Lancelot SF, Cozens FL, Schepp NP. Substituent effects on the ionization reaction of beta-mesylate phenethyl radicals.
Org Biomol Chem 2003;
1:1972-9. [PMID:
12945782 DOI:
10.1039/b301959d]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of beta-methanesulfonate phenethyl radicals bearing a range of electron donating and withdrawing aromatic substituents were generated and studied in a variety of solvent mixtures using nanosecond laser flash photolysis. Rate constants for the formation of the corresponding styrene radical cation via heterolytic loss of the beta-mesylate leaving group were measured using time-resolved absorption spectroscopy. The ionization reaction was investigated in a variety of solvents and solvent mixtures including 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, acetonitrile, methanol and water. The influence of substituent electronic effect and solvent polarity on the kinetics of the beta-heterolysis reaction are discussed and assessed using the sigma+ Hammett parameter and Y(OMs) values, respectively. The small magnitude of m calculated for the formation of the 4-methoxystyrene radical cation by ionization of the mesylate group (m = 0.33) in aqueous methanol mixtures is compared to values obtained for the formation of the same radical cation via loss of chloride and bromide where m = 0.56 and m = 0.45, respectively.
Collapse