded-spectrum cephalosporins that were developed to be stable in former beta-lactamases. We present the acyl-intermediate structures of Toho-1 in complex with cefotaxime (expanded-spectrum cephalosporin), cephalothin (non-expanded-spectrum cephalosporin), and benzylpenicillin at 1.8-, 2.0-, and 2.1-A resolutions, respectively. These structures reveal distinct features that can explain the ability of Toho-1 to hydrolyze expanded-spectrum cephalosporins. First, the Omega-loop of Toho-1 is displaced to avoid the steric contacts with the bulky side chain of cefotaxime. Second, the conserved residues Asn(104) and Asp(240) form unique interactions with the bulky side chain of cefotaxime to fix it tightly. Finally, the unique interaction between the conserved Ser(237) and cephalosporins probably helps to bring the beta-lactam carbonyl group to the suitable position in the oxyanion hole, thus increasing the cephalosporinase activity.
Collapse
Affiliation(s)
- Tatsuro Shimamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang X, Minasov G, Shoichet BK. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol 2002; 320:85-95. [PMID: 12079336 DOI: 10.1016/s0022-2836(02)00400-x] [Citation(s) in RCA: 366] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the beta-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182-->Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA
| | | | | |
Collapse
|
14
|
Castillo R, Silla E, Tuñón I. Role of protein flexibility in enzymatic catalysis: quantum mechanical-molecular mechanical study of the deacylation reaction in class A beta-lactamases. J Am Chem Soc 2002; 124:1809-16. [PMID: 11853460 DOI: 10.1021/ja017156z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a theoretical study of a mechanism for the hydrolysis of the acyl-enzyme complex formed by a class A beta-lactamase (TEM1) and an antibiotic (penicillanate), as a part of the process of antibiotic's inactivation by this type of enzymes. In the presented mechanism the carboxylate group of a particular residue (Glu166) activates a water molecule, accepting one of its protons, and afterward transfers this proton directly to the acylated serine residue (Ser70). In our study we employed a quantum mechanics (AM1)-molecular mechanics partition scheme (QM/MM) where all the atoms of the system were allowed to relax. For this purpose we used the GRACE procedure in which part of the system is used to define the Hessian matrix while the rest is relaxed at each step of the stationary structures search. By use of this computational scheme, the hydrolysis of the acyl-enzyme is described as a three-step process: The first step corresponds to the proton transfer from the hydrolytic water molecule to the carboxylate group of Glu166 and the subsequent formation of a tetrahedral adduct as a consequence of the attack of this activated water molecule to the carbonyl carbon atom of the beta-lactam. In the second step, the acyl-enzyme bond is broken, obtaining a negatively charged Ser70. In the last step this residue is protonated by means of a direct proton transfer from Glu166. The large mobility of Glu166, a residue that is placed in a Ohms-loop, is essential to facilitate this mechanism. The geometry of the acyl-enzyme complex shows a large distance between Glu166 and Ser70 and thus, if protein coordinates were kept frozen during the reaction path, it would be difficult to get a direct proton transfer between these two residues. This computational study shows how a flexible treatment suggests the feasibility of a mechanism that could have been discounted on the basis of crystallographic positions.
Collapse
Affiliation(s)
- Raquel Castillo
- Departament de Ciències Experimentals, Universitat Jaume I, 12080 Castelló, Spain
| | | | | |
Collapse
|
15
|
Díaz N, Suárez D, Sordo TL, Merz KM. Acylation of Class A β-lactamases by Penicillins: A Theoretical Examination of the Role of Serine 130 and the β-lactam Carboxylate Group. J Phys Chem B 2001. [DOI: 10.1021/jp012881h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| | - Tomás L. Sordo
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| | - Kenneth M. Merz
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| |
Collapse
|
16
|
Powers RA, Caselli E, Focia PJ, Prati F, Shoichet BK. Structures of ceftazidime and its transition-state analogue in complex with AmpC beta-lactamase: implications for resistance mutations and inhibitor design. Biochemistry 2001; 40:9207-14. [PMID: 11478888 DOI: 10.1021/bi0109358] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Third-generation cephalosporins are widely used beta-lactam antibiotics that resist hydrolysis by beta-lactamases. Recently, mutant beta-lactamases that rapidly inactivate these drugs have emerged. To investigate why third-generation cephalosporins are relatively stable to wild-type class C beta-lactamases and how mutant enzymes might overcome this, the structures of the class C beta-lactamase AmpC in complex with the third-generation cephalosporin ceftazidime and with a transition-state analogue of ceftazidime were determined by X-ray crystallography to 2.0 and 2.3 A resolution, respectively. Comparison of the acyl-enzyme structures of ceftazidime and loracarbef, a beta-lactam substrate, reveals that the conformation of ceftazidime in the active site differs from that of substrates. Comparison of the structures of the acyl-enzyme intermediate and the transition-state analogue suggests that ceftazidime blocks formation of the tetrahedral transition state, explaining why it is an inhibitor of AmpC. Ceftazidime cannot adopt a conformation competent for catalysis due to steric clashes that would occur with conserved residues Val211 and Tyr221. The X-ray crystal structure of the mutant beta-lactamase GC1, which has improved activity against third-generation cephalosporins, suggests that a tandem tripeptide insertion in the Omega loop, which contains Val211, has caused a shift of this residue and also of Tyr221 that would allow ceftazidime and other third-generation cephalosporins to adopt a more catalytically competent conformation. These structural differences may explain the extended spectrum activity of GC1 against this class of cephalosporins. In addition, the complexed structure of the transition-state analogue inhibitor (K(i) 20 nM) with AmpC reveals potential opportunities for further inhibitor design.
Collapse
Affiliation(s)
- R A Powers
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
BACKGROUND The evolution of the cephalosporin class of antibiotics through modifications of the basic cephem structure has resulted in a new generation with improved antibacterial activity. Cefepime is a prototypic agent of this new class of fourth generation cephalosporins. OBJECTIVE To review the microbiologic profile of cefepime. RESULTS Cefepime, which is a zwitterion, has a net neutral charge that allows it to penetrate the outer membrane of Gram-negative bacteria faster than third generation cephalosporins. It is more stable against beta-lactamases because of the lower affinity of the enzymes for cefepime when compared with third generation cephalosporins. As a result of these structural attributes, cefepime has in vitro activity against pathogens that are prevalent in pediatric infections. This agent offers the advantage of Gram-positive coverage similar to that of cefotaxime and ceftriaxone, as well as good activity against Pseudomonas aeruginosa and many enteric bacilli that are resistant to third generation cephalosporins, including clinical isolates of Enterobacter spp. and Citrobacter freundii. CONCLUSIONS Based on its spectrum of activity cefepime is an option for the treatment of pediatric infections caused by susceptible pathogens.
Collapse
Affiliation(s)
- R E Kessler
- Bristol-Myers Squibb Co, Wallingford, CT, USA
| |
Collapse
|
18
|
Smyth TP, O'Donnell ME, O'Connor MJ, St Ledger JO. β-Lactamase-Dependent Prodrugs—Recent Developments. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Vakulenko SB, Taibi-Tronche P, Tóth M, Massova I, Lerner SA, Mobashery S. Effects on substrate profile by mutational substitutions at positions 164 and 179 of the class A TEM(pUC19) beta-lactamase from Escherichia coli. J Biol Chem 1999; 274:23052-60. [PMID: 10438473 DOI: 10.1074/jbc.274.33.23052] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of mutations at positions 164 and 179 of the TEM(pUC19) beta-lactamase on turnover of substrates. The direct consequence of some mutations at these sites is that clinically important expanded-spectrum beta-lactams, such as third-generation cephalosporins, which are normally exceedingly poor substrates for class A beta-lactamases, bind the active site of these mutant enzymes more favorably. We employed site-saturation mutagenesis at both positions 164 and 179 to identify mutant variants of the parental enzyme that conferred resistance to expanded-spectrum beta-lactams by their enhanced ability to turn over these antibiotic substrates. Four of these mutant variants, Arg(164) --> Asn, Arg(164) --> Ser, Asp(179) --> Asn, and Asp(179) --> Gly, were purified and the details of their catalytic properties were examined in a series of biochemical and kinetic experiments. The effects on the kinetic parameters were such that either activity with the expanded-spectrum beta-lactams remained unchanged or, in some cases, the activity was enhanced. The affinity of the enzyme for these poorer substrates (as defined by the dissociation constant, K(s)) invariably increased. Computation of the microscopic rate constants (k(2) and k(3)) for turnover of these poorer substrates indicated either that the rate-limiting step in turnover was the deacylation step (governed by k(3)) or that neither the acylation nor deacylation became the sole rate-limiting step. In a few instances, the rate constants for both the acylation (k(2)) and deacylation (k(3)) of the extended-spectrum beta-lactamase were enhanced. These results were investigated further by molecular modeling experiments, using the crystal structure of the TEM(pUC19) beta-lactamase. Our results indicated that severe steric interactions between the large 7beta functionalities of the expanded-spectrum beta-lactams and the Omega-loop secondary structural element near the active site were at the root of the low affinity by the enzyme for these substrates. These conclusions were consistent with the proposal that the aforementioned mutations would enlarge the active site, and hence improve affinity.
Collapse
Affiliation(s)
- S B Vakulenko
- Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
20
|
Smyth TP, O'Connor MJ, O'Donnell ME. Extending the beta-Lactamase-Dependent Prodrug Armory: S-Aminosulfeniminocephalosporins as Dual-Release Prodrugs. J Org Chem 1999; 64:3132-3138. [PMID: 11674412 DOI: 10.1021/jo981993a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cephalosporins bearing an S-aminosulfenimine (R'(R' ')NSN=) side chain at the 7-position are prototypic examples of a novel class of beta-lactamase-dependent prodrug. Enzyme-catalyzed hydrolysis of the beta-lactam ring in these structures triggers release of both the 3'-acetoxy group and the side chain sulfur-attached S-amino moiety as R'(R' ')NH. This reactivity pattern should allow site-specific corelease of two distinct drug components from a cephalosporin, thereby providing a singular enhancement to the capacity of a cephalosporin as a prodrug nucleus; a key advantage of a dual-release prodrug is the potential to establish synergy between the coreleased structures. Areas for exploitation of this new structure type are antibody-directed enzyme prodrug therapy (ADEPT), which is a key emerging anticancer therapy, and the further development of site-specific-release prodrugs to combat the problem of beta-lactamase-based resistance to antibiotics.
Collapse
Affiliation(s)
- Timothy P. Smyth
- Department of Chemical and Environmental Sciences, University of Limerick, National Technological Park, County Limerick, Ireland
| | | | | |
Collapse
|
21
|
Wilkinson AS, Ward S, Kania M, Page MG, Wharton CW. Multiple conformations of the acylenzyme formed in the hydrolysis of methicillin by Citrobacter freundii beta-lactamase: a time-resolved FTIR spectroscopic study. Biochemistry 1999; 38:3851-6. [PMID: 10194295 DOI: 10.1021/bi990030i] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-resolved infrared difference spectroscopy has been used to show that the carbonyl group of the acylenzyme reaction intermediate in the Citrobacter freundii beta-lactamase-catalyzed hydrolysis of methicillin can assume at least four conformations. A single-turnover experiment shows that all four conformations decline during deacylation with essentially the same rate constant. The conformers are thus in exchange on the reaction time scale, assuming that deacylation takes place only from the conformation which is most strongly hydrogen bonded or from a more minor species not visible in these experiments. All conformers have the same (10 cm-1) narrow bandwidth compared with a model ethyl ester in deuterium oxide (37 cm-1) which shows that all conformers are well ordered relative to free solution. The polarity of the carbonyl group environment in the conformers varies from 'ether-like' to strongly hydrogen bonding (20 kJ/mol), presumably in the oxyanion hole of the enzyme. From the absorption intensities, it is estimated that the conformers are populated approximately proportional to the hydrogen bonding strength at the carbonyl oxygen. A change in the difference spectrum at 1628 cm-1 consistent with a perturbation (relaxation) of protein beta-sheet occurs slightly faster than deacylation. Consideration of chemical model reactions strongly suggests that neither enamine nor imine formation in the acyl group is a plausible explanation of the change seen at 1628 cm-1. A turnover reaction supports the above conclusions and shows that the conformational relaxation occurs as the substrate is exhausted and the acylenzymes decline. The observation of multiple conformers is discussed in relation to the poor specificity of methicillin as a substrate of this beta-lactamase and in terms of X-ray crystallographic structures of acylenzymes where multiple forms are not apparently observed (or modeled). Infrared spectroscopy has shown itself to be a useful method for assessment of the uniqueness of enzyme-substrate interactions in physiological turnover conditions as well as for determination of ordering, hydrogen bonding, and protein perturbation.
Collapse
Affiliation(s)
- A S Wilkinson
- School of Biochemistry, University of Birmingham, U.K
| | | | | | | | | |
Collapse
|
22
|
Therrien C, Sanschagrin F, Palzkill T, Levesque RC. Roles of amino acids 161 to 179 in the PSE-4 omega loop in substrate specificity and in resistance to ceftazidime. Antimicrob Agents Chemother 1998; 42:2576-83. [PMID: 9756758 PMCID: PMC105900 DOI: 10.1128/aac.42.10.2576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PSE-4 enzyme is a prototype carbenicillin-hydrolyzing enzyme exhibiting high activity against penicillins and early cephalosporins. To understand the mechanism that modulates substrate profiles and to verify the ability of PSE-4 to extend its substrate specificity toward expanded-spectrum cephalosporins, we used random replacement mutagenesis to generate six random libraries from amino acids 162 to 179 in the Omega loop. This region is known from studies with TEM-1 to be implicated in substrate specificity. It was found that the mechanism modulating ceftazidime hydrolysis in PSE-4 was different from that in TEM-1. The specificity of class 2c carbenicillin-hydrolyzing enzymes could not be assigned to the Omega loop of PSE-4. Analysis of the percentage of functional enzymes revealed that the hydrolysis of ampicillin was more affected than hydrolysis of carbenicillin by amino acid substitutions at positions 162 to 164 and 165 to 167.
Collapse
Affiliation(s)
- C Therrien
- Microbiologie Moléculaire et Génie des Protéines, Sciences de la Vie et de la Santé, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
23
|
Bush K, Mobashery S. How β-Lactamases Have Driven Pharmaceutical Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4615-4897-3_5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998; 42:1-17. [PMID: 9449253 PMCID: PMC105448 DOI: 10.1128/aac.42.1.1] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- I Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA
| | | |
Collapse
|
25
|
Massova I, Mobashery S. Molecular Bases for Interactions between β-Lactam Antibiotics and β-Lactamases. Acc Chem Res 1997. [DOI: 10.1021/ar960007e] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Irina Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| | - Shahriar Mobashery
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| |
Collapse
|